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We present several Gronwall-OuIang-type integral inequalities on time scales. Firstly, an OuIang
inequality on time scales is discussed. Then we extend the Gronwall-type inequalities to multiple
integrals. Some special cases of our results contain continuous Gronwall-type inequalities and their
discrete analogues. Several examples are included to illustrate our results at the end.

1. Introduction

OuIang inequalities and their generalizations have proved to be useful tools in oscillation
theory, boundedness theory, stability theory, and other applications of differential and
difference equations. A nice introduction to continuous and discrete OuIang inequalities can
be found in [1, 2], and studies in [3–5] give some of their generalizations to multiple integrals
and higher-dimensional spaces. Like Gronwall’s inequality, OuIang’s inequality is also used
to obtain a priori bounds on unknown functions. Therefore, integral inequalities of this type
are usually known as Gronwall-OuIang-type inequalities [6].

The calculus on time scales has been introduced by Hilger [7] in order to unify discrete
and continuous analysis. For the general basic ideas and background, we refer to [8, 9].
In this paper, we are concerned with Gronwall-OuIang-type integral inequalities on time
scales, which unify and extend the corresponding continuous inequalities and their discrete
analogues. We also provide a more useful and explicit bound than that in [10–12].

2. OuIang Inequality

We first give Gronwall’s inequality on time scales which could be found in [8, Corollary 6.7].
Throughout this section, we fix t0 ∈ T and let T

+
t0
= {t ∈ T : t ≥ t0}.



2 Journal of Inequalities and Applications

Lemma 2.1. Let y ∈ Crd, p ∈ R+, p(t) ≥ 0, for all t ∈ T
+
t0
, and α ∈ R. Then

y(t) ≤ α +
∫ t

t0

y(τ)p(τ)Δτ ∀t ∈ T
+
t0

(2.1)

implies that

y(t) ≤ αep(t, t0) ∀t ∈ T
+
t0
. (2.2)

Above, R is defined as the set of all regressive and rd-continuous functions, R+ is the
positive regressive part of R, the “circle minus” subtraction � on R is defined by

(
p � q

)
(t) :=

p(t) − q(t)
1 + μ(t)q(t)

with p, q ∈ R, (2.3)

and ep(t, t0) is the exponential function on time scales; for more details on time scales, see
[8, 9].

Now we will give the OuIang inequality on time scales.

Theorem 2.2. Let u and v be real-valued nonnegative rd-continuous functions defined on T
+
t0
. If

u2(t) ≤ c +
∫ t

t0

u(τ)v(τ)Δτ ∀t ∈ T
+
t0
, (2.4)

where c is a positive constant, then

u(t) ≤ √
c +

1
2

∫ t

t0

v(τ)Δτ ∀t ∈ T
+
t0
. (2.5)

Proof. Let

w(t) =
∫ t

t0

u(τ)v(τ)Δτ. (2.6)

From (2.4), we have

u2(t)v2(t) ≤ v2(t)(c +w(t)). (2.7)

The definition of w gives

wΔ(t) ≤ v(t)
√
c +w(t), (2.8)
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Dividing both sides of (2.8) by
√
c +w(t) and integrating from t0 to t ∈ T

+
t0
, we have

∫ t

t0

wΔ(τ)√
c +w(τ)

Δτ ≤
∫ t

t0

v(τ)Δτ. (2.9)

According to the chain rule [8, Theorem 1.93] and since w is increasing,

2
∫ t

t0

(√
c +w

)Δ
(τ)Δτ =

∫ t

t0

2wΔ(τ)√
c +w(τ) +

√
c +w(σ(τ))

Δτ

≤
∫ t

t0

wΔ(τ)√
c +w(τ)

Δτ

≤
∫ t

t0

v(τ)Δτ,

(2.10)

so

√
c +w(t) − √

c ≤ 1
2

∫ t

t0

v(τ)Δτ. (2.11)

Combining (2.4) and (2.11) yields (2.5) and completes the proof.

