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A convex semidefinite optimization problem with a conic constraint is considered. We formulate
a Wolfe-type dual problem for the problem for its ε-approximate solutions, and then we prove
ε-weak duality theorem and ε-strong duality theorem which hold between the problem and its
Wolfe type dual problem. Moreover, we give an example illustrating the duality theorems.

1. Introduction

Convex semidefinite optimization problem is to optimize an objective convex function over a
linear matrix inequality. When the objective function is linear and the corresponding matrices
are diagonal, this problem becomes a linear optimization problem.

For convex semidefinite optimization problem, Lagrangean duality without constraint
qualification [1, 2], complete dual characterization conditions of solutions [1, 3, 4], saddle
point theorems [5], and characterizations of optimal solution sets [6, 7] have been
investigated.

To get the ε-approximate solution, many authors have established ε-optimality con-
ditions, ε-saddle point theorems and ε-duality theorems for several kinds of optimization
problems [1, 8–16].

Recently, Jeyakumar and Glover [11] gave ε-optimality conditions for convex
optimization problems, which hold without any constraint qualification. Yokoyama and
Shiraishi [16] gave a special case of convex optimization problemwhich satisfies ε-optimality
conditions. Kim and Lee [12] proved sequential ε-saddle point theorems and ε-duality
theorems for convex semidefinite optimization problems which have not conic constraints.

The purpose of this paper is to extend the ε-duality theorems by Kim and Lee
[12] to convex semidefinite optimization problems with conic constraints. We formulate a
Wolfe type dual problem for the problem for its ε-approximate solutions, and then prove
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ε-weak duality theorem and ε-strong duality theorem for the problem and its Wolfe type
dual problem, which hold under a weakened constraint qualification. Moreover, we give an
example illustrating the duality theorems.

2. Preliminaries

Consider the following convex semidefinite optimization problem:

(SDP) Minimize f(x),

subject to F0 +
m∑

i=1

xiFi � 0, (x1, x2, . . . , xm) ∈ C,
(2.1)

where f : R
m → R is a convex function, C is a closed convex cone of R

m, and for
i = 0, 1, . . . , m, Fi ∈ Sn, where Sn is the space of n × n real symmetric matrices. The space
Sn is partially ordered by the Löwner order, that is, for M,N ∈ Sn,M � N if and only if
M − N is positive semidefinite. The inner product in Sn is defined by (M,N) = Tr[MN],
where Tr[·] is the trace operation.

Let S := {M ∈ Sn | M � 0}. Then S is self-dual, that is,

S+ :=
{
θ ∈ Sn | (θ,Z) � 0, for any Z ∈ S

}
= S. (2.2)

Let F(x) := F0 +
∑m

i=1 xiFi, F̂(x) :=
∑m

i=1 xiFi, x = (x1, . . . , xm) ∈ R
m. Then F̂ is a linear

operator from R
m to Sn and its dual is defined by

F̂∗(Z) = (Tr[F1Z], . . . ,Tr[FmZ]), (2.3)

for any Z ∈ Sn. Clearly, A := {x ∈ C | F(x) ∈ S} is the feasible set of SDP.

Definition 2.1. Let g : R
n → R ∪ {+∞} be a convex function.

(1) The subdifferential of g at a ∈ dom g, where dom g = {x ∈ R
n | g(x) < +∞}, is

given by

∂g(a) =
{
v ∈ R

n | g(x) � g(a) + 〈v, x − a〉, ∀x ∈ R
n}, (2.4)

where 〈·, ·〉 is the scalar product on R
n.

(2) The ε-subdifferential of g at a ∈ dom g is given by

∂εg(a) =
{
v ∈ R

n | g(x) � g(a) + 〈v, x − a〉 − ε, ∀x ∈ R
n}. (2.5)

Definition 2.2. Let ε � 0. Then x ∈ A is called an ε-approximate solution of SDP, if, for any
x ∈ A,

f(x) � f(x) − ε. (2.6)
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Definition 2.3. The conjugate function of a function g : R
n → R ∪ {+∞} is defined by

g∗(v) = sup
{〈v, x〉 − g(x) | x ∈ R

n}. (2.7)

Definition 2.4. The epigraph of a function g : R
n → R ∪ {+∞}, epi g, is defined by

epig =
{
(x, r) ∈ R

n × R | g(x) � r
}
. (2.8)

If g is sublinear (i.e., convex and positively homogeneous of degree one), then ∂εg(0) =
∂g(0), for all ε � 0. If g̃(x) = g(x) − k, x ∈ R

n, k ∈ R, then epig̃∗ = epig∗ + (0, k). It is worth
nothing that if g is sublinear, then

epig∗ = ∂g(0) × R+. (2.9)

Moreover, if g is sublinear and if g̃(x) = g(x) − k, x ∈ R
n, and k ∈ R, then

epig̃∗ = ∂g(0) × [k,∞). (2.10)

Definition 2.5. Let C be a closed convex set in R
n and x ∈ C.

