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We introduce the system of variational inequality problems for semimonotone operators in
reflexive Banach space. Using the Kakutani-Fan-Glicksberg fixed point theorem, we obtain some
existence results for system of variational inequality problems for semimonotone with finite-
dimensional continuous operators in real reflexive Banach spaces. The results presented in this
paper extend and improve the corresponding results for variational inequality problems studied
in recent years.

1. Introduction

Let E be a Banach space, let E∗ be the dual space of E, and let 〈·, ·〉 denote the duality pairing
of E∗ and E. If E is a Hilbert space andK is a nonempty, closed, and convex subset of E, then
let, K be a nonempty, closed, and convex subset of a Hilbert space H and let A : K → H be
a mapping. The classical variational inequality problem, denoted by VIP(A,K), is to find x∗ ∈ K
such that

〈Ax∗, z − x∗〉 ≥ 0 (1.1)

for all z ∈ K.
The variational inequality problem (VIP) has been recognized as suitable mathemat-

ical models for dealing with many problems arising in different fields, such as optimization
theory, game theory, economic equilibrium, mechanics. In the last four decades, since the
time of the celebrated Hartman Stampacchia theorem (see [1, 2]), solution existence of
variational inequality and other related problems has become a basic research topic which
continues to attract attention of researchers in applied mathematics (see, e.g., [3–14] and the
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references therein). Related to the variational inequalities, we have the problem of finding
the fixed points of the nonexpansive mappings, which is the current interest in functional
analysis. It is natural to consider a unified approach to these different problems; see, for
example, [10, 11].

Let K be a nonempty, closed, and convex subset of E and let A,B : K → E∗ be single
valued. For the system of generalized variational inequality problem (SGVIP), find (x∗, y∗) ∈
K ×K such that

〈
Ay∗, z − x∗〉 ≥ 0, ∀z ∈ K,

〈
Bx∗, z − y∗〉 ≥ 0, ∀z ∈ K.

(1.2)

There are many kinds of mappings in the literature of recent years; see, for example,
[12, 13, 15–18]. In 1999, Chen [19] introduced the concept of semimonotonicity for a
single valued mapping, which occurred in the study of nonlinear partial differential
equations of divergence type. Recently, Fang and Huang [20] introduced two classes of
variational-like inequalities with generalized monotone mappings in Banach spaces. Using
the KKM technique, they obtained the existence of solutions for variational-like inequalities
with relaxed monotone mappings in reflexive Banach spaces. Moreover, they present the
solvability of variational-like inequalities with relaxed semimonotone mappings in arbitrary
Banach spaces by means of the Kakutani-Fan-Glicksberg fixed point theorem.

On the other hand, some interesting and important problems related to variational
inequalities and complementarity problems were considered in recent papers. In 2004, Cho
et al. [21], introduced, and studied a system of nonlinear variational inequalities. They
proved the existence and uniqueness of solution for this problem and constructed an iterative
algorithm for approximating the solution of system of nonlinear variational inequalities. In
2000, [22], systems of variational inequalities were introduced and an existence theorem
was obtained by Ky Fan lemma. In 2002, Kassay et al. [23] introduced and studied Minty
and Stampacchia variational inequality systems by the Kakutani-Fan-Glicksberg fixed point
theorem. Very recently, Fang and Huang [20] introduced and studied systems of strong
implicit vector variational inequalities by the same fixed point theorem. Zhao and Xia [24]
introduced and established some existence results for systems of vector variational-like
inequalities in Banach spaces by also using the Kakutani-Fan-Glicksberg fixed point theorem.

Let A : E × E → E∗ be a semimonotone mapping and K ⊂ E a closed convex set.
The variational inequality problem (VIP) is to find u ∈ K such that

〈A(u, u), z − u〉 ≥ 0, ∀z ∈ K. (1.3)

LetK be a nonempty closed convex subset of a real reflexive Banach space E with dual space
E∗, and let A,B : K × K → E∗ be two semimonotone mappings. We consider the following
as the system of variational inequality problem (SVIP). Find (u, v) ∈ K ×K such that

〈A(u, v), z − u〉 ≥ 0, ∀z ∈ K,

〈B(u, v), z − v〉 ≥ 0, ∀z ∈ K.
(1.4)

In particular, if setting B : K ×K → E∗ by B(u, v) = A(v, v) for all u, v ∈ K, then the system
of variational inequality problem reduces to the variational inequality problem (VIP).
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In this paper, we introduce the system of generalized variational inequality in real
reflexive Banach space. By using the Kakutani-Fan-Glicksberg fixed point theorem, we obtain
some existence results for system of generalized variational inequality for semimonotone and
finite dimensional continuous in real reflexive Banach spaces. The results presented in this
paper extend and improve the corresponding results of Chen [19] and many others.