In 1979, Dafermos [13] published a so-called Gronwall-type inequality (see also [3]).
In the same way as Theorem 2.2, we now extend this result to general time scales.

Theorem 2.3. Let y and g be nonnegative rd-continuous functions on T
+
t0
. Let α, M, N be

nonnegative constants and −α ∈ R+. If

y2(t) ≤ M2y2(t0) + 2
∫ t

t0

[
αy2(τ) +Ng(τ)y(τ)

]
Δτ ∀t ∈ T

+
t0
, (2.12)

then

y(t) ≤ My(t0)e�(−α)(t, t0) +
∫ t

t0

Ng(τ)e�(−α)(t, τ)Δτ ∀t ∈ T
+
t0
. (2.13)

Proof. Let

z(t) = M2y2(t0) + 2
∫ t

t0

[
αy2(τ) +Ng(τ)y(τ)

]
Δτ. (2.14)
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Then,

zΔ(t) = 2αy2(t) + 2Ng(t)y(t) ≤ 2αz(t) + 2Ng(t)
√
z(t)

≤ α
√
z(σ(t))

(√
z(t) +

√
z(σ(t))

)
+Ng(t)

(√
z(t) +

√
z(σ(t))

)
.

(2.15)

Hence,

zΔ(t)√
z(t) +

√
z(σ(t))

− α
√
z(σ(t)) ≤ Ng(t). (2.16)

Multiplying both sides of (2.16) by e−α(t, t0), we have

(√
ze−α(·, t0)

)Δ(t) ≤ Ng(t)e−α(t, t0). (2.17)

Integrating (2.17) from t0 to t, we obtain that

√
z(t)e−α(t, t0) ≤ My(t0) +

∫ t

t0

Ng(τ)e−α(τ, t0)Δτ. (2.18)

Combining (2.12) and (2.18), and using [8, Theorems 2.36 and 2.48] yields (2.13) and
completes the proof.

Remark 2.4. If α = 0 and N = 1/2, then Theorem 2.3 reduces to Theorem 2.2.

Remark 2.5. If we multiply inequality (2.16) by another exponential function on time scales,
for example, e�(2α)(t, t0), we could get another kind of inequality, which is a special case of
Theorem 3.4.

3. Gronwall-OuIang-Type Inequality

Pachpatte discussed several integral inequalities arising in the theory of differential equations
and difference equations [3, 4]. Now, we extend some of these results to time scales. First, we
give some notations and definitions which are used in our subsequent discussion.

To simplify the expression, we let 0 ∈ T, choose rd-continuous functions ri (1 ≤ i ≤ n)
such that

ri(t) > 0, 1 ≤ i ≤ n − 1, rn(t) = 1 ∀t ∈ T
+
0 , (3.1)

and define the differential operators Li, 0 ≤ i ≤ n, by

L0x = x, Lix =
1
ri
(Li−1x)Δ, 1 ≤ i ≤ n. (3.2)
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For t ∈ T
+
0 and a nonnegative function r defined on T

+
0 , we set

A[t, r1, . . . , rn−1, r] =
∫ t

0
r1(t1) · · ·

∫ tn−2

0
rn−1(tn−1)

∫ tn−1

0
r(tn)ΔtnΔtn−1 · · ·Δt1. (3.3)

Theorem 3.1. Let F and r be real-valued nonnegative rd-continuous functions on T
+
0 , and let q > 1

be a constant. If

Fq(t) ≤ c +A[t, r1, . . . , rn−1, rF] ∀t ∈ T
+
0 , (3.4)

where c > 0 is a constant, then

F(t) ≤
{
c(q−1)/q +

q − 1
q

A[t, r1, . . . , rn−1, r]
}1/(q−1)

∀t ∈ T
+
0 . (3.5)

Proof. Let

z(t) = c +A[t, r1, . . . , rn−1, rF]. (3.6)

From (3.6), it is easy to observe that

Lnz = rF ≤ rz1/q. (3.7)