(1) Let NC(x) = {v ∈ R
n | 〈v, y − x〉 � 0, for all y ∈ C}. Then NC(x) is called the

normal cone to C at x.

(2) Let ε � 0. LetNε
C(x) = {v ∈ R

n | 〈v, y − x〉 � ε, for all y ∈ C}. ThenNε
C(x) is called

the ε-normal set to C at x.

(3) When C is a closed convex cone in Rn, NC(0) we denoted by C∗ and called the
negative dual cone of C.

Proposition 2.6 (see [17, 18]). Let f : R
n → R be a convex function and let δC be the indicator

function with respect to a closed convex subset C of R
n, that is, δC(x) = 0 if x ∈ C, and δC(x) = +∞

if x /∈C. Let ε � 0. Then

∂ε
(
f + δC

)
(x) =

⋃

ε0�0,ε1�0
ε0+ε1=ε

{
∂ε0f(x) + ∂ε1δC(x)

}
.

(2.11)

Proposition 2.7 (see [7]). Let g : R
n → R be a continuous convex function and let h : R

n →
R ∪ {+∞} be a proper lower semicontinuous convex function. Then

epi
(
g + h

)∗ = epig∗ + epih∗. (2.12)

Following the proof of Lemma 2.2 in [1], we can prove the following lemma.
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Lemma 2.8. Let Fi ∈ Sn, i = 0, 1, . . . , m. Suppose that A/= ∅. Let u ∈ R
m and α ∈ R. Then the

following are equivalent:

(i)

{
x ∈ C | F0 +

m∑

i=1

Fixi � 0

}
⊂ {x ∈ R

m | 〈u, x〉 � α},

(ii)

(
u

α

)
∈ cl

⎛

⎝
⋃

(Z,δ)∈S×R+

{(
F̂∗(Z)

−Tr[ZF0] − δ

)}
− C∗ × R+

⎞

⎠.

(2.13)

3. ε-Duality Theorem

Now we give ε-duality theorems for SDP. Using Lemma 2.8, we can obtain the following
lemma which is useful in proving our ε-strong duality theorems for SDP.

Lemma 3.1. Let x ∈ A. Suppose that

⋃

(Z,δ)∈S×R+

{(
F̂∗(Z)

−Tr[ZF0] − δ

)}
− C∗ × R+ (3.1)

is closed. Then x is an ε-approximate solution of SDP if and only if there exists Z ∈ S such that for
any x ∈ C,

f(x) − Tr[ZF(x)] � f(x) − ε. (3.2)

Proof. (=⇒) Let x be an ε-approximate solution of SDP. Then f(x) � f(x) − ε, for any x ∈ A.
Let h(x) = f(x) − f(x) + ε. Then h(x) + δA(x) � 0, for any x ∈ R

n. Thus we have, from
Proposition 2.7,

0 ∈ epi(h + δA)
∗ = epih∗ + epiδA

∗

= epif∗ +
(
0, f(x) − ε

)
+ epiδ∗

A,
(3.3)

and hence, (0, ε−f(x)) ∈ epif∗+epiδ∗
A. So there exists (u, r) ∈ epif∗ such that (−u, ε−f(x)−r) ∈

epiδA
∗ and hence there exists (u, r) ∈ epif∗ such that 〈−u, x〉 � ε − f(x) − r for any x ∈ A.

Since f∗(u) � r, 〈−u, x〉 � ε−f(x)−f∗(u) for any x ∈ A; and hence it follows from Lemma 2.8
that

(
u

−ε + f(x) + f∗(u)

)
∈

⋃

(Z,δ)∈S×R+

{(
F̂∗(Z)

−Tr[ZF0] − δ

)}
− C∗ × R+. (3.4)

Thus there exist (Z, δ) ∈ S × R+, c
∗ ∈ C∗, and γ ∈ R+ such that

u = F̂∗(Z) − c∗,

−ε + f(x) + f∗(u) = −Tr[ZF0] − δ − γ.
(3.5)
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This gives

〈
F̂∗(Z), x

〉
− 〈c∗, x〉 − f(x) = 〈u, x〉 − f(x) � f∗(u)

= −Tr[ZF0] − δ − γ − f(x) + ε,

(3.6)

for any x ∈ R
n. Thus we have

f(x) − ε � −〈u, x〉 + f(x) − Tr[ZF0] − δ − γ

= f(x) −
〈
F̂∗(Z), x

〉
+ 〈c∗, x〉 − Tr[ZF0] − δ − γ

= f(x) − Tr[ZF(x)] + 〈c∗, x〉 − δ − γ

� f(x) − Tr[ZF(x)]

(3.7)

for any x ∈ C.
(⇐=) Suppose that there exists Z ∈ S such that

f(x) − Tr[ZF(x)] � f(x) − ε, (3.8)

for any x ∈ C. Then we have

f(x) � f(x) − Tr[ZF(x)] � f(x) − ε, (3.9)

for any x ∈ A. Thus f(x) � f(x) − ε, for any x ∈ A. Hence x is an ε-approximate solution of
SDP.

