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For x, y > 0, a, b ∈ R, with a + b /= 0, the generalized Muirhead meanM(a, b;x, y)with parameters
a and b and the identric mean I(x, y) are defined by M(a, b;x, y) = ((xayb + xbya)/2)1/(a+b) and
I(x, y) = (1/e)(yy/xx)1/(y−x), x /=y, I(x, y) = x, x = y, respectively. In this paper, the following
results are established: (1) M(a, b;x, y) > I(x, y) for all x, y > 0 with x /=y and (a, b) ∈ {(a, b) ∈
R

2 : a+ b > 0, ab ≤ 0, 2(a − b)2 − 3(a+ b) + 1 ≥ 0, 3(a − b)2 − 2(a+ b) ≥ 0}; (2)M(a, b;x, y) < I(x, y)
for all x, y > 0 with x /=y and (a, b) ∈ {(a, b) ∈ R

2 : a ≥ 0, b ≥ 0, 3(a − b)2 − 2(a + b) ≤ 0} ∪ {(a, b) ∈
R

2 : a + b < 0}; (3) if (a, b) ∈ {(a, b) ∈ R
2 : a > 0, b > 0, 3(a − b)2 − 2(a + b) > 0} ∪ {(a, b) ∈ R

2 : ab <
0, 3(a − b)2 − 2(a+ b) < 0}, then there exist x1, y1, x2, y2 > 0 such thatM(a, b;x1, y1) > I(x1, y1) and
M(a, b;x2, y2) < I(x2, y2).

1. Introduction

For x, y > 0, a, b ∈ R, with a + b /= 0, the generalized Muirhead mean M(a, b;x, y) with
parameters a and b and the identric mean I(x, y) are defined by

M
(
a, b;x, y

)
=

(
xayb + xbya

2

)1/(a+b)

, (1.1)

I
(
x, y
)
=

⎧
⎪⎪⎨

⎪⎪⎩

1
e

(
yy

xx

)1/(y−x)
, x /=y,

x, x = y,

(1.2)

respectively.
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The generalized Muirhead mean was introduced by Trif [1], the monotonicity of
M(a, b;x, y) with respect to a or b was discussed, and a comparison theorem and a
Minkowski-type inequality involving the generalized Muirhead mean M(a, b;x, y) were
discussed.

It is easy to see that the generalized Muirhead meanM(a, b;x, y) is continuous on the
domain {(a, b;x, y) : a + b /= 0; x, y > 0} and differentiable with respect to (x, y) ∈ (0,+∞) ×
(0,+∞) for fixed a, b ∈ R with a+b /= 0. It is symmetric in a and b and in x and y. Many means
are special cases of the generalized Muirhead mean, for example,

M
(
p, 0;x, y

)
is the power or Hölder mean,

M
(
0, 1;x, y

)
is the arithmetic mean,

M
(
a, a;x, y

)
is the geometric mean,

M
(
0,−1;x, y) is the harmonic mean.

(1.3)

The well-known Muirhead inequality [2] implies that if x, y > 0 are fixed, then
M(a, b;x, y) is Schur convex on the domain {(a, b) ∈ R

2 : a + b > 0} and Schur concave
on the domain {(a, b) ∈ R

2 : a + b < 0}. Chu and Xia [3] discussed the Schur convexity and
Schur concavity of M(a, b;x, y) with respect to (x, y) ∈ (0,∞) × (0,∞) for fixed a, b ∈ R with
a + b /= 0.

Recently, the identric mean I(x, y) has been the subject of intensive research. In
particular, many remarkable inequalities for the identric mean I(x, y) can be found in the
literature [4–13].

The power mean of order r of the positive real numbers x and y is defined by

Mr

(
x, y
)
=

⎧
⎪⎪⎨

⎪⎪⎩

(
xr + yr

2

)1/r

, r /= 0,

√
xy, r = 0.

