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We introduce a general iterative method for finding the solution of the variational inequality
problem over the fixed point set of a nonexpansive semigroup in a Hilbert space. We prove that the
sequence converges strongly to a common element of the above two sets under some parameters
controlling conditions. Our results improve and generalize many known corresponding results.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be
a nonempty closed convex subset of H and let PC be the metric projection of H onto C. A
mapping T of C into itself is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for each x, y ∈ C.
We denote by F(T) the set of fixed points of T . A family S = {T(s) : 0 ≤ s < ∞} of mappings of
C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:

(i) T(0)x = x for all x ∈ C;

(ii) T(s + t) = T(s)T(t) for all x, y ∈ C and s, t ≥ 0;

(iii) ‖T(s)x − T(s)y‖ ≤ ‖x − y‖ for all x, y ∈ C and s ≥ 0;

(iv) for all x ∈ C, s 	→ T(s)x is continuous.

We denote by F(S) the set of all common fixed points of S, that is, F(S) = {x ∈ C : T(s)x =
x, 0 ≤ s < ∞}. It is known that F(S) is closed and convex.
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Let A be a strongly positive bounded linear operator on H: that is, there is a constant
γ with property

〈Ax, x〉 ≥ γ‖x‖2 ∀x ∈ H. (1.1)

A typical problem is to minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping on a real Hilbert space H:

min
x∈K

1
2
〈Ax, x〉 − 〈x, b〉, (1.2)

where K is the fixed point set of a nonexpansive mapping T on H and b is a given point in
H. In 2001, Yamada [1] presented the hybrid steepest descent method for problem (1.2). In
2003, Xu [2] proved that the sequence {xn} defined by the iterative method below, with the
initial guess x0 ∈ H, chosen arbitrarily:

xn+1 = αnb + (I − αnA)Txn, n ≥ 0 (1.3)

converges strongly to the unique solution of the minimization problem (1.2) provided the
sequence {αn} satisfies certain conditions.

On the other hand, Moudafi [3] introduced the viscosity approximation method
for nonexpansive mappings (see [4] for further developments in both Hilbert and Banach
spaces). Let f be a contraction on H such that ‖fx − fy‖ ≤ α‖x − y‖, where α ∈ [0, 1) is a
constant. Starting with an arbitrary initial x0 ∈ H, define a sequence {xn} recursively by

xn+1 = βnf(xn) +
(
1 − βn

)
Txn, n ≥ 0, (1.4)

where {βn} is a sequence in (0, 1). It is proved [3, 4] that under certain appropriate conditions
imposed on {βn}, the sequence {xn} generated by (1.4) converges strongly to the unique
solution x̃ in K of the variational inequality

〈(
I − f

)
x̃, x − x̃

〉 ≥ 0, x ∈ K. (1.5)

Recently, Marino and Xu [5] combine the iterative method (1.3) with the viscosity
approximation (1.4) and consider the following general iterative method:

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0. (1.6)
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They proved that if the sequence {αn} of parameters satisfies appropriate conditions,
then the sequence {xn} generated by (1.6) converges strongly to the unique solution of the
variational inequality

〈(A − γf
)
x̃, x − x̃〉 ≥ 0, x ∈ F(T), (1.7)

which is the optimality condition for the minimization problem

min
x∈K

1
2
〈Ax, x〉 − h(x), (1.8)

where h is a potential function for γf (i.e., h′(x) = γf for x ∈ H).
Note that I − f and A − γf in problems (1.5) and (1.7) are strongly monotone and

Lipschitz continuous. Therefore, problems (1.5) and (1.7) can be solved by [1, 7, 8]. In [7, 8],
algorithms to accelerate the hybrid steepest descent method have been proposed.

Quite recently, for the nonexpansive semigroups S = {T(s) : 0 ≤ s < ∞}, Plubtieng
and Punpaeng [9] study the iteration process {xn} defined by

xn+1 = αnf(xn) + βnxn +
(
1 − αn − βn

) 1
sn

∫ sn

0
T(s)xnds, n ≥ 0, (1.9)

where x0 ∈ C, {αn},{βn} are two sequences in (0, 1), and {sn} is a positive real divergent real
sequence and prove a strong convergence theorem.