2. Preliminaries

In this section, let E be a real Banach space, and let S = {x ∈ E : ‖x‖ = 1} be the unit sphere
of E. A Banach space E is said to be strictly convex if, for any x, y ∈ S,

x /=y implies
∥
∥∥∥
x + y

2

∥
∥∥∥ < 1. (2.1)

It is also said to be uniformly convex if, for each ε ∈ (0, 2], there exists δ > 0 such that, for any
x, y ∈ S,

∥
∥x − y

∥
∥ ≥ ε implies

∥∥
∥∥
x + y

2

∥∥
∥∥ < 1 − δ. (2.2)

It is known that a uniformly convex Banach space is reflexive and strictly convex, and we
define a function δ : [0, 2] → [0, 1] called the modulus of convexity of E as follows:

δ(ε) = inf
{
1 −

∥∥
∥∥
x + y

2

∥∥
∥∥ : x, y ∈ E, ‖x‖ =

∥
∥y

∥
∥ = 1,

∥
∥x − y

∥
∥ ≥ ε

}
. (2.3)

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space E is said
to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.4)

exists for all x, y ∈ S. It is also said to be uniformly smooth if the limit (2.4) is attained uniformly
for x, y ∈ S. We recall that E is uniformly convex if and only if E∗ is uniformly smooth. It is
well known that E is smooth if and only if E∗ is strictly convex.

Definition 2.1 (KKM mapping). LetK be a nonempty subset of a linear space E. A set-valued
mapping G : K → 2E is said to be a KKM mapping if, for any finite subset {y1, y2, . . . , yn} of
K, we have

co
{
y1, y2, . . . , yn

} ⊆
n⋃

i=1

G
(
yi

)
, (2.5)

where co{y1, y2, . . . , yn} denotes the convex hull of {y1, y2, . . . , yn}.
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Lemma 2.2 (Fan-KKM Theorem). Let K be a nonempty convex subset of a Hausdorff topological
vector space E, and let G : K → 2E be a KKM mapping with closed values. If there exists a point
y0 ∈ K such that G(y0) is a compact subset ofK, then

⋂
y∈K G(y)/= ∅.

Definition 2.3. LetX and Y be two topological vector spaces andK a nonempty convex subset
of X. A set-valued mapping F : K → 2Y is said to be properly C-quasiconvex if, for any
x, y ∈ K and t ∈ [0, 1], we have either F(x) ⊂ F(tx+(1− t)y)+C or F(y) ⊂ F(tx+(1− t)y)+C.

Definition 2.4. Let X and Y be two topological vector spaces, and T : X → 2Y be a set-valued
mapping.

(i) T is said to be upper semicontinuous at x ∈ X if, for any open set V containing
T(x), there exists an open set U containing x such that, for all t ∈ U, T(t) ∈ V ; T is
said to be upper semicontinuous on X if it is upper semicontinuous at all x ∈ X.

(ii) T is said to be lower semicontinuous at x ∈ X if, for any open set V with T(x) ∩
V /= ∅, there exists an open setU containing x such that, for all t ∈ U, T(x) ∩V /= ∅; T
is said to be lower semicontinuous on X if it is lower semicontinuous at all x ∈ X.

(iii) T is said to be continuous on X if it is at the same time upper semicontinuous and
lower semicontinuous on X.

(iv) T is said to be closed if the graph, Graph(T), of T , that is, Graph(T) = {(x, y) : x ∈
X and y ∈ T(x)}, is a closed set in X × Y .

Lemma 2.5 (see [25]). Let X and Y be two Hausdorff topological vector spaces, and let T : X → 2Y

be a set-valued mapping. Then the following properties hold.

(i) If T is closed and T(X) is compact, then T is upper semicontinuous, where T(X) =
⋃

x∈X T(x) and E denotes the closure of the set E.