(1.4)

The main properties of the power mean Mr(x, y) are given in [14]. In particular,
Mr(x, y) is continuous and increasing with respect to r ∈ R for fixed x, y > 0. Let A(x, y) =
(1/2)(x + y),

L
(
x, y
)
=

⎧
⎨

⎩

y − x

logy − logx
, x /=y,

x, x = y,
(1.5)

G(x, y) = √
xy, and H(x, y) = 2xy/(x + y) be the arithmetic, logarithmic, geometric, and

harmonic means of two positive numbers x and y. Then it is well known that

min
{
x, y
}
< H

(
x, y
)
= M

(
0,−1;x, y) = M−1

(
x, y
)

< G
(
x, y
)
= M

(
a, a;x, y

)
= M0

(
x, y
)
< L
(
x, y
)
< I
(
x, y
)

< A
(
x, y
)
= M

(
0, 1;x, y

)
= M1

(
x, y
)
< max

{
x, y
}

(1.6)

for all x, y > 0 with x /=y.
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The following sharp inequality is due to Carlson [15]:

L
(
x, y
)
<

1
3
M
(
0, 1;x, y

)
+
2
3
M
(
a, a;x, y

)
(1.7)

for all x, y > 0 with x /=y.
Pittenger [16] proved that

M

(
2
3
, 0;x, y

)
= M2/3

(
x, y
)
< I
(
x, y
)
< Mlog 2

(
x, y
)
= M

(
log 2, 0;x, y

)
(1.8)

for all x, y > 0 with x /=y, and Mlog 2(x, y) and M2/3(x, y) are the optimal upper and lower
power mean bounds for the identric mean I(x, y).

In [8, 9], Sándor established that

I
(
x, y
)
>

2
3
M
(
0, 1;x, y

)
+
1
3
M
(
a, a;x, y

)
(1.9)

for all x, y > 0 with x /=y.
Alzer and Qiu [5] proved the inequalities

αM
(
0, 1;x, y

)
+ (1 − α)M

(
a, a;x, y

)
< I
(
x, y
)
< βM

(
0, 1;x, y

)
+
(
1 − β

)
M
(
a, a;x, y

)

(1.10)

for all x, y > 0 with x /=y if and only if α ≤ 2/3 and β ≥ 2/e.
In [3], Chu and Xia proved that

M
(
a, b;x, y

) ≥ A
(
x, y
)

(1.11)

for all x, y > 0 and (a, b) ∈ {(a, b) ∈ R
2 : (a − b)2 ≥ a + b >, ab ≤ 0}, and

M
(
a, b;x, y

) ≤ A
(
x, y
)

(1.12)

for all x, y > 0 and (a, b) ∈ {(a, b) ∈ R
2 : (a − b)2 ≤ a + b, a2 + b2 /= 0} ∪ {(a, b) ∈ R

2 : a + b < 0}.
Our purpose in what follows is to compare the generalized Muirhead mean

M(a, b;x, y) with the identric mean I(x, y). Our main result is Theorem 1.1 which follows.

Theorem 1.1. Suppose that E1 = {(a, b) ∈ R
2 : a + b > 0, ab ≤ 0, 2(a − b)2 − 3(a + b) + 1 ≥

0, 3(a − b)2 − 2(a + b) ≥ 0}, E2 = {(a, b) ∈ R
2 : a ≥ 0, b ≥ 0, a2 + b2 /= 0, 3(a − b)2 − 2(a + b) ≤

0} ∪ {(a, b) ∈ R
2 : a + b < 0}, and E3 = {(a, b) ∈ R

2 : a > 0, b > 0, 3(a − b)2 − 2(a + b) >
0} ∪ {(a, b) ∈ R

2 : ab < 0, 3(a − b)2 − 2(a + b) < 0}. The following statements hold,

(1) If (a, b) ∈ E1, thenM(a, b;x, y) > I(x, y) for all x, y > 0 with x /=y.

(2) If (a, b) ∈ E2, thenM(a, b;x, y) < I(x, y) for all x, y > 0 with x /=y.

(3) If (a, b) ∈ E3, then there exist x1, y1, x2, y2 > 0 such that M(a, b;x1, y1) > I(x1, y1) and
M(a, b;x2, y2) < I(x2, y2).
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2. Lemma

In order to prove Theorem 1.1 we need Lemma 2.1 that follows.

Lemma 2.1. Let a and b be two real numbers such that a > b and a+b /= 0. Let one define the function
f : [1,+∞) → R as follows:

f(t) =
1

a + b

[
−bta−b+1 + ata−b − atb−a+1 + btb−a +

(
a2 + b2 − 2ab − a − b

)
(t − 1)

]
, (2.1)

then the following statements hold.