In this paper, motivated and inspired by the above results, we prove a strong
convergence of the iterative scheme in a real Hilbert space by

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

) 1
sn

∫sn

0
T(s)xnds, n ≥ 0. (1.10)

Furthermore, we show that if the sequences {αn} and {βn} of parameters satisfy appropriate
conditions, then the sequence {xn} converges strongly to the unique solution of the
variational inequality

〈(
A − γf

)
x̃, x − x̃

〉 ≥ 0, x ∈ F(T), (1.11)

which is the optimality condition for the minimization problem

min
x∈F(T)

1
2
〈Ax, x〉 − h(x), (1.12)

where h is a potential function for γf (i.e., h′(x) = γf for x ∈ H). The results of this paper
extended and improved the results of Xu [2], Moudafi [3], Marino and Xu [5], and Plubtieng
and Punpaeng [9].
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2. Preliminaries

Recall that given a closed convex subset K of a real Hilbert space H, the nearest point
projection PK from H onto K assigns to each x ∈ H its nearest point denoted by PKx in
K from x to K; that is, PKx is the unique point in K with the property

‖x − PKx‖ ≤ ∥
∥x − y

∥
∥ ∀y ∈ K. (2.1)

The following Lemmas 2.1 and 2.2 are well known.

Lemma 2.1. LetK be a closed convex subset of a real Hilbert spaceH.Given x ∈ H and z ∈ K. Then
z = PKx if and only if there holds the following relation:

〈x − z, y − z〉 ≤ 0 ∀y ∈ K. (2.2)

Lemma 2.2. LetH be a real Hilbert space. There hold the following identities.

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

(ii) ‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2 ∀x, y ∈ H, t ∈ [0, 1].

Definition 2.3 (Opial’s condition [10]). A space X is said to satisfy Opial’s condition if for each
sequence {xn}∞n=1 in X which converges weakly to point x ∈ X, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥∥xn − y
∥∥, ∀y ∈ X, y /=x. (2.3)

It is well known that Hilbert spaces satisfy Opial’s condition.

Lemma 2.4 (Browder [6]). Let E be a uniformly convex Banach space,K a nonempty closed convex
subset of E, and T : K → E a nonexpansive mapping. Then I − T is demiclosed at zero.

Theorem 2.5 (Shimizu and Takahashi [11]). Let C be a nonempty closed convex bounded subset
of a real Hilbert space H and let S = {T(s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C. For
x ∈ C and t > 0. Then, for any 0 ≤ h < ∞,

lim
t→∞

sup
x∈C

∥∥∥∥∥
1
t

∫ t

0
T(s)x ds − T(h)

(
1
t

∫ t

0
T(s)x ds

)∥∥∥∥∥
= 0. (2.4)

Theorem 2.6 (Marino and Xu [5]). Assume that A is a strong positive linear bounded operator on
a Hilbert spaceH with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ .

Theorem 2.7 (Xu [12]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1 − γn

)
αn + δn, n ≥ 0, (2.5)



Journal of Inequalities and Applications 5

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn = ∞;

(ii) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞αn = 0.

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S = {T(s) :
0 ≤ s < ∞} be a semigroup of nonexpansive mapping on C such that F(S) is nonempty. Let {αn}
and {βn} be the sequences of real numbers in (0, 1) satisfying limn→∞αn = 0, limn→∞βn = 0 and∑∞

n=1 αn = ∞. Let f be a contraction of C into itself with a coefficient α ∈ (0, 1), {sn} be a positive
real divergent sequence, and A a strong positive bounded linear operator on C with coefficient γ > 0,
and 0 < γ < γ/α. Let the sequence {xn}be defined by x0 ∈ C and

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

) 1
sn

∫sn

0
T(s)xnds, n ≥ 0. (3.1)

Then {xn} converges strongly to x̃, where x̃ is the unique solution in F(S) of the variational inequality

〈(A − γf
)
x̃, x − x̃〉 ≥ 0, x ∈ F(S) (∗)

or equivalent to x̃ = PF(S)(I −A+γf)(x̃), where P is a metric projection mapping fromH onto F(S).

Proof. Since limn→∞αn = 0 by the assumption, wemay assume, without loss of generality, that
αn < ‖A‖−1 for all n. From Theorem 2.6, we know that if 0 < ρ ≤ ‖A‖−1, then ‖I −ρA‖ ≤ 1−ργ .

