
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 286845, 12 pages
doi:10.1155/2010/286845

Research Article
On Hadamard-Type Inequalities Involving Several
Kinds of Convexity
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We do not only give the extensions of the results given by Gill et al. (1997) for log-convex functions
but also obtain some newHadamard-type inequalities for log-convexm-convex, and (α,m)-convex
functions.

1. Introduction

The following inequality is well known in the literature as Hadamard’s inequality:

f

(
a + b

2

)
≤ 1

b − a

∫b

a

f(x)dx ≤ f(a) + f(b)
2

, (1.1)

where f : I → R is a convex function on the interval I of real numbers and a, b ∈ I with
a < b. This inequality is one of the most useful inequalities in mathematical analysis. For new
proofs, note worthy extension, generalizations, and numerous applications on this inequality;
see ([1–6]) where further references are given.
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Let I be on interval in R. Then f : I → R is said to be convex if, for all x, y ∈ I and
λ ∈ [0, 1],

f
(
λx + (1 − λ)y

) ≤ λf(x) + (1 − λ)f
(
y
)

(1.2)

(see [5], Page 1). Geometrically, this means that ifK,L, andM are three distinct points on the
graph of f with L between K and M, then L is on or below chord KM.

Recall that a function f : I → (0,∞) is said to be log-convex function if, for all x, y ∈ I
and t ∈ [0, 1], one has the inequality (see [5], Page 3)

f
(
tx + (1 − t)y

) ≤ [
f(x)

]t[
f
(
y
)](1−t)

. (1.3)

It is said to be log-concave if the inequality in (1.3) is reversed.
In [7], Toader defined m-convexity as follows.

Definition 1.1. The function f : [0, b] → R, b > 0 is said to be m-convex, where m ∈ [0, 1], if
one has

f
(
tx +m(1 − t)y

) ≤ tf(x) +m(1 − t)f
(
y
)

(1.4)

for all x, y ∈ [0, b] and t ∈ [0, 1]. We say that f ism-concave if −f ism-convex.

Denote by Km(b) the class of all m-convex functions on [0, b] such that f(0) ≤ 0 (if
m < 1). Obviously, if we choose m = 1, Definition 1.1 recaptures the concept of standard
convex functions on [0, b].

In [8], Miheşan defined (α,m)-convexity as in the following:

Definition 1.2. The function f : [0, b] → R, b > 0, is said to be (α,m)-convex, where (α,m) ∈
[0, 1]2, if one has

f
(
tx +m(1 − t)y

) ≤ tαf(x) +m(1 − tα)f
(
y
)

(1.5)

for all x, y ∈ [0, b] and t ∈ [0, 1].

Denote by Kα
m(b) the class of all (α,m)-convex functions on [0, b] for which f(0) ≤ 0.

It can be easily seen that for (α,m) = (1, m), (α,m)-convexity reduces to m-convexity and for
(α,m) = (1, 1), (α,m)-convexity reduces to the concept of usual convexity defined on [0, b],
b > 0.

For recent results and generalizations concerning m-convex and (α,m)-convex
functions, see ([9–12]).

In the literature, the logarithmic mean of the positive real numbers p, q is defined as
the following:

L
(
p, q

)
=

p − q

ln p − ln q
(
p /= q

)
(1.6)

(for p = q, we put L(p, p) = p).
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In [13], Gill et al. established the following results.

Theorem 1.3. Let f be a positive, log-convex function on [a, b]. Then

1
b − a

∫b

a

f(t)dt ≤ L
(
f(a), f(b)

)
, (1.7)

where L(·, ·) is a logarithmic mean of the positive real numbers as in (1.6).
For f a positive log-concave function, the inequality is reversed.