Now we formulate the dual problem SDD of SDP as follows:

(SDD) maximize f(x) − Tr[ZF(x)],

subject to 0 ∈ ∂ε0f(x) − F̂∗(Z) +Nε1
C (x),

Z � 0,

ε0 + ε1 ∈ [0, ε].

(3.10)

We prove ε-weak and ε-strong duality theorems which hold between SDP and SDD.

Theorem 3.2 (ε-weak duality). For any feasible solution x of SDP and any feasible solution (y,Z)
of SDD,

f(x) � f
(
y
) − Tr

[
ZF
(
y
)] − ε. (3.11)
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Proof. Let x and (y,Z) be feasible solutions of SDP and SDD respectively. Then Tr[ZF(x)] � 0
and there exist v ∈ ∂ε0f(y) and ω ∈ Nε1

C (y) such that v = −ω + F̂∗(Z). Thus, we have

f(x) − {f(y) − Tr
[
ZF
(
y
)]}

�
〈
v, x − y

〉 − ε0 + Tr
[
ZF
(
y
)]

=
〈
−ω + F̂∗(Z), x − y

〉
− ε0 + Tr

[
ZF
(
y
)]

�
〈
F̂∗(Z), x − y

〉
− ε0 − ε1 + Tr

[
ZF
(
y
)]

=
〈
F̂∗(Z), x

〉
−
〈
F̂∗(Z), y

〉
− ε0 − ε1

+ Tr
[
ZF
(
y
)]

= Tr

[
Z

m∑

i=1

xiFi

]
− Tr

[
Z

m∑

i=1

yiFi

]
− ε0 − ε1

+ Tr[ZF0] + Tr

[
Z

m∑

i=1

yiFi

]

= Tr[ZF(x)] − ε0 − ε1

� −ε0 − ε1

� −ε.

(3.12)

Hence f(x) � f(y) − Tr[ZF(y)] − ε.

Theorem 3.3 (ε-strong duality). Suppose that

⋃

(Z,δ)∈S×R+

{(
F̂∗(Z)

−Tr[ZF0] − δ

)}
− C∗ × R+ (3.13)

is closed. If x is an ε-approximate solution of SDP, then there exists Z ∈ S such that (x,Z) is a
2ε-approximate solution of SDD.

Proof. Let x ∈ A be an ε-approximate solution of SDP. Then f(x) � f(x)−ε, for any x ∈ A. By
Lemma 3.1, there exists Z ∈ S such that

f(x) − Tr
[
ZF(x)

]
� f(x) − ε, (3.14)

for any x ∈ C. Letting x = x in (3.14), Tr[ZF(x)] � ε. Since F(x) ∈ S and Z ∈ S, Tr[ZF(x)] �
0.

Thus from (3.14),

f(x) − Tr
[
ZF(x)

]
+ ε � f(x) − Tr

[
ZF(x)

]
(3.15)
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for any x ∈ C. Hence x is an ε-approximate solution of the following problem:

maximize f(x) − Tr
[
ZF(x)

]
,

subject to x ∈ C,

(3.16)

and so, 0 ∈ ∂ε(f − F̂∗(Z) + δC) (x), and hence, by Proposition 2.6, there exist ε0, ε1 ∈ [0, ε]
such that ε0 + ε1 = ε and

0 ∈ ∂ε0f(x) − F̂∗
(
Z
)
+Nε1

C (x). (3.17)

So, (x,Z) is a feasible solution of SDD. For any feasible solution (y,Z) of SDD,

f(x) − Tr
[
ZF(x)

]
− {f(y) − Tr

[
ZF
(
y
)]}

= f(x) − {f(y) − Tr
[
ZF
(
y
)]}

− Tr
[
ZF(x)

]

� −ε − Tr
[
ZF(x)

]

(
by ε-weak duality

)

� −ε − ε

= −2ε.

(3.18)

Thus (x,Z) is a 2ε-approximate solution to SDD.

Now we characterize the ε-normal set to R
n
+.