Note that F(S) is a nonempty closed convex set. We first show that {xn} is bounded.
Let q ∈ F(S). Thus, we compute that

∥∥xn+1 − q
∥∥ =

∥∥∥∥αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

) 1
sn

∫sn

0
T(s)xnds − q

∥∥∥∥

≤ αn

∥∥γf(xn) −Aq
∥∥ + βn

∥∥xn − q
∥∥ +

∥∥(1 − βn
)
I − αnA

∥∥
∥∥∥∥
1
sn

∫sn

0
T(s)xnds − q

∥∥∥∥

≤ αn

(∥∥γf(xn) − γf
(
q
)∥∥ +

∥∥γf
(
q
) −Aq

∥∥) + βn
∥∥xn − q

∥∥

+
((
1 − βn

) − αnγ
) 1
sn

∫ sn

0

∥∥T(s)xn − q
∥∥ds

≤ αnγα
∥∥xn − q

∥∥ + αn

∥∥γf
(
q
) −Aq

∥∥ +
(
1 − αnγ

)∥∥xn − q
∥∥

=
(
1 − (

γ − γα
)
αn

)∥∥xn − q
∥∥ +

(
γ − γα

)
αn

(
1

γ − γα

∥∥γf
(
q
) −Aq

∥∥
)

≤ max
{∥∥xn − q

∥∥,
1

γ − γα

∥∥γf
(
q
) −Aq

∥∥
}
.

(3.2)
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By induction, we get

∥
∥xn − q

∥
∥ ≤ max

{∥
∥x0 − q

∥
∥,

1
γ − γα

∥
∥γf

(
q
) −Aq

∥
∥
}
, n ≥ 0. (3.3)

Therefore, {xn} is bounded. {(1/sn)
∫sn
0 T(s)xnds} and {f(xn)} are also bounded. Put z0 =

PF(S)x0 and D = {z ∈ C : ‖z − z0‖ ≤ ‖x0 − z0‖ + (1/(γ − γα))‖γf(z0) − A(z0)‖}. Then D is a
nonempty closed bounded convex subset ofC. Since T(s) is nonexpansive for any s ∈ [0,+∞),
D is T(s)-invariant for each s ∈ [0,∞) and contains {xn}. Without loss of generality, we may
assume that S = {T(s) : 0 ≤ s < ∞} is a nonexpansive semigroup on D. By Theorem 2.5, we
get

lim
n→∞

∥
∥
∥
∥
1
sn

∫ sn

0
T(s)xnds − T(h)

(
1
sn

∫ sn

0
T(s)xnds

)∥
∥
∥
∥ = 0, (3.4)

for every h ∈ [0,∞). Next we show ‖xn − T(h)xn‖ → 0 as n → ∞. Notice that

‖xn+1 − T(h)xn+1‖ ≤
∥∥∥∥xn+1 − 1

sn

∫ sn

0
T(s)xnds

∥∥∥∥ +
∥∥∥∥
1
sn

∫ sn

0
T(s)xnds − T(h)

(
1
sn

∫ sn

0
T(s)xnds

)∥∥∥∥

+
∥∥∥∥T(h)

(
1
sn

∫sn

0
T(s)xnds

)
− T(h)xn+1

∥∥∥∥

≤ 2
∥∥∥∥xn+1 − 1

sn

∫sn

0
T(s)xnds

∥∥∥∥ +
∥∥∥∥
1
sn

∫sn

0
T(s)xnds − T(h)

(
1
sn

∫sn

0
T(s)xnds

)∥∥∥∥

≤ 2αn

∥∥∥∥γf(xn) −A
1
sn

∫ sn

0
T(s)xnds

∥∥∥∥ + 2βn

∥∥∥∥xn − 1
sn

∫sn

0
T(s)xnds

∥∥∥∥

+
∥∥∥∥
1
sn

∫ sn

0
T(s)xnds − T(h)

(
1
sn

∫sn

0
T(s)xnds

)∥∥∥∥.

