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Let F
n and Fm be the usual spaces of n-dimensional column and m-dimensional row vectors on

F, respectively, where F is the field of real or complex numbers. In this paper, the relations gs-
majorization, lgw-majorization, and rgw-majorization are considered on F

n and Fm. Then linear
maps T : F

n → F
m preserving lgw-majorization or gs-majorization and linear maps S : Fn → Fm,

preserving rgw-majorization are characterized.

1. Introduction

Majorization is a topic of much interest in various areas of mathematics and statistics. If x and
y are n-vectors of real numbers such that x = Dy for some doubly stochastic matrix D, then
we say that x is (vector)majorized by y; see [1]. Marshall and Olkin’s text [2] is the standard
general reference for majorization. Some kinds of majorization such as multivariate or matrix
majorization were motivated by the concepts of vector majorization and were introduced in
[3]. Let V andW be two vector spaces over a field F, and let ∼ be a relation on both V andW .
We say that a linear map T : V → W , preserves the relation ∼ if

Tx ∼ Ty whenever x ∼ y. (1.1)

The problem of describing these preserving linear maps is one of the most studied linear
preserver problems. A lot of effort has been done in [4–9] and [10–12] to characterize the
structure of majorization preserving linear maps on certain spaces of matrices. A complex
n × m matrix R is said to be g-row (or g-column) stochastic, if Re = e (or Rte = e),
where e = (1, . . . , 1)t ∈ F

n (or e = (1, . . . , 1)t ∈ F
m). A complex n × n matrix D is

said to be g-doubly stochastic if it is both g-row and g-column stochastic. The notaions of
generalized majorization (g-majorization) were motivated by the matrix majorization and
were introduced in [4–6] as follows.
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Definition 1.1. Let x and y be two vectors in F
n. It is said that

(1) x is gs-majorized by y if there exists an n×n g-doubly stochastic matrixD such that
x = Dy, and denoted by y �gs x;

(2) x is lgw-majorized by y if there exists an n × n g-row stochastic matrix R such that
x = Ry, and denoted by y �lgw x;

(3) xt is rgw-majorized by yt if there exists an n×n g-row stochastic matrix R such that
xt = ytR, and denoted by yt �rgw xt (here zt is the transpose of z).

Linear maps from R
n toR

m that preserve left matrix majorization or weakmajorization
were already characterized in [10, 11]. In this paper we characterize all linear maps
preserving �rgw from Fn to Fm and all linear maps preserving �lgw or �gs from F

n to F
m.

Throughout this paper, the standard bases of F
n and Fm are denoted by {e1, . . . , en}

and {ε1, . . . , εm}, respectively. The notation tr(x) is used for the sum of the components of a
vector x ∈ F

n or x ∈ Fn. The vector space of all n ×m complex matrices is denoted by Mn,m.
The notations [x1/x2/ · · ·/xn] and [y1 | y2 | · · · | ym] are used for the n × m matrix with
rows x1, x2, . . . , xn ∈ Fm and columns y1, y2, . . . , ym ∈ F

n. The sets of g-row and g-column
stochastic m × n matrices are denoted by GRm,n and GCm,n, respectively. The set of g-doubly
stochastic n×nmatrices is denoted byGDn. The symbol Jn is used for the n×nmatrix with all
entries equal to one. The notation [T] is used for the matrix representation of the linear map
T : V → W with respect to the standard bases of V and W where V,W ∈ {Fn,Fm,Fn,Fm}.

2. Main Results

In this section we state some preliminary lemmas to describe the linear maps preserving �rgw

from Fn to Fm and the linear maps preserving �lgw or �gs from F
n to F

m.

Lemma 2.1. Let T : Fn → Fm be a linear map. Then T preserves the subspace {x ∈ Fn : tr(x) = 0}
if and only if [T] ∈ GRm,n.

Proof. Let B = [bij] := [T]. Assume that Be = λe for some λ ∈ F. If x ∈ Fn and tr(x) = 0,
then 0 = xe = x(λe) = x(Be) = (xB)e = tr(xB) = tr(Tx), so T preserves the subspace
{x ∈ Fn : tr(x) = 0}. Conversely, assume that T preserves the subspace {x ∈ Fn : tr(x) = 0}.
Then tr(T(ε1 − εi)) = tr((ε1 − εi)B) = 0 for every i (1 ≤ i ≤ n). Therefore Be = λe where
λ =

∑n
k=1 b1k =

∑n
k=1 bik for every i (1 ≤ i ≤ n).

The following lemma gives an equivalent condition for �rgw on Fm.

Lemma 2.2 (see [4, Lemma 2.2]). Let x, y ∈ Fn and let x /= 0. Then x �rgw y if and only if tr(x) =
tr(y).

The following theorem characterizes all linear maps which preserve �rgw from Fn to
Fm. It is clear that every T : F1 → Fm preserves �rgw, so assume that n ≥ 2.