(1) If b > 0 and 3(a − b)2 − 2(a + b) ≤ 0, then f(t) < 0 for t > 1.

(2) If b < 0, a+ b > 0, 2(a− b)2 − 3(a+ b) + 1 ≥ 0, and 3(a− b)2 − 2(a+ b) ≥ 0, then f(t) > 0
for t > 1.

(3) If a + b < 0, then f(t) < 0 for t > 1.

Proof. Simple computations lead to

f(1) = 0, (2.2)

f ′(t) =
1

a + b

[−b(a − b + 1)ta−b + a(a − b)ta−b−1 + a(a − b − 1)tb−a

−b(a − b)tb−a−1 + a2 + b2 − 2ab − a − b
]
,

(2.3)

f ′(1) =
3(a − b)2 − 2(a + b)

a + b
, (2.4)

f ′′(t) = (a − b)tb−a−2f1(t), (2.5)

where

f1(t) =
1

a + b

[−b(a − b + 1)t2a−2b+1 + a(a − b − 1)t2a−2b

−a(a − b − 1)t + b(a − b + 1)],
(2.6)

f1(1) = 0, (2.7)

f ′
1(t) =

1
a + b

[−b(a − b + 1)(2a − 2b + 1)t2a−2b

+2a(a − b)(a − b − 1)t2a−2b−1 − a(a − b − 1)
]
,

(2.8)

f ′
1(1) =

a − b

a + b

[
2(a − b)2 − 3(a + b) + 1

]
, (2.9)

f ′′
1 (t) = 2(a − b)t2a−2b−2f2(t), (2.10)
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where

f2(t) =
1

a + b
[−b(a − b + 1)(2a − 2b + 1)t + a(a − b − 1)(2a − 2b − 1)], (2.11)

f2(1) =
a − b

a + b

[
2(a − b)2 − 3(a + b) + 1

]
, (2.12)

f ′
2(t) = −b(a − b + 1)(2a − 2b + 1)

a + b
. (2.13)

(1)We divide the proof of Lemma 2.1(1) into two cases.

Case 1. b > 0, 3(a − b)2 − 2(a+ b) ≤ 0, and 2(a − b)2 − 3(a+ b) + 1 ≤ 0. From (2.13), (2.12), (2.9),
and (2.4), we clearly see that

f ′
2(t) < 0, f2(1) ≤ 0,

f ′
1(1) ≤ 0, f ′(1) ≤ 0.

(2.14)

Therefore, f(t) < 0 for t ∈ (1,+∞) easily follows from (2.2), (2.5), (2.7), (2.10), and
(2.14).

Case 2. b > 0, 3(a − b)2 − 2(a + b) ≤ 0, and 2(a − b)2 − 3(a + b) + 1 > 0; we conclude that

a <
1
2
. (2.15)

In fact, we clearly see that 2(a − b)2−3(a+b)+1 = (2a2−3a+1)−(4ab−2b2+3b) < 2a2−3a+
1 = (2a−1)(a−1) ≤ 0 for 1/2 ≤ a < 1, and 2(a − b)2−3(a+b)+1 ≤ −(5/3)(a+b)+1 < −2/3 < 0
for a ≥ 1 and 3(a − b)2 − 2(a + b) ≤ 0.

Equation (2.15) and 3(a − b)2 − 2(a + b) ≤ 0 imply that

2a − 2b − 1 < 0,

a2 + b2 − 2ab − a − b = (a − b)2 − (a + b) < 0.
(2.16)

Therefore, f(t) < 0 for t > 1 follows from (2.16) together with that f(t) can be rewritten
as

f(t) =
1

a + b

[
atb−a+1

(
t2a−2b−1 − 1

)
− btb−a

(
t2a−2b+1 − 1

)

+
(
a2 + b2 − 2ab − a − b

)
(t − 1)

]
.

(2.17)
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(2) If b < 0, a + b > 0, 2(a − b)2 − 3(a + b) + 1 ≥ 0 and 3(a − b)2 − 2(a + b) ≥ 0, then from
(2.13), (2.12), (2.9), and (2.4) we get

f ′
2(t) > 0, f2(1) ≥ 0,

f ′
1(1) ≥ 0, f ′(1) ≥ 0.