(3.5)

From αn → 0, βn → 0, and (3.4), we get ‖xn+1 − T(h)xn+1‖ → 0, and hence

‖xn − T(h)xn‖ −→ 0. (3.6)

Let x̃ be the unique solution of the variational inequality (∗); we show that

lim sup
n→∞

〈(
A − rf

)
x̃, xn − x̃

〉 ≥ 0, x ∈ F(S). (3.7)

Since {xn} ∈ D is bounded, there is a subsequence {xnj} of {xn} such that

lim
j→∞

〈(A − rf
)
x̃, xnj − x̃〉 = lim sup

n→∞
〈(A − rf

)
x̃, xn − x̃〉, (3.8)
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and xnj ⇀ q̃. By Opial’s condition, we have q̃ ∈ F(S). In fact, if q̃ /= T(h)q̃ for some h ∈ [0,∞),
we have

lim inf
j→∞

∥
∥
∥xnj − q̃

∥
∥
∥ < lim inf

j→∞

∥
∥
∥xnj − T(h)q̃

∥
∥
∥

≤ lim inf
j→∞

(∥∥
∥xnj − T(h)xnj

∥
∥
∥ +

∥
∥
∥T(h)xnj − T(h)q̃

∥
∥
∥
)

≤ lim inf
j→∞

∥
∥
∥xnj − q̃

∥
∥
∥.

(3.9)

This is a contradiction. Therefore, we have q̃ = T(h)q̃ for some h ≥ 0, that is q̃ ∈ F(S). Hence,
by (∗), we obtain

lim sup
n→∞

〈(A − rf
)
x̃, xn − x̃〉 = 〈(A − rf

)
x̃, q̃ − x̃〉 ≥ 0 (3.10)

as required. Finally we shall show that xn → x̃. For each n ≥ 0, we have

‖xn+1 − x̃‖2 =
∥∥∥∥αn

(
γf(xn) −Ax̃

)
+ βn(xn − x̃) +

((
1 − βn

)
I − αnA

)
(

1
sn

∫sn

0
T(s)xnds − x̃

)∥∥∥∥

2

≤
∥∥∥∥
((
1 − βn

)
I − αnA

)
(

1
sn

∫ sn

0
T(s)xnds − x̃

)
+ βn(xn − x̃)

∥∥∥∥

2

+ 2αn〈γf(xn) −Ax̃, xn+1 − x̃〉

=
∥∥(1 − βn)I − αnA

∥∥2
∥∥∥∥
1
sn

∫sn

0
T(s)xnds − x̃

∥∥∥∥

2

+ β2n‖xn − x̃‖2

+ 2βn
〈
((
1 − βn

)
I − αnA

)
(

1
sn

∫sn

0
T(s)xnds − x̃

)
, xn − x̃

〉

+ 2αnγ〈f(xn) −A(x̃), xn+1 − x̃〉

≤ ((
1 − βn

) − αnγ
)2 1

sn

∫sn

0
‖T(s)xn − x̃‖2ds + β2n‖xn − x̃‖2

+ 2βn
∥∥(1 − βn

)
I − αnA

∥∥‖xn − x̃‖2 + 2αnγ〈f(xn) − f(x̃), xn+1 − x̃〉
+ 2αn〈γf(x̃) −Ax̃, xn+1 − x̃〉

≤ ((
1 − βn

) − αnγ
)2‖xn − x̃‖2 + β2n‖xn − x̃‖2 + 2βn

((
1 − βn

) − αnγ
)‖xn − x̃‖2

+ 2αnγα‖xn − x̃‖‖xn+1 − x̃‖ + 2αn〈γf(x̃) −Ax̃, xn+1 − x̃〉

≤(1−αnγ
)2‖xn−x̃‖2 + αnγα

(
‖xn − x̃‖2 + ‖xn+1 − x̃‖2

)
+ 2αn〈γf(x̃) −Ax̃, xn+1 − x̃〉

=
((

1 − αnγ
)2 + αnγα

)
‖xn − x̃‖2 + αnγα‖xn+1 − x̃‖2 + 2αn〈γf(x̃) −Ax̃, xn+1 − x̃〉,

(3.11)
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which implies that

‖xn+1 − x̃‖2 ≤ 1 − 2αnγ +
(
αnγ

)2 + αnγα

1 − αnγα
‖xn − x̃‖2 + 2αn

1 − αnγα
〈γf(x̃) −Ax̃, xn+1 − x̃〉

=

[

1 − 2
(
γ − γα

)
αn

1 − αnγα

]

‖xn − x̃‖2 +
(
αnγ

)2

1 − αnγα
‖xn − x̃‖2

+
2αn

1 − αnγα
〈γf(x̃) −Ax̃, xn+1 − x̃〉

≤
[

1 − 2
(
γ − γα

)
αn

1 − αnγα

]