Corollary 1.4. Let f be positive log-convex functions on [a, b]. Then

1
b − a

∫b

a

f(t)dt ≤ min
x∈[a,b]

(x − a)L
(
f(a), f(x)

)
+ (b − x)L

(
f(x), f(b)

)
b − a

. (1.8)

If f is a positive log-concave function, then

1
b − a

∫b

a

f(x)dx ≥ max
x∈[a,b]

(x − a)L
(
f(a), f(x)

)
+ (b − x)L

(
f(x), f(b)

)
b − a

. (1.9)

For some recent results related to the Hadamard’s inequalities involving two log-
convex functions, see [14] and the references cited therein. The main purpose of this paper
is to establish the general version of inequalities (1.7) and new Hadamard-type inequalities
involving two log-convex functions, twom-convex functions, or two (α,m)-convex functions
using elementary analysis.

2. Main Results

We start with the following theorem.

Theorem 2.1. Let fi : I ⊂ R → (0,∞) (i = 1, 2, . . . , n) be log-convex functions on I and a, b ∈ I
with a < b. Then the following inequality holds:

1
b − a

∫b

a

n∏
i=1

fi(x)dx ≤ L

(
n∏
i=1

fi(a),
n∏
i=1

fi(b)

)
, (2.1)

where L is a logarithmic mean of positive real numbers.
For f a positive log-concave function, the inequality is reversed.
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Proof. Since fi(i = 1, 2, . . . , n) are log-convex functions on I, we have

fi(ta + (1 − t)b) ≤ [
fi(a)

]t[
fi(b)

](1−t) (2.2)

for all a, b ∈ I and t ∈ [0, 1]. Writing (2.2) for i = 1, 2, . . . , n and multiplying the resulting
inequalities, it is easy to observe that

n∏
i=1

fi(ta + (1 − t)b) ≤
[

n∏
i=1

fi(a)

]t[ n∏
i=1

fi(b)

](1−t)

=
n∏
i=1

fi(b)

[
n∏
i=1

fi(a)
fi(b)

]t
(2.3)

for all a, b ∈ I and t ∈ [0, 1].
Integrating inequality (2.3) on [0, 1] over t, we get

∫1

0

n∏
i=1

fi(ta + (1 − t)b)dt ≤
n∏
i=1

fi(b)
∫1

0

[
n∏
i=1

fi(a)
fi(b)

]t

dt. (2.4)

As

∫1

0

n∏
i=1

fi(ta + (1 − t)b)dt =
1

b − a

∫b

a

n∏
i=1

fi(x)dx, (2.5)

∫1

0

[
n∏
i=1

fi(a)
fi(b)

]t

dt =
1

n∏
i=1

fi(b)
L

(
n∏
i=1

fi(a),
n∏
i=1

fi(b)

)
, (2.6)

the theorem is proved.

Remark 2.2. By taking i = 1 and f1 = f in Theorem 2.1,we obtain (1.7).

Corollary 2.3. Let fi : I ⊂ R → (0,∞) (i = 1, 2, . . . , n) be log-convex functions on I and a, b ∈ I
with a < b. Then

1
b − a

∫b

a

n∏
i=1

fi(x)dx

≤ min
x∈[a,b]

(x − a)L
(∏n

i=1fi(a),
∏n

i=1fi(x)
)
+ (b − x)L

(∏n
i=1fi(x),

∏n
i=1fi(b)

)
b − a

.

(2.7)
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If fi(i = 1, 2, . . . , n) are positive log-concave functions, then

1
b − a

∫b

a

n∏
i=1

fi(x)dx

≥ max
x∈[a,b]

(x − a)L
(∏n

i=1fi(a),
∏n

i=1fi(x)
)
+ (b − x)L

(∏n
i=1fi(x),

∏n
i=1fi(b)

)
b − a

.

(2.8)

Proof. Let fi(i = 1, 2, . . . , n) be positive log-convex functions. Then by Theorem 2.1 we have
that

∫b

a

n∏
i=1

fi(t)dt =
∫x

a

n∏
i=1

fi(t)dt +
∫b

x

n∏
i=1

fi(t)dt

≤ (x − a)L

(
n∏
i=1

fi(a),
n∏
i=1

fi(x)

)
+ (b − x)L

(
n∏
i=1

fi(x),
n∏
i=1

fi(b)

)
,

(2.9)

for all x ∈ [a, b], whence (2.7). Similarly we can prove (2.8).