From (3.7) and using the facts that z and zΔ are nonnegative, and

(
z1/q

)Δ
=

1
q
zΔ

∫1

0

(
z + μzΔh

)1/q−1
dh ≥ 0, (3.8)

we have

Lnz(
z1/q

)σ ≤ Lnz

z1/q
≤ r ≤ r +

Ln−1z
(
z1/q

)Δ
z1/q

(
z1/q

)σ , (3.9)

that is,

(
Ln−1z
z1/q

)Δ

≤ r. (3.10)

Integrating (3.10)with respect to tn from 0 to t and using the fact that Ln−1z(0) = 0, we obtain
that

Ln−1z(t)
z1/q(t)

≤
∫ t

0
r(tn)Δtn, (3.11)
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which implies that

(Ln−2z)Δ(t)
rn−1(t)z1/q(t)

≤
∫ t

0
r(tn)Δtn. (3.12)

Again as above, from (3.12), we observe that

(Ln−2z)Δ(t)(
z1/q

)σ(t) ≤ (Ln−2z)Δ(t)
z1/q(t)

≤ rn−1(t)
∫ t

0
r(tn)Δtn ≤ rn−1(t)

∫ t

0
r(tn)Δtn +

Ln−2z(t)
(
z1/q

)Δ
(t)

z1/q(t)
(
z1/q

)σ(t) ,

(3.13)

that is,

(
Ln−2z
z1/q

)Δ

(t) ≤ rn−1(t)
∫ t

0
r(tn)Δtn. (3.14)

By setting t = tn−1 in (3.14) and integrating with respect to tn−1 from 0 to t and using the fact
that Ln−2z(0) = 0, we get

Ln−2z(t)
z1/q(t)

≤
∫ t

0
rn−1(tn−1)

∫ tn−1

0
r(tn)ΔtnΔtn−1. (3.15)

Continuing this way, we obtain that

L1z(t)
z1/q(t)

≤
∫ t

0
r2(t2) · · ·

∫ tn−2

0
rn−1(tn−1)

∫ tn−1

0
r(tn)ΔtnΔtn−1 · · ·Δt2, (3.16)

that is,

zΔ(t)
z1/q(t)

≤ r1(t)
∫ t

0
r2(t2) · · ·

∫ tn−2

0
rn−1(tn−1)

∫ tn−1

0
r(tn)ΔtnΔtn−1 · · ·Δt2. (3.17)

For zΔ(t) ≥ 0, from the chain rule in [8, Theorem 1.90],

(
1

1 − 1/q
z−1/q+1

)Δ

= zΔ
∫1

0

(
z + hμzΔ

)−1/q
dh

= z−1/qzΔ
∫1

0

(
1 + hμ

zΔ

z

)−1/q
dh

≤ z−1/qzΔ.

(3.18)
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Letting t = t1 in (3.17) and integrating with respect to t1 from 0 to t, we have

q

q − 1

(
(z(t))(q−1)/q − (z(0))(q−1)/q

)

≤
∫ t

0

zΔ(t1)
z1/q(t1)

Δt1

≤
∫ t

0
r1(t1)

∫ t1

0
r2(t2) · · ·

∫ tn−2

0
rn−1(tn−1)

∫ tn−1

0
r(tn)ΔtnΔtn−1 · · ·Δt2Δt1,

(3.19)

which means that

F(t) ≤ z1/q(t) ≤
{
c(q−1)/q +

q − 1
q

A[t, r1, r2, . . . , rn−1, r]
}1/(q−1)

. (3.20)

This completes the proof.

Remark 3.2. Theorem 3.1 also holds for c = 0. To show this, assume (3.4) holds for c = 0, that
is,

Fq(t) ≤ A[t, r1, . . . , rn−1, rF] ∀t ∈ T
+
0 . (3.21)

Now, let d > 0 be arbitrary. Then

Fq(t) ≤ d +A[t, r1, . . . , rn−1, rF] ∀t ∈ T
+
0 , (3.22)

that is, (3.4) holds for c = d. By Theorem 3.1, (3.5) also holds for c = d, that is,

F(t) ≤
{
d(q−1)/q +

q − 1
q

A[t, r1, . . . , rn−1, r]
}1/(q−1)

∀t ∈ T
+
0 . (3.23)

Since (3.23) holds for arbitrary d > 0, we may let d → 0+ in (3.23) to arrive at

F(t) ≤
{
q − 1
q

A[t, r1, . . . , rn−1, r]
}1/(q−1)

∀t ∈ T
+
0 , (3.24)

that is, (3.5) holds for c = 0.