(2.18)

Therefore, f(t) > 0 for t ∈ (1,+∞) easily follows from (2.2), (2.5), (2.7), and (2.10)
together with (2.18).

(3) If a + b < 0, then we clearly see that inequalities (2.14) again hold, and f(t) < 0 for
t > 1 follows from (2.2), (2.5), (2.7), and (2.10) together with (2.14).

3. Proof of Theorem 1.1

Proof of Theorem 1.1. For convenience, we introduce the following classified regions in R
2:

E11 =
{
(a, b) ∈ R

2 : a + b > 0, a > 0, b < 0, 2(a − b)2 − 3(a + b) + 1 ≥ 0,

3(a − b)2 − 2(a + b) ≥ 0
}
,

E12 =
{
(a, b) ∈ R

2 : a + b > 0, a < 0, b > 0, 2(a − b)2 − 3(a + b) + 1 ≥ 0,

3(a − b)2 − 2(a + b) ≥ 0
}
,

E13 =
{
(a, b) ∈ R

2 : a = 0, b ≥ 1
}
,

E14 =
{
(a, b) ∈ R

2 : b = 0, a ≥ 1
}
,

E21 =
{
(a, b) ∈ R

2 : a > b > 0, 3(a − b)2 − 2(a + b) ≤ 0
}
,

E22 =
{
(a, b) ∈ R

2 : b > a > 0, 3(a − b)2 − 2(a + b) ≤ 0
}
,

E23 =
{
(a, b) ∈ R

2 : a = 0, 0 < b ≤ 2
3

}
,

E24 =
{
(a, b) ∈ R

2 : b = 0, 0 < a ≤ 2
3

}
,

E25 =
{
(a, b) ∈ R

2 : a > b, a + b < 0
}
,

E26 =
{
(a, b) ∈ R

2 : b > a, a + b < 0
}
,

E27 =
{
(a, b) ∈ R

2 : a = b /= 0
}
,
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E31 =
{
(a, b) ∈ R

2 : a > b > 0, 3(a − b)2 − 2(a + b) > 0
}
,

E32 =
{
(a, b) ∈ R

2 : b > a > 0, 3(a − b)2 − 2(a + b) > 0
}
,

E33 =
{
(a, b) ∈ R

2 : a > 0, b < 0, 3(a − b)2 − 2(a + b) < 0
}
,

E34 =
{
(a, b) ∈ R

2 : a < 0, b > 0, 3(a − b)2 − 2(a + b) < 0
}
.

(3.1)

Then we clearly see that E1 =
⋃4

i=1 E1i, E2 =
⋃7

i=1 E2i, and E3 =
⋃4

i=1 E3i.
Without loss of generality, we assume that y > x. From the symmetry we clearly see

that Theorem 1.1 is true if we prove thatM(a, b;x, y)−I(x, y) is positive, negative, and neither
positive nor negative with respect to (x, y) ∈ {(x, y) ∈ R

2 : y > x > 0} for (a, b) ∈ E11 ∪ E13,
E21 ∪ E23 ∪ E25 ∪ E27, and E31 ∪ E33.

Let t = y/x > 1, then (1.1) and (1.2) lead to

logM
(
a, b;x, y

) − log I
(
x, y
)
=

1
a + b

log
ta + tb

2
− t

t − 1
log t + 1. (3.2)

Let

g(t) =
1

a + b
log

ta + tb

2
− t

t − 1
log t + 1. (3.3)

Then simple computations yield

lim
t→ 1

g(t) = 0,

g ′(t) =
g1(t)

(t − 1)2
,

(3.4)

where

g1(t) = log t − (t − 1)
(
btb−1 + ata−1 + atb + bta

)

(a + b)
(
ta + tb

) . (3.5)

Note that

g1(1) = 0, (3.6)

g ′
1(t) =

(t − 1)ta+b−2
(
ta + tb

)2 f(t), (3.7)

where f(t) is defined as in Lemma 2.1.



8 Journal of Inequalities and Applications

We divide the proof into three cases.

Case 3. (a, b) ∈ E11 ∪ E13. We divide our discussion into two subcases.