Remark 2.4. By taking i = 1 and f1 = f in (2.7) and (2.8), we obtain the inequalities of
Corollary 1.4.

We will now point out some new results of the Hadamard type for log-convex, m-
convex, and (α,m)-convex functions, respectively.

Theorem 2.5. Let f, g : I → (0,∞) be log-convex functions on I and a, b ∈ I with a < b. Then the
following inequalities hold:

f

(
a + b

2

)
g

(
a + b

2

)
≤ 1

2

{
1

b − a

∫b

a

[
f(x)f(a + b − x) + g(x)g(a + b − x)

]
dx

}

≤ f(a)f(b) + g(a)g(b)
2

.

(2.10)

Proof. We can write

a + b

2
=

ta + (1 − t)b
2

+
(1 − t)a + tb

2
. (2.11)

Using the elementary inequality cd ≤ 1/2[c2 + d2] (c, d ≥ 0 reals) and equality (2.11), we
have
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f

(
a + b

2

)
g

(
a + b

2

)

≤ 1
2

[
f2
(
a + b

2

)
+ g2

(
a + b

2

)]

=
1
2

[
f2
(
ta + (1 − t)b

2
+
(1 − t)a + tb

2

)
+ g2

(
ta + (1 − t)b

2
+
(1 − t)a + tb

2

)]

≤ 1
2

{[(
f(ta + (1 − t)b)

)1/2]2[(
f((1 − t)a + tb)

)1/2]2

+
[(
g(ta + (1 − t)b)

)1/2]2[(
g((1 − t)a + tb)

)1/2]2}

=
1
2
[
f(ta + (1 − t)b)f((1 − t)a + tb) + g(ta + (1 − t)b)g((1 − t)a + tb)

]
.

(2.12)

Since f, g are log-convex functions, we obtain

1
2
[
f(ta + (1 − t)b)f((1 − t)a + tb) + g(ta + (1 − t)b)g((1 − t)a + tb)

]

≤
{
1
2
[
f(a)

]t[
f(b)

](1−t)[
f(a)

](1−t)[
f(b)

]t + [
g(a)

]t[
g(b)

](1−t)[
g(a)

](1−t)[
g(b)

]t}

=
f(a)f(b) + g(a)g(b)

2

(2.13)

for all a, b ∈ I and t ∈ [0, 1].
Rewriting (2.12) and (2.13), we have

f

(
a + b

2

)
g

(
a + b

2

)
≤ 1

2
[
f(ta + (1 − t)b)f((1 − t)a + tb) + g(ta + (1 − t)b)g((1 − t)a + tb)

]
,

(2.14)

1
2
[
f(ta + (1 − t)b)f((1 − t)a + tb) + g(ta + (1 − t)b)g((1 − t)a + tb)

] ≤ f(a)f(b) + g(a)g(b)
2

.

(2.15)

Integrating both sides of (2.14) and (2.15) on [0, 1] over t, respectively, we obtain

f

(
a + b

2

)
g

(
a + b

2

)
≤ 1

2

[
1

b − a

∫b

a

[
f(x)f(a + b − x) + g(x)g(a + b − x)

]
dx

]
,

1
2

[
1

b − a

∫b

a

[
f(x)f(a + b − x) + g(x)g(a + b − x)

]
dx

]
≤ f(a)f(b) + g(a)g(b)

2
.

(2.16)

Combining (2.16), we get the desired inequalities (2.10). The proof is complete.
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Theorem 2.6. Let f, g : I → (0,∞) be log-convex functions on I and a, b ∈ I with a < b. Then the
following inequalities hold:

2f
(
a + b

2

)
g

(
a + b

2

)
≤ 1

b − a

∫b

a

[
f2(x) + g2(x)

]
dx

≤ f(a) + f(b)
2

L
(
f(a), f(b)

)
+
g(a) + g(b)

2
L
(
g(a), g(b)

)
,

(2.17)

where L(·, ·) is a logarithmic mean of positive real numbers.