Theorem 3.3. Let u, v, and hj for j = 1, 2, 3, 4 be real-valued nonnegative rd-continuous functions
on t ∈ T

+
0 and let q > 1 be a constant. If c1, c2, and α are nonnegative constants such that

uq(t) ≤ c1 +A[t, r1, . . . , rn−1, h1u] +A[t, r1, . . . , rn−1, h2v] ∀t ∈ T
+
0 , (3.25)

vq(t) ≤ c2 +A[t, r1, . . . , rn−1, h3u] +A[t, r1, . . . , rn−1, h4v] ∀t ∈ T
+
0 , (3.26)
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where u = e
q
�α(·, 0)u and v = e

q
α(·, 0)v, then for all t ∈ T

+
0 ,

u(t) ≤ eα(t, 0)
{
[2q−1(c1 + c2)]

(q−1)/q +
q − 1
q

A[t, r1, . . . , rn−1, 2q−1h]
}1/(q−1)

,

v(t) ≤
{
[2q−1(c1 + c2)]

(q−1)/q +
q − 1
q

A[t, r1, . . . , rn−1, 2q−1h]
}1/(q−1)

,

(3.27)

where h(t) = max{h1(t) + h3(t), h2(t) + h4(t)}.

Proof. Multiplying (3.25) by e
q
�α(t, 0) yields

e
q
�α(t, 0)u

q(t) ≤ c1e
q
�α(t, 0) +A[t, r1, . . . , rn−1, h1u]e

q
�α(t, 0) +A[t, r1, . . . , rn−1, h2v]e

q
�α(t, 0)

≤ c1 +A[t, r1, . . . , rn−1, h1u] +A[t, r1, . . . , rn−1, h2v].
(3.28)

Define

F(t) = e�α(t, 0)u(t) + v(t). (3.29)

By taking the qth power on both sides of (3.29) and using the elementary inequality (d1 +
d2)

q ≤ 2q−1(dq

1+d
q

2), where d1, d2 are nonnegative reals, and also noticing (3.26) and e�α(t, 0) ≤
1, we get

Fq(t) ≤ 2q−1
[
e
q
�α(t, 0)u

q(t) + vq(t)
]

≤ 2q−1{c1 +A[t, r1, . . . , rn−1, h1u] +A[t, r1, . . . , rn−1, h2v]

+c2 +A[t, r1, . . . , rn−1, h3u] +A[t, r1, . . . , rn−1, h4v]}

= 2q−1{(c1 + c2) +A[t, r1, . . . , rn−1, (h1 + h3)u] +A[t, r1, . . . , rn−1, (h2 + h4)v]}

≤ 2q−1(c1 + c2) +A
[
t, r1, . . . , rn−1, 2q−1hF

]
.

(3.30)

Now, Theorem 3.1 yields

F(t) ≤
{
[2q−1(c1 + c2)]

(q−1)/q +
q − 1
q

A[t, r1, . . . , rn−1, 2q−1h]
}1/(q−1)

. (3.31)

Noticing that (3.29) implies v ≤ F and u ≤ eα(·, 0)F, the bounds in (3.27) follow, which
concludes the proof.

Theorem 3.4. Let q > 1 and B be the set of all nonnegative real-valued rd-continuous functions
defined on [0, t] ∩ T. Let K and L be monotone increasing linear operators on B. If there exists a
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positive constant c such that, for y ∈ B,

yq(t) ≤ c +
∫ t

0

{
qL

[
yq](τ) +K

[
y
]
(τ)

}
Δτ ∀t ∈ T

+
0 , (3.32)

then, for all t ∈ T
+
0 ,

y(t) ≤ e
1/q

qL
(t, 0)

{
c(q−1)/q +

q − 1
q

∫ t

0
(1 + μ(τ)(�(qL))(τ))K(τ)e1/q−1

qL
(τ, 0)Δτ

}1/(q−1)
, (3.33)

where L = L[id], K = K[id] with id(s) ≡ 1 for all s ∈ T.