‖xn − x̃‖2 + 2
(
γ − γα

)
αn

1 − αnγα

×
{

αnγ
2M

2
(
γ − γα

) +
1

γ − γα

〈
γf(x̃) −Ax̃, xn+1 − x̃

〉
}

= (1 − δn)‖xn − x̃‖2 + δnBn,

(3.12)

where M = sup{‖xn − x̃‖2 : n ∈ N}, δn = 2(γ − γα)αn/(1 − αnγα), and Bn := (αnγ
2M)/2(γ −

γα) + (1/(γ − γα))〈γf(x̃) − Ax̃, xn+1 − x̃〉. It is easily to see that δn → 0,
∑∞

n=1 δn = ∞ and
lim supn→∞Bn ≤ 0 by (3.10). Finally by using Theorem 2.7, we can obtain that {xn} converges
strongly to a fixed point x̃ of T . This completes the proof.

4. Applications

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S = {T(s) :
0 ≤ s < ∞} be a strongly continuous semigroup of nonexpansive mapping on C such that F(S) is
nonempty. Let {αn} be a sequence of real numbers in (0, 1) satisfying limn→∞αn = 0 and

∑∞
n=1 αn =

∞. Let f be a contraction of C into itself with a coefficient α ∈ [0, 1), {sn} a positive real divergent
sequence, andA a strong positive bounded linear operator onCwith coefficient γ > 0 and 0 < γ < γ/α.
Let the sequences {xn} defined by x0 ∈ C and

xn+1 = αnγf(xn) + (I − αnA)
1
sn

∫sn

0
T(s)xnds, n ≥ 0. (4.1)

Then {xn} converges strongly to x̃, where x̃ is the unique solution in F(S) of the variational inequality

〈(A − γf
)
x̃, x − x̃〉 ≥ 0, x ∈ F(S) (4.2)

or equivalent to x̃ = PF(S)(I −A+γf)(x̃), where P is a metric projection mapping fromH onto F(S).
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Proof. Taking βn = 0 in Theorem 3.1, we get the desired conclusion easily.

Corollary 4.2 (Marino and Xu [5]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T be a nonexpansive mapping on C such that F(T) is nonempty. Let {αn} be a sequence
of real numbers satisfying 0 < αn < 1, limn→∞αn = 0 and

∑∞
n=1 αn = ∞. Let f be a contraction

of C into itself with a coefficient α ∈ [0, 1) and A be a strong positive bounded linear operator
on C with coefficient γ > 0 and 0 < γ < γ/α. Then the sequence {xn} defined by x0 ∈ C
and

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0. (4.3)

Then {xn} converges strongly to x̃, where x̃ is the unique solution in F(S) of the variational inequality

〈(A − γf
)
x̃, x − x̃〉 ≥ 0, x ∈ F(S) (4.4)

or equivalent x̃ = PF(T)(I − A + γf)(x̃), where P is a metric projection mapping from H into
F(T).

Proof. Taking S = {T(s) : 0 ≤ s < ∞} = {T} and βn = 0 in the in Theorem 3.1, we get the
desired conclusion easily.

Corollary 4.3 (Plubtieng and Punpaeng [9]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let S = {T(s) : 0 ≤ s < ∞} be a strongly continuous semigroup of nonexpansive
mapping on C such that F(S) is nonempty. Let {αn} and {βn} be the sequences of real numbers in
(0, 1) satisfying limn→∞αn = 0, limn→∞βn = 0, and

∑∞
n=1 αn = ∞. Let f be a contraction of C into

itself with a coefficient α ∈ [0, 1) and let {sn} be a positive real divergent sequence. Let the sequence
{xn} be defined by x0 ∈ C and

xn+1 = αnf(xn) + βnxn +
(
1 − αn − βn

) 1
sn

∫ sn

0
T(s)xnds, n ≥ 0. (4.5)

Then {xn} converges strongly to x̃, where x̃ is the unique solution in F(S) of the variational
inequality

〈(
I − f

)
x̃, x − x̃

〉 ≥ 0, x ∈ F(S) (4.6)

or equivalent to x̃ = PF(S)(f)(x̃), where P is a metric projection mapping from H into F(S).

Proof. Taking γ = 1 and A = I in Theorem 3.1, we get the desired conclusion easily.
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