(ii) If T is upper semicontinuous and, for any x ∈ X, T(x) is closed, then T is closed.

(iii) T is lower semicontinuous at x ∈ X if and only if for any y ∈ T(x) and any net {xα}, xα →
x, there exists a net {yα} such that yα ∈ T(xα) and yα → y.

Lemma 2.6 (see Kakutani-Fan-Glicksberg [26]). Let K be a nonempty compact subset of locally
convex Hausdorff vector topology space E. If S : K → 2K is upper semicontinuous and, for any
x ∈ K, S(x) is nonempty convex and closed, then there exists an x∗ ∈ K such that x∗ ∈ S(x∗).

Lemma 2.7 (see [27]). For each λ > 0, ϕλ is a Fréchet differentiable convex function on H , and
the Fréchet derivative ∂ϕλ of ϕλ is equal to Yosida approximation (∂ϕ)λ = (1/λ)(1 − Jλ) of ∂ϕ. More
precisely,

0 ≤ ϕλ(v) − ϕλ(u) −
(
∂ϕλ(u), v − u

) ≤ 1
λ
‖v − u‖2 (2.6)

holds for λ > 0 and u, v ∈ H .

LetK be a nonempty closed convex subset of a real reflexive Banach space Ewith dual
space E∗. A mapping A : E → E∗ is said to be monotone if it satisfies

〈A(v) −A(w), v −w〉 ≥ 0, ∀u, v,w ∈ E. (2.7)
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Definition 2.8 (see [19]). A mappingA : E×E → E∗ is said to be semimonotone if it satisfies the
following:

(a) for each u ∈ E, A(u, ·) is monotone; that is, 〈A(u, v) − A(u,w), v − w〉 ≥ 0, for all
u, v,w ∈ E;

(b) For each fixed v ∈ E, A(·, v) is completely continuous; that is, if uj → u0 in weak
topology of E, then {A(uj, v)} has a subsequence A(ujk , v) → A(u0, v) in norm
topology of E.

An operator A : D(A) ⊂ E → E∗ is said to be hemicontinuous at x0 ∈ D(A), if, for any
y ∈ E, t ∈ (0,+∞)with x0+ty ∈ E, we have 〈A(x0+ty), z〉 → 〈Ax0, z〉 for all z ∈ E at t → 0+.

Lemma 2.9. Let A : K ⊆ E → E∗ be a hemicontinuous monotone operator, let K be a convex subset,
and let f : E → (−∞,+∞) be a convex function and x0 ∈ K a given point. Then

〈Ax0, x − x0〉 + f(x) − f(x0) ≥ 0, ∀x ∈ K, (2.8)

if and only if

〈Ax, x − x0〉 + f(x) − f(x0) ≥ 0, ∀x ∈ K. (2.9)

Proof. Let x0 ∈ K such that

〈Ax0, x − x0〉 + f(x) − f(x0) ≥ 0, ∀x ∈ K. (2.10)

By the monotonicity of A, we have

〈Ax, x − x0〉 + f(x) − f(x0) ≥ 〈Ax0, x − x0〉 + f(x) − f(x0) ≥ 0, ∀x ∈ K. (2.11)

On the other hand, suppose that

〈Ax, x − x0〉 + f(x) − f(x0) ≥ 0, ∀x ∈ K. (2.12)

For any given x ∈ K and any t ∈ (0, 1], taking z = tx + (1 − t)x0 ∈ K since K is convex and
Replacing x by z into the above inequality, one has

〈Az, z − x0〉 + f(z) − f(x0) ≥ 0, ∀z ∈ K. (2.13)

It follows from the convexity of f on K that

〈Az, z − x0〉 + f(z) − f(x0) = 〈A(tx + (1 − t)x0), tx + (1 − t)x0 − x0〉 + f(tx + (1 − t)x0) − f(x0)

≤ 〈A(x0 + t(x − x0), t(x − x0))〉 + tf(x) + (1 − t)f(x0) − f(x0)

= t
[〈A(x0 + t(x − x0)), x − x0〉 + f(x) − f(x0)

]

= 〈A(x0 + t(x − x0)), x − x0〉 + f(x) − f(x0).
(2.14)
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Letting t → 0+ and using the hemicontinuity of A, we have

〈Ax0, x − x0〉 + f(x) − f(x0) ≥ 0, ∀x ∈ K. (2.15)

This completes the proof.