Proof. Let

z(t) = c +
∫ t

0

{
qL

[
yq](τ) +K

[
y
]
(τ)

}
Δτ. (3.34)

Hence, z(s) ≤ z(t) for all 0 ≤ s ≤ t, so that z ≤ z(t)id on [0, t], and thus

L[z] ≤ L[z(t)id] = z(t)L[id] = z(t)L. (3.35)

Hence L[z](t) ≤ z(t)L(t), and therefore L[z] ≤ zL. Similarly, K[z1/q] ≤ z1/qK. Using this and
(3.32), we obtain that

zΔ = qL
[
yq] +K

[
y
] ≤ qL[z] +K

[
z1/q

]
≤ qLz +Kz1/q. (3.36)

By the product rule [8, Theorem 1.20], we have

(
e�(qL)(·, 0)z

)Δ
= �

(
qL

)
e�(qL)(·, 0)z + eσ�(qL)(·, 0)z

Δ

= �
(
qL

)
e�(qL)(·, 0)z +

(
1 + μ

(
�
(
qL

)))
e�(qL)(·, 0)zΔ

= e�(qL)(·, 0)
(
�
(
qL

)
z +

(
1 + μ

(
�
(
qL

)))
zΔ

)

≤ e�(qL)(·, 0)
(
�
(
qL

)
z +

(
1 + μ

(
�
(
qL

)))(
qLz +Kz1/q

))

= e�(qL)(·, 0)
(

−qL
1 + μqL

z +

(
1 + μ

−qL
1 + μqL

)(
qLz +Kz1/q

))

= e�(qL)(·, 0)
(

−qL
1 + μqL

z +
qL

1 + μqL
z +

(
1 + μ

(
�
(
qL

)))
Kz1/q

)

= e�(qL)(·, 0)
(
1 + μ

(
�
(
qL

)))
Kz1/q.

(3.37)
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In summary,

wΔ ≤
(
1 + μ

(
�
(
qL

)))
Kw1/qe

1/q−1
qL

(·, 0), where w =
z

eqL(·, 0)
. (3.38)

Obviously

wwσ > 0, which implies
wΔ

w
∈ R+, (3.39)

so that the chain rule [9, Theorem 2.37] yields

(
1

1 − 1/q
w−1/q+1

)Δ

= w−1/qwΔ
∫1

0

(
1 + hμ

wΔ

w

)−1/q
dh ≤ w−1/qwΔ. (3.40)

Dividing both sides of (3.38) by w1/q provides that

w−1/qwΔ ≤
(
1 + μ

(
�
(
qL

)))
Ke

1/q−1
qL

(·, 0). (3.41)

Integrating both sides of (3.41) from 0 to t and noticing (3.40), we find that

q

q − 1

(
w1−1/q(t) −w1−1/q(0)

)
≤
∫ t

0

(
1 + μ(τ)

(
�
(
qL

))
(τ)

)
Ke

1/q−1
qL

(τ, 0)Δτ. (3.42)

Substitute the expression of w(t), we have

z(t)
eqL(t, 0)

≤
{
c(q−1)/q +

q − 1
q

∫ t

0
(1 + μ(τ)(�(qL))(τ))Ke

1/q−1
qL

(τ, 0)Δτ

}q/(q−1)
, (3.43)

which gives the desired inequality (3.32). This concludes the proof.

Remark 3.5. As in the discussion in Remark 3.2, Theorem 3.4 also holds true for c = 0.