Proof. From inequality (2.14), we have

f

(
a + b

2

)
g

(
a + b

2

)

≤ 1
2
[
f(ta + (1 − t)b)f((1 − t)a + tb) + g(ta + (1 − t)b)g((1 − t)a + tb)

]
.

(2.18)

for all a, b ∈ I and t ∈ [0, 1].
Using the elementary inequality cd ≤ 1/2[c2 + d2] (c, d ≥ 0 reals) on the right side of

the above inequality, we have

f

(
a + b

2

)
g

(
a + b

2

)

≤ 1
4

[
f2(ta + (1 − t)b) + f2((1 − t)a + tb) + g2(ta + (1 − t)b) + g2((1 − t)a + tb)

]
.

(2.19)

Since f, g are log-convex functions, then we get

[
f2(ta + (1 − t)b) + f2((1 − t)a + tb) + g2(ta + (1 − t)b) + g2((1 − t)a + tb)

]

≤
{[

f(a)
]2t[

f(b)
](2−2t) + [

f(a)
](2−2t)[

f(b)
]2t + [

g(a)
]2t[

g(b)
](2−2t) + [

g(a)
](2−2t)[

g(b)
]2t}

=

[
f2(b)

[
f(a)
f(b)

]2t
+ f2(a)

[
f(b)
f(a)

]2t
+ g2(b)

[
g(a)
g(b)

]2t
+ g2(a)

[
g(b)
g(a)

]2t]
.

(2.20)
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Integrating both sides of (2.19) and (2.20) on [0, 1] over t, respectively, we obtain

2f
(
a + b

2

)
g

(
a + b

2

)
≤ 1

b − a

∫b

a

[
f2(x) + g2(x)

]
dx,

1
b − a

∫b

a

[
f2(x) + g2(x)

]
dx

≤ 1
2

(
f2(b)

∫1

0

[
f(a)
f(b)

]2t
dt + f2(a)

∫1

0

[
f(b)
f(a)

]2t
dt

+g2(b)
∫1

0

[
g(a)
g(b)

]2t
dt + g2(a)

∫1

0

[
g(b)
g(a)

]2t
dt

)

=
1
2

⎛
⎝f2(b)

[ [
f(a)/f(b)

]2t
2 log f(a)/f(b)

]1

0

+ f2(a)

[ [
f(b)/f(a)

]2t
2 log f(b)/f(a)

]1

0

+g2(b)

[ [
g(a)/g(b)

]2t
2 log g(a)/g(b)

]1

0

+ g2(a)

[ [
g(b)/g(a)

]2t
2 log g(b)/g(a)

]1

0

⎞
⎠

=
1
2

(
f2(a) − f2(b)

2
(
log f(a) − log f(b)

) +
f2(b) − f2(a)

2
(
log f(b) − log f(a)

)

+
g2(a) − g2(b)

2
(
log g(a) − log g(b)

) +
g2(b) − g2(a)

2
(
log g(b) − log g(a)

)
)

=
1
2

(
f(a) + f(b)

2
L
(
f(a), f(b)

)
+
f(a) + f(b)

2
L
(
f(b), f(a)

)

+
g(a) + g(b)

2
L
(
g(a), g(b)

)
+
g(a) + g(b)

2
L
(
g(b), g(a)

))

=
{
f(a) + f(b)

2
L
(
f(a), f(b)

)
+
g(a) + g(b)

2
L
(
g(a), g(b)

)}
.

(2.21)

Combining (2.21), we get the required inequalities (2.17). The proof is complete.