3. The Existence of the System of Generalized Variational Inequality

In this section, we prove two existence theorems for system of variational inequality problems
for semimonotone with finite dimensional continuous operators in real reflexive Banach
spaces. First, we prove an existence theorem for system of variational inequality problems
for continuous mappings as follows.

Theorem 3.1. Let E be a reflexive Banach spac, let K be a compact convex subset of E, and let A,B :
K → E∗ be two continuous mappings. Then the problem (1.2) has a solution and the set of solutions
of (1.2) is closed.

Proof. Fix x ∈ K, for each z ∈ K, the sets Gx(z) andHx(z) are defined as follows:

Gx(z) :=
{
y ∈ K :

〈
Ax, z − y

〉 ≥ 0
}
,

Hx(z) :=
{
y ∈ K :

〈
Bx, z − y

〉 ≥ 0
}
.

(3.1)

Step 1 (Show that Gx(z) and Hx(z) are nonempty compact convex subsets of K). For any
z ∈ K, we note that z ∈ Gx(z) and z ∈ Hx(z). Thus, Gx(z) and Hx(z) are nonempty subsets
of K. Moreover, it follows from the definitions of Gx(z) and Hx(z) that both of them are
compact convex subsets of K.

Step 2 (Show that Gx(z) and Hx(z) are KKM mappings). For any finite set {z1, z2, . . . , zn} ∈
K, we claim that co{z1, z2, . . . , zn} ⊂ ⋃n

j=1 Gx(zj) and co{z1, z2, . . . , zn} ⊂ ⋃n
j=1 Hx(zj). Let

z ∈ {z1, z2, . . . , zn}. Then z =
∑n

j=1 λjzj , where λj ∈ [0, 1] and
∑n

j=1 λj = 1. We observe that

n∑

j=1

λj

〈
Ax, zj − z

〉 ≥
〈

Ax,
n∑

j=1

λj

(
zj − z

)
〉

=

〈

Ax,
n∑

j=1

λjzj −
n∑

j=1

λjz

〉

= 〈Ax, z − z〉 = 0.

(3.2)

So, there is at least one number j = 1, 2, . . . , n such that 〈Ax, zj − z〉 ≥ 0. Therefore, z ∈
Gx(zj) ⊂ ⋃n

j=1 Gx(zj). Similarly, we obtain that z ∈ Hx(zj) ⊂ ⋃n
j=1 Hx(zj). Hence, we have

co{z1, z2, . . . , zn} ⊂ ⋃n
j=1 Gx(zj) and co{z1, z2, . . . , zn} ⊂ ⋃n

j=1 Hx(zj). This implies that Gx(·)
and Hx(·) are KKMmappings.

Step 3 (Show that Gx(z) andHx(z) are closed for all z ∈ K). Let {xn} be a sequence in Gx(z)
such that xn → x0. Then

〈Ax, z − xn〉 ≥ 0, ∀z ∈ K. (3.3)
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Since 〈·, ·〉 and A are continuous, we have 〈Ax, z − x0〉 ≥ 0 for all z ∈ K. Thus, we see that
x0 ∈ Gx(z). This implies that Gx(z) is closed for all z ∈ K. Similarly, we note that Hx(z) is
closed for all z ∈ K.

Step 4 (Show that
⋂

z∈K Gx(z)/= ∅/= ⋂
z∈K Hx(z)). Since Gx(z) andHx(z) are closed subsets of

K and K is compact, it follows that Gx(z) and Hx(z) are compact subsets of K. It follows
from Lemma 2.2 that

⋂
z∈K Gx(z)/= ∅/= ⋂

z∈K Hx(z). Moreover, we note that
⋂

z∈K Gy(z) and⋂
z∈K Hx(z) are closed and convex.

Step 5 (Show that the problem (1.2) has a solution). Define the set-valued mapping S : K ×
K → 2K×K by

S
(
x, y

)
=

({
⋂

z∈K
Gx(z)

}

,

{
⋂

z∈K
Hx(z)

})

, ∀(x, y) ∈ K ×K. (3.4)

From Step 4, we note that S(x, y) is nonempty closed convex subset of K × K for all
(x, y) ∈ K × K. Since

⋂
z∈K Gy(z),

⋂
z∈K Hx(z) ⊂ K, and K is compact,

⋂
z∈K Gy(z) and

⋂
z∈K Hx(z) are compact. It follows from Lemma 2.5(i) that S is upper semicontinuous.