4. Some Applications

In this section, we indicate some applications of our results to obtain the estimates of the
solutions of certain integral equations for which inequalities obtained in the literature thus
far do not apply directly. As an application of Theorem 2.2, we consider the second-order
dynamic equation

yΔΔ + pσ(t)
(
y + yσ) = 0. (4.1)
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Theorem 4.1. Assume that p is a differentiable positive function such that pΔ is rd-continuous. If
there exist t0 ∈ T and M > 0 such that

1√
p(t)

e|pΔ|/2p(t, t0) ≤ M ∀t ∈ T
+
t0
, (4.2)

then all nonoscillatory solutions of (4.1) are bounded.

Proof. Let y be a nonoscillatory solution of (4.1). Without loss of generality, we assume there
exists t0 ∈ T such that

y(t) > 0 ∀t ∈ T
+
t0
. (4.3)

Then

yΔΔ(t) = −pσ(t)(y(t) + yσ(t)
)
< 0 ∀t ∈ T

+
t0
. (4.4)

Hence, yΔ is strictly decreasing on T
+
t0
. Thus, either

yΔ(t) > 0 ∀t ∈ T
+
t0

(4.5)

or there exists t1 ∈ T
+
t0
such that

yΔ(t) < 0 ∀t ∈ T
+
t1
. (4.6)

We now claim that (4.6) is impossible to hold. To show this, let us assume that (4.6) is true.
Then y is strictly decreasing on T

+
t1
and

y(t) = y(t1) +
∫ t

t1

yΔ(τ)Δτ ≤ y(t1) + yΔ(t1)(t − t1) ∀t ∈ T
+
t1
. (4.7)

Hence, there exists t2 ∈ T
+
t1
such that

y(t) < 0 ∀t ∈ T
+
t2
, (4.8)

contradicting y(t) > 0 for all t ∈ T
+
t0
. Similarly, we can prove that if y(t) < 0, then yΔΔ(t) > 0

and yΔ(t) ≤ 0 for t ∈ T
+
t1
.

Multiplying (4.1) on both sides by yΔ and taking integral from t1 to t, we have

∫ t

t1

yΔ(τ)yΔΔ(τ)Δτ +
∫ t

t1

pσ(τ)
(
y(τ) + yσ(τ)

)
yΔ(τ)Δτ = 0. (4.9)
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From the integration by parts in [8, Theorem 1.77],

(
yΔ(t)

)2 −
(
yΔ(t1)

)2 −
∫ t

t1

yΔΔ(τ)yΔσ(τ)Δτ + p(t)y2(t) − p(t1)y2(t1) −
∫ t

t1

pΔ(τ)y2(τ)Δτ = 0,

(4.10)

Thus, with c1 = p(t1)y2(t1) + (yΔ(t1))
2 > 0, we have

(√
p(t)y(t)

)2

≤ c1 +
∫ t

t1

∣∣pΔ(τ)∣∣∣∣y(τ)∣∣√
p(τ)

√
p(τ)

∣∣y(τ)∣∣Δτ ∀t ∈ T
+
t1
. (4.11)

Theorem 2.2 gives that

∣∣∣∣
√
p(t)y(t)

∣∣∣∣ ≤ √
c1 +

1
2

∫ t

t1

∣∣pΔ(τ)∣∣∣∣y(τ)∣∣√
p(τ)

Δτ =
√
c1 +

∫ t

t1

∣∣pΔ(τ)∣∣
2p(τ)

∣∣∣∣
√
p(τ)y(τ)

∣∣∣∣Δτ ∀t ∈ T
+
t1
.

(4.12)

Applying Gronwall’s inequality from Lemma 2.1 yields

∣∣∣∣
√
p(t)y(t)

∣∣∣∣ ≤ √
c1e|pΔ|/2p(t, t1) ∀t ∈ T

+
t1
. (4.13)

Hence,

∣∣y(t)∣∣ ≤ √
c1

1√
p(t)

e|pΔ|/2p(t, t1) ≤
√
c1M ∀t ∈ T

+
t1
, (4.14)

which completes the proof.

The proof in Theorem 4.1 corrects an inaccuracy in the proof of [1, Theorem 1]. We can
also obtain the following results.