Theorem 2.7. Let f, g : [0,∞) → [0,∞) be such that fg is in L1([a, b]), where 0 ≤ a < b < ∞. If
f is nonincreasingm1-convex function and g is nonincreasingm2-convex function on [a, b] for some
fixed m1, m2 ∈ (0, 1], then the following inequality holds:

1
b − a

∫b

a

f(x)g(x)dx ≤ min{S1, S2}, (2.22)
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where

S1 =
1
6

[(
f2(a) + g2(a)

)
+m1f(a)f

(
b

m1

)
+m2g(a)g

(
b

m2

)
+m2

1f
2
(

b
m1

)
+m2

2g
2
(

b

m2

)]
,

(2.23)

S2 =
1
6

[(
f2(b) + g2(b)

)
+m1f(b)f

(
a

m1

)
+m2g(b)g

(
a

m2

)
+m2

1f
2
(

a

m1

)
+m2

2g
2
(

a

m2

)]

(2.24)

Proof. Since f ism1-convex function and g ism2-convex function, we have

f(ta + (1 − t)b) ≤ tf(a) +m1(1 − t)f
(

b

m1

)
,

g(ta + (1 − t)b) ≤ tg(a) +m2(1 − t)g
(

b

m2

) (2.25)

for all t ∈ [0, 1]. It is easy to observe that

∫b

a

f(x)g(x)dx = (b − a)
∫1

0
f(ta + (1 − t)b)g(ta + (1 − t)b)dt. (2.26)

Using the elementary inequality cd ≤ 1/2(c2 + d2) (c, d ≥ 0 reals), (2.25) on the right side of
(2.26) and making the charge of variable and since f, g is nonincreasing, we have

∫b

a

f(x)g(x)dx

≤ 1
2
(b − a)

∫1

0

[{
f(ta + (1 − t)b)

}2 + {
g(ta + (1 − t)b)

}2]
dt

≤ 1
2
(b − a)

∫1

0

[(
tf(a) +m1(1 − t)f

(
b

m1

))2

+
(
tg(a) +m2(1 − t)g

(
b

m2

))2
]
dt

=
1
2
(b − a)

[
1
3
f2(a) +

1
3
m2

1f
2
(

b

m1

)
+
1
3
m1f(a)f

(
b

m1

)
+
1
3
g2(a) +

1
3
m2

2g
2
(

b

m2

)

+
1
3
m2g(a)g

(
b

m2

)]

=
(b − a)

6

[(
f2(a) + g2(a)

)
+m1f(a)f

(
b

m1

)
+m2g(a)g

(
b

m2

)
+m2

1f
2
(

b

m1

)

+m2
2g

2
(

b

m2

)]
.

(2.27)
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Analogously we obtain

∫b

a

f(x)g(x)dx

≤ (b−a)
6

[(
f2(b)+g2(b)

)
+m1f(b)f

(
a

m1

)
+m2g(b)g

(
a

m2

)
+m2

1f
2
(

a

m1

)
+m2

2g
2
(

a

m2

)]
.

(2.28)

Rewriting (2.27) and (2.28), we get the required inequality in (2.22). The proof is complete.

Theorem 2.8. Let f, g : [0,∞) → [0,∞) be such that fg is in L1([a, b]), where 0 ≤ a < b < ∞.
If f is nonincreasing (α1, m1)-convex function and g is nonincreasing (α2, m2)-convex function on
[a, b] for some fixed α1, m1, α2, m2 ∈ (0, 1]. Then the following inequality holds:

1
b − a

∫b

a

f(x)g(x)dx ≤ min{E1, E2}, (2.29)

where

E1 =
1
2

[
1

2α1 + 1
f2(a) +

2α2
1

(α1 + 1)(2α1 + 1)
m2

1f
2
(

b

m1

)

+
2α1

(α1 + 1)(2α1 + 1)
m1f(a)f

(
b

m1

)
+

1
2α2 + 1

g2(a)

+
2α2

2

(α2 + 1)(2α2 + 1)
m2

2g
2
(

b

m2

)
+

2α2

(α2 + 1)(2α2 + 1)
m2g(a)g

(
b

m2

)]
,

(2.30)

E2 =
1
2

[
1

2α1 + 1
f2(b) +

2α2
1

(α1 + 1)(2α1 + 1)
m2

1f
2
(

a

m1

)

+
2α1

(α1 + 1)(2α1 + 1)
m1f(b)f

(
a

m1

)
+

1
2α2 + 1

g2(b)

+
2α2

2

(α2 + 1)(2α2 + 1)
m2

2g
2
(

a

m2

)
+

2α2

(α2 + 1)(2α2 + 1)
m2g(b)g

(
a

m2

)]
.