Theorem 2.3. A nonzero linear map T : Fn → Fm preserves �rgw if and only if [T] ∈ GRm,n and
{x ∈ Fn : x[T] = 0} = {x ∈ Fn : tr(x) = 0} or {0}.
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Proof. Put B := [T]. Let Be = λe for some λ ∈ F. If {x ∈ Fn : xB = 0} = {x ∈ Fn : tr(x) = 0}
it is clear that T preserves �rgw. If {x ∈ Fn : xB = 0} = {0}, x �rgw y and x /= 0 then Tx /= 0
and by Lemma 2.2, tr(x) = tr(y). So tr(x − y) = 0 and hence tr(T(x − y)) = 0 by Lemma 2.1.
Therefore Tx �rgw Ty by Lemma 2.2 and so T preserves �rgw. Now, we prove the necessity of
the conditions. Let T : Fn → Fm be a linear preserver of �rgw. If tr(x) = 0, then x �rgw 0 by
Lemma 2.2. So Tx �rgw T0 = 0 and hence tr(Tx) = 0 by Lemma 2.2. Therefore T preserves the
subspace {x ∈ Fn : tr(x) = 0} and so B ∈ GRm,n by Lemma 2.1. If {x ∈ Fn : xB = 0}/= {0}, then
there exists a nonzero vector a ∈ Fn such that Ta = aB = 0. If tr(a) = δ /= 0 then a �rgw δεj for
every j (1 ≤ j ≤ n), by Lemma 2.2. Then Ta = 0 �rgw δTεj for every j (1 ≤ j ≤ n) and hence
T = 0 which is a contradiction. Therefore tr(a) = 0 and hence a �rgw (ε1 − εj) for every j (1 ≤
j ≤ n), by Lemma 2.2. Then Ta = 0 �rgw T(ε1−εj) and so Tε1 = Tεj for every j (1 ≤ j ≤ n). Put
b := Tε1 = ε1B. Thus B = [b/ · · ·/b] and hence {x ∈ Fn : xB = 0} = {x ∈ Fn : tr(x) = 0}.

We use the following lemmas to find the structure of linear preservers of lgw-
majorization.

Remark 2.4 (see [7, Lemma 2.2]). If x /∈ Span{e}, then x �lgw y, for all y ∈ F
n.

Lemma 2.5. Let T : F
n → F

m be a linear map. If x /∈ Span{e} implies Tx /∈ Span{e}, then T
preserves �lgw.

Proof. Let x, y ∈ F
n and x �lgw y. If x ∈ Span{e} then y = x and it is clear that Tx �lgw Ty.

If x /∈ Span{e} so Tx /∈ Span{e} by the hypothesis and hence Tx �lgw Ty, by Remark 2.4.
Therefore T preserves �lgw.

Lemma 2.6. Let T : F
n → F

m be a nonzero singular linear map. Then T preserves �lgw if and only
if Ker(T) = Span{e} and e /∈ Im(T).

Proof. Let T be a linear preserver of �lgw. If x ∈ Ker(T) and x /∈ Span{e}, then Tx = 0 and
x �lgw y, for all y ∈ F

n by Remark 2.4. So Ty = 0, for all y ∈ F
n, which is a contradiction.

Therefore Ker(T) ⊂ Span{e} and since Ker(T)/= {0}, Ker(T) = Span{e}. If e ∈ Im(T), then
there exists x ∈ F

n such that Tx = e and x /∈ Span{e}. Therefore x �lgw y, for all y ∈ F
n, and

hence Ty = e for all y ∈ F
n, which is a contradiction. So e /∈ Im(T). The converse follows from

Lemma 2.5.

Proposition 2.7. Let T : F
n → F

m be a nonzero linear preserver of �lgw. Then n ≤ m.

Proof. If T is injective, then n ≤ m. If T is not injective, we obtain Ker(T) = Span{e} by
Lemma 2.6 and e /∈ Im(T). Therefore n ≤ m, by the rank and nullity theorem.

Theorem 2.8. Let T : F
n → F

m be a nonzero linear map andA := [T]. Then T preserves �lgw if and
only if one of the following holds:

(i) {x : Ax ∈ Span{e}} = {0},
(ii) A ∈ Span{GRn,m} and {x : Ax ∈ Span{e}} = Span{e}.

Proof. If (i) or (ii) holds, it is easy to show that T preserves �lgw by Lemmas 2.5 and 2.6.
Conversely, assume that T preserves �lgw. If (i) does not hold, we show that (ii) holds. Since
(i) does not hold, there exists a nonzero vector b ∈ F

n such that Tb = Ab = μe for some
μ ∈ F. If b /∈ Span{e}, then b �lgw x, for all x ∈ F

n by Remark 2.4. So Tb �lgw Tx, for all x ∈ F
n



4 Journal of Inequalities and Applications

and hence T = 0, which is a contradiction. Then b = λe for some nonzero λ ∈ F, and hence
Ae = (μ/λ)e. Therefore, A ∈ Span{GRn,m} and {x : Ax ∈ Span{e}} = Span{e}.