Hence, by the Kakutani-Fan-Glicksberg theorem, there exists a point (x∗, y∗) ∈ S(x∗, y∗) =
({⋂z∈K Gx(z)}, {

⋂
z∈K Hx(z)}); that is, x∗ ∈ Gy∗(z) and y∗ ∈ Hx∗(z) for all z ∈ K. By definition

of Gy∗(z) andHx∗(z), we get

〈
Ay∗, z − x∗〉 ≥ 0, ∀z ∈ K,

〈
Bx∗, z − y∗〉 ≥ 0, ∀z ∈ K.

(3.5)

Hence, (x∗, y∗) are the solutions of problem (1.2).

Step 6 (Show that the set of solutions of problem (1.2) is closed). Let {(xn, yn)} be a net in
the set of solutions of problem (1.2) such that (xn, yn) → (x0, y0). By definition of the set of
solutions of problem (1.2) we obtain that

〈
Ayn, z − xn

〉 ≥ 0, ∀z ∈ K,

〈
Bxn, z − yn

〉 ≥ 0, ∀z ∈ K.
(3.6)

Since A,B are continuous andK is compact, it follows that (x0, y0) ∈ K ×K and

〈
Ay0, z − x0

〉 ≥ 0, ∀z ∈ K,

〈
Bx0, z − y0

〉 ≥ 0, ∀z ∈ K.
(3.7)

This mean that (x0, y0) belongs to the set of solution of problem (1.2). Hence, the set of
solution of problem (1.2) is closed set. This completes the proof.

Theorem 3.2. Let K be a nonempty bounded closed convex subset of a real reflexive Banach space E
with dual space E∗. Suppose that f : E → (−∞,+∞) is a lower semicontinuous convex function with
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K ⊆ D(f). Let A : K × K → E∗ and B : K × K → E∗ be two mappings satisfying the following
conditions:

(i) for each z ∈ K, A(·, z) and B(z, ·) are monotone;

(ii) for each z ∈ K, A(z, ·) and B(·, z) are completely continuous;

(iii) for any given z ∈ K, A(·, z) : K → E∗ and B(z, ·) : K → E∗ are finite dimensional
continuous; that is, for any finite dimensional subspace M ⊂ E,A(·, z) and B(z, ·) : K ∩
M → E∗ are continuous.

Then, there exists (u, v) ∈ K ×K such that

〈A(u, v), z − u〉 + f(z) − f(u) ≥ 0, ∀z ∈ K,

〈B(u, v), z − v〉 + f(z) − f(v) ≥ 0, ∀z ∈ K.
(3.8)

Proof. Let ∂f be the subdifferential of f and (∂f)λ the Yosida approximation of ∂f . Let F be
a finite dimensional subspace of E with F ∩ K := KF /= ∅. For any given (u, v) ∈ K × K, we
consider the following systems of variational inequalities (SGVIP)F . Find (u0, v0) ∈ KF ×KF

such that

〈A(u0, v), z − u0〉 +
((
∂f

)
0u0, z − u0

) ≥ 0, ∀z ∈ KF,

〈B(u, v0), z − v0〉 +
((
∂f

)
0v0, z − v0

) ≥ 0, ∀z ∈ KF.
(3.9)

Since KF × KF ⊂ F × F is nonempty bounded closed convex and A(·, v) and B(v, ·) are
continuous on KF × KF for each fixed v ∈ K, it follows from Theorem 3.1 that (SGVIP)F
has a solution (u0, v0) ∈ KF × KF . By Lemma 2.9 and the Yosida approximation of ∂f , we
have

〈A(z, v), z − u0〉 + f(z) − f(u0) ≥ 0, ∀z ∈ KF,

〈B(u, z), z − v0〉 + f(z) − f(v0) ≥ 0, ∀z ∈ KF.
(3.10)

Now, we defined a mapping T : KF ×KF → 2KF×KF by the following:

T(u, v) =
{
(u0, v0) ∈ KF ×KF : (u0, v0) solves problem (SGVIP)F

}
. (3.11)

Next, we will show that this mapping has at least one fixed point in KF ×KF . To prove this,
we need the following conditions.