Subcase 1. (a, b) ∈ E11. From Lemma 2.1(2) we get

f(t) > 0 (3.8)

for t > 1.
Equations (3.3)–(3.8) imply that

g(t) > 0 (3.9)

for t > 1.
Therefore, M(a, b;x, y) > I(x, y) follows from (3.2) and (3.9).

Subcase 2. (a, b) ∈ E13. Then from (1.1), (1.4), and (1.6) together with the monotonicity of the
power mean Mr(x, y) with respect to r ∈ R for fixed x, y > 0, we get

M
(
a, b;x, y

)
= M

(
0, b;x, y

)
= Mb

(
x, y
) ≥ M1

(
x, y
)
> I
(
x, y
)
. (3.10)

Case 4. (a, b) ∈ E21 ∪ E23 ∪ E25 ∪ E27. We divide our discussion into four subcases.

Subcase 3. (a, b) ∈ E21. Then Lemma 2.1(1) leads to

f(t) < 0 (3.11)

for t > 1.
Therefore, M(a, b;x, y) < I(x, y) follows from (3.2)–(3.7) and (3.11).

Subcase 4. (a, b) ∈ E23. Then from (1.1), (1.4), and (1.8) together with the monotonicity of the
power mean Mr(x, y) with respect to r ∈ R for fixed x, y > 0 we clearly see that

M
(
a, b;x, y

)
= Mb

(
x, y
) ≤ M2/3

(
x, y
)
< I
(
x, y
)
. (3.12)

Subcase 5. (a, b) ∈ E25. Then from Lemma 2.1(3) we know that (3.11) holds again; hence,
M(a, b;x, y) < I(x, y).

Subcase 6. (a, b) ∈ E27. Then (1.6) leads to

M
(
a, b;x, y

)
= M

(
a, a;x, y

)
= G
(
x, y
)
< I
(
x, y
)
. (3.13)

Case 5. (a, b) ∈ E31 ∪ E33. We divide our discussion into two subcases.
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Subcase 7. (a, b) ∈ E31. Then (2.4) leads to

f ′(1) > 0. (3.14)

Inequality (3.14) and the continuity of f ′(t) imply that there exists δ1 > 0 such that

f ′(t) > 0 (3.15)

for t ∈ [1, 1 + δ1).
From (2.2) and (3.15)we clearly see that

f(t) > 0 (3.16)

for t ∈ (1, 1 + δ1).
Therefore, M(a, b;x, y) > I(x, y) for (x, y) ∈ {(x, y) ∈ R

2 : y > x > 0, y < (1 + δ1)x}
follows from (3.2)–(3.7) and (3.16).

On the other hand, from (3.3) we clearly see that

lim
t→+∞

g(t) = −∞. (3.17)

Equations (3.2) and (3.3) together with (3.17) imply that there exists sufficient large
λ1 > 1 such that M(a, b;x, y) < I(x, y) for (x, y) ∈ {(x, y) ∈ R

2 : y > λ1x > 0}.

Subcase 8. (a, b) ∈ E33. Then (2.2) and (2.4) together with the continuity of f ′(t) imply that
there exists δ2 > 0 such that

f(t) < 0 (3.18)

for t ∈ (1, 1 + δ2).
Therefore, M(a, b;x, y) < I(x, y) for (x, y) ∈ {(x, y) ∈ R

2 : y > x > 0, y < (1 + δ2)x}
follows from (3.2)–(3.7) and (3.18).

On the other hand, from (3.3) we clearly see that

lim
t→+∞

g(t) = +∞. (3.19)

Equations (3.2) and (3.3) together with (3.19) imply that there exists sufficient large
λ2 > 1 such that M(a, b;x, y) > I(x, y) for (x, y) ∈ {(x, y) ∈ R

2 : y > λ2x > 0}.

Remark 3.1. Let E4 = {(a, b) ∈ R
2 : a + b /= 0} \ (E1 ∪ E2 ∪ E3), then E4 = {(a, b) ∈ R

2 : ab <
0, 3(a − b)2 − 2(a + b) > 0, 2(a − b)2 − 3(a + b) + 1 < 0}. Unfortunately, in this paper we cannot
discuss the case of (a, b) ∈ E4; we leave it as an open problem to the readers.
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