Corollary 4.2. Let T = R. If p is a continuously differentiable positive function such that p′ is
nonnegative, then all nonoscillatory solutions of (4.1) are bounded.
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Proof. For T = R, we have

1√
p(t)

e|pΔ|/2p(t, 0) =
1√
p(t)

e
∫ t
0(p

′(τ)/2p(τ))dτ

=
1√
p(t)

e(1/2) ln(p(t)/p(0))

=
1√
p(t)

(
p(t)
p(0)

)1/2

=
1√
p(0)

,

(4.15)

and hence the statement follows from Theorem 4.1.

Example 4.3. Consider the nonlinear one-dimensional integral equation of the form

uq(t) = f(t) +
∫ t

0
k(t, s)g(s, u(s))Δs, (4.16)

where f : T
+
0 → R, k : T

+
0 ×T

+
0 → R, g : T

+
0 ×R → R are rd-continuous functions, and q > 1 is

a constant. When T = R, its physical meaning is to model the water percolation phenomena,
and Okrasiński has studied the existence and uniqueness of solutions [14].

Here, we assume that every solution u of (4.16) exists on the interval T
+
0 . We suppose

that the functions f , k, g in (4.16) satisfy the conditions

∣∣f(t)∣∣ ≤ c1, |k(t, s)| ≤ c2,
∣∣g(t, u)∣∣ ≤ r(t)|u|, (4.17)

where c1, c2 are nonnegative constants and r : [0,∞) ∩ T → R+ is an rd-continuous function.
From (4.16) and using (4.17), it is easy to observe that

|u(t)|q ≤ c1 +
∫ t

0
c2r(s)|u(s)|Δs. (4.18)

Now an application of Theorem 3.1 with n = 1 gives

|u(t)| ≤
{
c
(q−1)/q
1 +

q − 1
q

∫ t

0
c2r(s)Δs

}1/(q−1)
, (4.19)

which gives the bound on u.
Now, we consider (4.16) under the conditions

∣∣f(t)∣∣≤ c1e
q
�α(t, 0), |k(t, s)| ≤ h(s)eq�α(t, 0),

∣∣g(t, u)∣∣ ≤ r(t)|u|, (4.20)
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where c1 and r are as above, α > 0 is a constant, h : T
+
0 → R+ is an rd-continuous function,

and

∫∞

0
h(s)r(s)e�α(s, 0)Δs < ∞. (4.21)

From (4.16) and (4.20), it is easy to observe that

|eα(t, 0)u(t)|q ≤ c1 +
∫ t

0
h(s)r(s)e�α(s, 0)|eα(s, 0)u(s)|Δs. (4.22)

Applying Theorem 3.1 with n = 1 yields

eα(t, 0)|u(t)| ≤
{
c
(q−1)/q
1 +

q − 1
q

∫ t

0
h(s)r(s)e�α(s, 0)Δs

}1/(q−1)
. (4.23)

So,

|u(t)| ≤ c∗e�α(t, 0), where c∗ = c
(q−1)/q
1 +

q − 1
q

∫∞

0
h(s)r(s)e�α(s, 0)Δs > 0. (4.24)

From (4.24), we see that the solution u(t) of (4.16) approaches zero as t → ∞.
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Mass, USA, 2003.



Journal of Inequalities and Applications 15

[10] W. N. Li and W. Sheng, “Some nonlinear dynamic inequalities on time scales,” Proceedings of Indian
Academy of Sciences. Mathematical Sciences, vol. 117, no. 4, pp. 545–554, 2007.

[11] E. Akin-Bohner, M. Bohner, and F. Akin, “Pachpatte inequalities on time scales,” Journal of Inequalities
in Pure and Applied Mathematics, vol. 6, no. 1, article 6, 23 pages, 2005.

[12] W. N. Li, “Bounds for certain new integral inequalities on time scales,” Advances in Difference
Equations, vol. 2009, Article ID 484185, 16 pages, 2009.

[13] C. M. Dafermos, “The second law of thermodynamics and stability,” Archive for Rational Mechanics
and Analysis, vol. 70, no. 2, pp. 167–179, 1979.
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