(1) For all (u, v) ∈ KF ×KF , T(u, v)/= ∅ as (SGVIP)F has a solution.

(2) T(u, v) is convex for all (u, v) ∈ KF ×KF .
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Let (u1, v1), (u2, v2) ∈ T(u, v) and λ ∈ [0, 1]. Thus, we have

λ
[〈A(z, v), z − u1〉 + f(z) − f(u1)

] ≥ 0, ∀z ∈ KF,

λ
[〈B(u, z), z − v1〉 + f(z) − f(v1)

] ≥ 0, ∀z ∈ KF,

(1 − λ)
[〈A(z, v), z − u2〉 + f(z) − f(u2)

] ≥ 0, ∀z ∈ KF,

(1 − λ)
[〈B(u, z), z − v2〉 + f(z) − f(v2)

] ≥ 0, ∀z ∈ KF.

(3.12)

Adding (3.12), we get

〈A(z, v), z − (λu1 + (1 − λ)u2)〉 + f(z) − [
λf(u1) + (1 − λ)f(u2)

] ≥ 0, ∀z ∈ KF,

〈B(u, z), z − (λv1 + (1 − λ)v2)〉 + f(z) − [
λf(v1) + (1 − λ)f(v2)

] ≥ 0, ∀z ∈ KF.
(3.13)

It implies that T(u, v) is convex.

(3) T(u, v) is closed for all (u, v) ∈ KF ×KF .

In fact, leting {(uα, vα)} ∈ T(u, v) such that (uα, vα) → (u, v), we have

〈A(z, v), z − uα〉 + f(z) − f(uα) ≥ 0, ∀z ∈ KF,

〈B(u, z), z − vα〉 + f(z) − f(vα) ≥ 0, ∀z ∈ KF.
(3.14)

Since 〈·, ·〉, A, and B are continuous and f is lower semicontinuous, we get

〈A(z, v), z − u〉 + f(z) − f(u) ≥ 0, ∀z ∈ KF,

〈B(u, z), z − v〉 + f(z) − f(v) ≥ 0, ∀z ∈ KF.
(3.15)

Thus (u, v) ∈ T(u, v) implies that T(u, v) is closed.

(4) T(u, v) is bounded for (u, v) ∈ KF ×KF .

Since KF is bounded, it is obvious that T(u, v) is bounded.

(5) The mapping T : KF ×KF → 2KF×KF is upper semicontinuous.

By the completely continuity of A(v, ·), B(·, v) and f being semicontinuous, we note
that T is upper semicontinuous.

Hence, by the Kakutani-Fan-Glicksberg fixed point theorem, T has a fixed point; that
is, there exists (uα, vα) ∈ KF ×KF such that (uα, vα) ∈ T(uα, vα). Thus, we have

〈A(uα, vα), z − uα〉 + f(z) − f(uα) ≥ 0, ∀z ∈ KF,

〈B(uα, vα), z − vα〉 + f(z) − f(vα) ≥ 0, ∀z ∈ KF.
(3.16)
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Let � = {F ⊂ E | F is finite dimensional and F ∩K/= ∅}. For each F ∈ �, we let SF be the set of
all solutions of the following problem. Find (u′, v′) ∈ K ×K such that

〈
A
(
z, v′), z − u′〉 + f(z) − f

(
u′) ≥ 0, ∀z ∈ KF,

〈
B
(
u′, z

)
, z − v′〉 + f(z) − f

(
v′) ≥ 0, ∀z ∈ KF.

(3.17)

By (3.10), we know that SF is nonempty bounded. We observe that SF ⊂ K ×K, where SF is
the weak∗ closure of SF in E × E. Since E is reflexive, it follows that SF is weak∗ compact. For
any F1, F2, . . . , FN ∈ �, we note that S⋃n

i=1 Fi
⊂ ⋂N

i=1 SFi . So {SF : F ∈ �} has the finite intersection
property. Therefore, it follows that

⋂
F∈� SF /= ∅. Let (u∗, v∗) ∈ ⋂

F∈� SF , then we have (u∗, v∗) ∈
K ×K.