(2.31)

Proof. Since f is (α1, m1)-convex function and g is (α2, m2)-convex function, then we have

f(ta + (1 − t)b) ≤ tα1f(a) +m1(1 − tα1)f
(

b

m1

)
,

g(ta + (1 − t)b) ≤ tα2g(a) +m2(1 − tα2)g
(

b

m2

) (2.32)
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for all t ∈ [0, 1]. It is easy to observe that

∫b

a

f(x)g(x)dx = (b − a)
∫1

0
f(ta + (1 − t)b)g(ta + (1 − t)b)dt. (2.33)

Using the elementary inequality cd ≤ 1/2(c2 + d2) (c, d ≥ 0 reals), (2.32) on the right side of
(2.33) and making the charge of variable and since f, g is nonincreasing, we have

∫b

a

f(x)g(x)dx ≤ 1
2
(b − a)

∫1

0

[{
f(ta + (1 − t)b)

}2 + {
g(ta + (1 − t)b)

}2]
dt

≤ 1
2
(b − a)

∫1

0

[(
tα1f(a) +m1(1 − tα1)f

(
b

m1

))2

+
(
tα2g(a) +m2(1 − tα2)g

(
b

m2

))2
]
dt

=
1
2
(b − a)

[
1

2α1 + 1
f2(a) +

2α2
1

(α1 + 1)(2α1 + 1)
m2

1f
2
(

b

m1

)

+
2α1

(α1 + 1)(2α1 + 1)
m1f(a)f

(
b

m1

)
+

1
2α2 + 1

g2(a)

+
2α2

2

(α2 + 1)(2α2 + 1)
m2

2g
2
(

b

m2

)
+

2α2

(α2 + 1)(2α2 + 1)
m2g(a)g

(
b

m2

)]

(2.34)

Analogously we obtain

∫b

a

f(x)g(x)dx

≤ 1
2
(b − a)

[
1

2α1 + 1
f2(b) +

2α2
1

(α1 + 1)(2α1 + 1)
m2

1f
2
(

a

m1

)

+
2α1

(α1 + 1)(2α1 + 1)
m1f(b)f

(
a

m1

)
+

1
2α2 + 1

g2(b)

+
2α2

2

(α2 + 1)(2α2 + 1)
m2

2g
2
(

a

m2

)
+

2α2

(α2 + 1)(2α2 + 1)
m2g(b)g

(
a

m2

)]
.

(2.35)

Rewriting (2.34) and (2.35), we get the required inequality in (2.29). The proof is complete.

Remark 2.9. In Theorem 2.8, if we choose α1 = α2 = 1, we obtain the inequality of Theorem 2.7.



12 Journal of Inequalities and Applications

References

[1] M. Alomari and M. Darus, “On the Hadamard’s inequality for log-convex functions on the
coordinates,” Journal of Inequalities and Applications, vol. 2009, Article ID 283147, 13 pages, 2009.

[2] X.-M. Zhang, Y.-M. Chu, and X.-H. Zhang, “The Hermite-Hadamard type inequality of GA-convex
functions and its applications,” Journal of Inequalities and Applications, vol. 2010, Article ID 507560, 11
pages, 2010.

[3] C. Dinu, “Hermite-Hadamard inequality on time scales,” Journal of Inequalities and Applications, vol.
2008, Article ID 287947, 24 pages, 2008.

[4] S. S. Dragomir and C. E. M. Pearce, “Selected Topics on Hermite-Hadamard Inequalities and
Applications,” RGMIA Monographs, Victoria University, 2000, http://www.staff.vu.edu.au/rgmia/
monographs/hermite hadamard.html.
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[12] M. E. Özdemir, M. Avci, and E. Set, “On some inequalities of Hermite-Hadamard type via m-
convexity,” Applied Mathematics Letters, vol. 23, no. 9, pp. 1065–1070, 2010.
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