The following examples show that Proposition 2.7 does not hold for �gs or �rgw.

Example 2.9. For any positive integer n, the linear map T : F
n → F defined by Tx = tr(x),

preserves �gs.

Example 2.10. The linear map T : F3 → F2 defined by Tx = xB, where B =
(

1 1 1

0 0 0

)t
, preserves

rgw-majorization.

We use the following statements to find the structure of linear preservers of gs-
majorization.

Lemma 2.11 (see [6, Proposition 2.1]). Let x and y be two distinct vectors in F
n. Then y �gs x if

and only if y /∈ Span{e} and tr(x) = tr(y).

Lemma 2.12. If a linear map T : F
n → F

m preserves �gs, then [T] ∈ Span{GCm,n}.

Proof. Let A := [T]. For every i, j (1 ≤ i /= j ≤ n), it is clear that (ei − ej)�gs 0 by Lemma 2.11.
ThenA(ei−ej)�gs 0 and hence there existsD ∈ GDm such thatDA(ei−ej) = 0. So JmA(ei−ej) =
JmD(Aei −Aej) = 0 and therefore A ∈ Span{GCm,n}.

Theorem 2.13. Let T : F
n → F

m be a linear map. Then T preserves �gs if and only if one of the
following holds:

(i) there exists some a ∈ F
m such that Tx = tr(x)a, for all x ∈ F

n,

(ii) λ[T] ∈ GRm,n ∩ Span{GCm,n} for some 0/=λ ∈ F and Ker(T) ⊂ Span{e},

(iii) [T] ∈ Span{GCm,n} and e�∈ Im([T]).

Proof. Let A := [T]. Assume that T preserves �gs. So A ∈ Span{GCm,n} by Lemma 2.12. Now,
we consider two cases.

Case 1. Suppose there exists b ∈ F
n \ Span{e} such that Tb = Ab = λe for some λ ∈ F. If

tr(b) = 0, then 0 = tr(b)e = Jmb = (JmA)b = Jm(Ab) = Jm(Tb) = Jm(λe). So λ = 0 and hence
Ab = 0. For every i, j (1 ≤ i /= j ≤ n), b �gs (ei − ej) by Lemma 2.11. Then 0 = Ab �gs A(ei − ej)
and hence Aei = Aej , for all i, j (1 ≤ i, j ≤ n). Then A = [a | · · · | a], for some a ∈ F

m and
hence T(x) = tr(x)a for all x ∈ F

n. If tr(b) = δ /= 0, consider the basis {δe1, . . . , δen} for F
n.

For every i (1 ≤ i ≤ n), b �gs (δei), by Lemma 2.11. Consequently Tei = (λ/δ)e for every
i (1 ≤ i ≤ n) and hence Tx = tr(x)a for all x ∈ F

n, where a = (λ/δ)e. Therefore, (i) holds in
this case.

Case 2. Assume that x�∈ Span{e} implies Tx�∈ Span{e}. Since e1 �gs ei, we have T(e1)�gs T(ei)
for every i (1 ≤ i ≤ n). Thus it follows that tr(Ai) = tr(Tei) = tr(Te1) = tr(A1) for every
i (1 ≤ i ≤ n), where Ai is the ith column of A and hence A ∈ Span{GCm,n}. If e ∈ Im(A),
then there exists 0/=λ ∈ F such that A(λe) = e and hence λA ∈ GRm,n ∩ Span{GCm,n}. By
the hypothesis of this case, Ker(T) ⊂ Span{e}. Then (ii) holds. If e�∈ Im(A) it is clear (iii)
holds.
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Conversly, if (i) or (iii) holds it is easy to show that T preserves gs-majorization.
Suppose that (ii) holds. Then there exists z ∈ Span{e} such that Tz = e. Assume that x �gs y.
If Tx�∈ Span{e} then Tx �gs Ty by Lemma 2.11. If Tx ∈ Span{e}, then there exists μ ∈ F such
that Tx = μe and hence T(x − μz) = 0. Therefore, x − μz ∈ Span{e}, and hence x ∈ Span{e}.
Then x = y and hence T preserves gs-majorization.

Corollary 2.14. If T : F
n → F

m preserves �gs and rank(T) > 1 then n ≤ m.

Proof. If T is injective it is clear that n ≤ m. Assume that T is not injective, so there exists
a nonzero vector b ∈ F

n such that Tb = 0. If b /∈ Span{e}, then by Case 1 in the proof of
Theorem 2.13, Tx = tr(x)a for some a ∈ F

m. Therefore, rank(T) ≤ 1, which is a contradiction.
So b ∈ Span{e} and hence Ker(T) = Span{e}. It is clear that e /∈ Im(T), from which and the
rank and nullity theorem, we obtain n ≤ m, completing the proof.
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