Next, we claim that

〈A(u∗, v∗), z − u∗〉 + f(z) − f(u∗) ≥ 0, ∀z ∈ K,

〈B(u∗, v∗), z − v∗〉 + f(z) − f(v∗) ≥ 0, ∀z ∈ K.
(3.18)

Indeed, for each z ∈ K, we choose F ∈ � such that z, u∗, v∗ ∈ KF ⊂ K. Since (u∗, v∗) ∈ SF , there
exists a sequence (uj, vj)∞j=1 ⊆ SF such that (uj, vj) converge weakly to (u∗, v∗). This implies
that

〈
A
(
z, vj

)
, z − uj

〉
+ f(z) − f

(
uj

) ≥ 0,
〈
B
(
uj, z

)
, z − vj

〉
+ f(z) − f

(
vj

) ≥ 0
(3.19)

for all j ≥ 1. Since f is lower semicontinuous, it follows that f is weakly lower semicontin-
uous. Therefore, by using the completely continuity of A(z, ·) and B(·, z), respectively, and
letting j → ∞, we have

〈A(z, v∗), z − u∗〉 + f(z) − f(u∗) ≥ 0,

〈B(u∗, z), z − v∗〉 + f(z) − f(v∗) ≥ 0.
(3.20)

By Lemma 2.9, we have

〈A(u∗, v∗), z − u∗〉 + f(z) − f(u∗) ≥ 0, ∀z ∈ K,

〈B(u∗, v∗), z − v∗〉 + f(z) − f(v∗) ≥ 0, ∀z ∈ K.
(3.21)

This completes the proof.

Setting f := 0 in Theorem 3.2, we have the following result.

Corollary 3.3. Let K be a nonempty bounded closed convex subset of a real reflexive Banach space E
with dual space E∗. Let A,B : K ×K → E∗ be two mappings satisfying the following conditions:

(i) for each z ∈ K, A(·, z) and B(z, ·) are monotone;
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(ii) for each z ∈ K, A(z, ·) and B(·, z) are completely continuous;

(iii) for any given z ∈ K, A(·, z) : K → E∗ and B(z, ·) : K → E∗ are finite dimensional
continuous; that is, for any finite dimensional subspace M ⊂ E,A(·, z) and B(z, ·) : K ∩
M → E∗ are continuous.

Then, there exists (u, v) ∈ K ×K such that

〈A(u, v), z − u〉 ≥ 0, ∀z ∈ K,

〈B(u, v), z − v〉 ≥ 0, ∀z ∈ K.
(3.22)

Corollary 3.4 (see [19]). Let E be a real reflexive Banach space and K ⊂ E a bounded closed convex
subset. Suppose that f : E(−∞,+∞] is a lower semicontinuous convex function with K ⊆ D(f), B :
K × K → E∗ is semimonotone, and B(u, ·) is finite dimensional continuous for each u ∈ K. Then
there exists w0 ∈ K such that

(B(w0, w0), u −w0) + f(u) − f(w0) ≥ 0, ∀u ∈ K. (3.23)

Proof. Define a mapping A : K × K → E∗ by A(u, v) = B(v, v) for all u, v ∈ K. We observe
that A(·, z) is monotone and A(z, ·) is completely continuous for all z ∈ K. Moreover, A is
finite dimensional continuous. Therefore, by Theorem 3.2, there exists v ∈ K such that

(B(v, v), z − v) + f(z) − f(v) ≥ 0, ∀z ∈ K. (3.24)

Next, we consider the system of generalized variational inequality in which K is
unbounded. We have the following result.

Theorem 3.5. Let E be a real reflexive Banach space with dual space E∗, and let K ⊂ E be a
nonempty unbounded closed convex subset with 0 ∈ E. Suppose that f : E → (−∞,+∞] is a
lower semicontinuous convex function with K ⊆ D(f). Let A : K ×K → E∗, B : K ×K → E∗ be
two mappings satisfying the following conditions:

(i) for each z ∈ K, A(·, z) and B(z, ·) are monotone;

(ii) for each z ∈ K, A(z, ·) and B(·, z) are completely continuous;

(iii) for any given z ∈ K, A(·, z) : K → E∗ and B(z, ·) : K → E∗ are finite dimensional
continuous;

(iv) lim infu→∞ [〈A(u, v), u〉+ f(u)] > f(0) and lim infv→∞ [〈B(u, v), v〉 + f(v)] > f(0).

Then, there exists (u∗, v∗) ∈ K ×K such that

〈A(u∗, v∗), z − u∗〉 + f(z) − f(u∗) ≥ 0, ∀z ∈ K,

〈B(u∗, v∗), z − v∗〉 + f(z) − f(v∗) ≥ 0, ∀z ∈ K.
(3.25)
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Proof. Let B(0, r) be the closed ball in E at center zero with radius r such that Kr = B(0, r) ∩
K/= ∅. By Theorem 3.2, there exists (ur, vr) ∈ Kr ×Kr such that

〈A(ur, vr), z − ur〉 + f(z) − f(ur) ≥ 0, ∀z ∈ Kr,

〈B(ur, vr), z − vr〉 + f(z) − f(vr) ≥ 0, ∀z ∈ Kr.
(3.26)

Leting z = 0 ∈ Kr in (3.26), we get

〈A(ur, vr),−ur〉 + f(0) − f(ur) ≥ 0,

〈B(ur, vr),−vr〉 + f(0) − f(vr) ≥ 0,
(3.27)

which implies that

〈A(ur, vr), ur〉 + f(ur) ≤ f(0),

〈B(ur, vr), vr〉 + f(vr) ≤ f(0).
(3.28)

By condition (iii), we know that {(ur, vr)}r>0 is bounded. So, we may assume that (ur, vr)
converge weakly to (u∗, v∗) ∈ K ×K as r → ∞. From (3.26), it follows by Lemma 2.9 that

〈A(z, vr), z − ur〉 + f(z) − f(ur) ≥ 0, ∀ur ∈ K,

〈B(ur, z), z − vr〉 + f(z) − f(vr) ≥ 0, ∀vr ∈ K.
(3.29)

Since A(z, ·), B(·, z) are complete continuous and f is weakly lower semicontinuous, it fol-
lows by letting r → ∞ that

〈A(z, v∗), z − u∗〉 + f(z) − f(u∗) ≥ 0, ∀z ∈ K,

〈B(u∗, z), z − v∗〉 + f(z) − f(v∗) ≥ 0, ∀z ∈ K.
(3.30)

Using Lemma 2.9 again, we obtain

〈A(u∗, v∗), z − u∗〉 + f(z) − f(u∗) ≥ 0, ∀z ∈ K,

〈B(u∗, v∗), z − v∗〉 + f(z) − f(v∗) ≥ 0, ∀z ∈ K.
(3.31)

This completes the proof.

Setting f := 0 in Theorem 3.5, we have the following result.

Corollary 3.6. Let E be a real reflexive Banach space with dual space E∗, and letK ⊂ E be a nonempty
unbounded closed convex subset with 0 ∈ K. Let A,B : K ×K → E∗ be two mappings satisfying the
following conditions:

(i) for each z ∈ K, A(·, z) and B(z, ·) are monotone;
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(ii) for each z ∈ K, A(z, ·) and B(·, z) are completely continuous;

(iii) for any given z ∈ K, A(·, z) : K → E∗ and B(z, ·) : K → E∗ are finite dimensional
continuous; that is, for any finite dimensional subspace M ⊂ E,A(·, z) and B(z, ·) : K ∩
M → E∗ are continuous;

(iv) lim infu,v∈K,u→∞〈A(u, v), u〉 > 0 and lim infu,v∈K, v→∞〈B(u, v), v〉 > 0

Then, there exists (u, v) ∈ K ×K such that

〈A(u, v), z − u〉 ≥ 0, ∀z ∈ K,

〈B(u, v), z − v〉 ≥ 0, ∀z ∈ K.
(3.32)

Similarly as in the proof of Corollary 3.4, we have the following result.

Corollary 3.7 (see [19]). Let E be a real reflexive Banach space and K ⊂ E an unbounded closed
convex subset with 0 ∈ K. Suppose that f : E(−∞,+∞] is a lower semicontinuous convex function
with K ⊆ D(f), B : K ×K → E∗ is semimonotone, and B(u, ·) is finite dimensional continuous for
each u ∈ K. Assume that the following condition holds:

lim inf
v→∞

[〈B(u, v), v〉 + f(v)
]
> f(0). (3.33)

Then there exists w0 ∈ K, such that

(B(w0, w0), u −w0) + f(u) − f(w0) ≥ 0, ∀u ∈ K. (3.34)
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