Proposition 3.4. Let (x1, . . . , xn) ∈ R
n
+ and ε � 0. Then

Nε
R

n
+
(x1, . . . , xn) =

⋃

εi�0∑n
i=1 εi=ε

n∏

i=1

A(εi), (3.19)

where

A(εi) =

⎧
⎪⎨

⎪⎩

−R+ if xi = 0,
[
− εi
xi
, 0
]

if xi > 0.
(3.20)
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Proof. Let (x1, . . . , xn) ∈ R
n
+ and ε � 0. Then

Nε
R

n
+
(x1, . . . , xn) = ∂εδR

n
+(x1, . . . , xn)

= ∂ε

(
n∑

i=1

δR×···×R×R+×R×···×R

)
(x1, . . . , xn)

=
⋃

εi�0∑n
i=1 εi=ε

n∑

i=1

∂εiδR×···×R×R+×R×···×R(x1, . . . , xn).

(3.21)

Let (v1, . . . , vn) ∈ ∂εiδR×···×R×R+×R×···×R(x1, . . . , xn) (where R+ is at the ith position in R× · · ·×R×
R+ × R × · · · × R)

⇐⇒ for any
(
y1, . . . , yn

) ∈ R × · · · × R × R+ × R × · · · × R,

εi � v1
(
y1 − x1

)
+ · · · + vi

(
yi − xi

)
+ · · · + vn

(
yn − xn

)
,

⇐⇒ for any yi ∈ R+, εi � vi

(
yi − xi

)
, vj = 0,

for j ∈ {1, . . . , n} \ {i},

⇐⇒ vi ∈

⎧
⎪⎪⎨

⎪⎪⎩

−R+, if xi = 0,
[
− εi
xi
, 0
]
, if xi > 0,

vj = 0 for j ∈ {1, . . . , n} \ {i}.

(3.22)

Thus, we have

Nε1
R

n
+
(x1, . . . , xn) =

⋃

εi�0∑n
i=1 εi=ε

n∑

i=1

{0} × · · · × {0} ×A(εi) × {0} × · · · × {0}

=
⋃

εi�0∑n
i=1 εi=ε

n∏

i=1

A(εi).

(3.23)

From Proposition 3.4, we can calculate Nε
R

2
+
.
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Corollary 3.5. Let (x1, x2) ∈ R
2
+ and ε � 0. Then following hold.

(i) If (x1, x2) = (0, 0), thenNε
R

2
+
(0, 0) = −R

2
+.

(ii) If (x1, x2) = (x1, 0) and x1 > 0, thenNε
R

2
+
(x1, 0) = [−ε/x1, 0] × (−∞, 0].

(iii) If (x1, x2) = (0, x2) and x2 > 0, thenNε
R

2
+
(0, x2) = (−∞, 0] × [−ε/x2, 0].

(iv) If (x1, x2) = (x1, x2), and x1 > 0 and x2 > 0, then

Nε
R

2
+
(x1, x2) =

⋃

ε1�0,ε2�0,
ε1+ε2=ε

[
− ε1
x1

, 0
]
×
[
− ε2
x2

, 0
]
. (3.24)

Now we give an example illustrating our ε-duality theorems.

Example 3.6. Consider the following convex semidefinite program.

(SDP) Minimize x1 + x2
2,

subject to

(
0 x1

x1 0

)
� 0,

(x1, x2) ∈ R
2
+.

(3.25)

Let f(x1, x2) = x1 + x2
2,

F0 =

(
0 0

0 0

)
, F1 =

(
0 1

1 0

)
, F2 =

(
0 0

0 0

)
, (3.26)

and ε �0. Let f(x1, x2) = x1 + x2
2 and

F(x1, x2) =

(
0 x1

x1 0

)
. (3.27)

Then A := {(0, x2) ∈ R
2 | x2 � 0} is the set of all feasible solutions of SDP and the set of all ε-

approximate solutions of SDP is {(x1, x2) ∈ R
2 | x1 = 0, 0 � x2 � √

ε}. Let F = {((x1, x2), Z) |
0 ∈ ∂ε0f(x1, x2) − F̂∗(Z) +Nε1

R
2
+
(x1, x2), Z � 0, ε0 + ε1 ∈ [0, ε]}. Then F is the set of all feasible

solution of SDD. Now we calculate the set F.
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Ã :=

{(
(0, 0),

(
a b

b c

))
| 0 ∈ ∂ε0f(0, 0) − F̂∗

(
a b

b c

)
+Nε1

R
2
+
(0, 0),

a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(0, 0),

(
a b

b c

))
| 0 ∈ {1} × [−2√ε0, 2

√
ε0
] − (2b, 0) − R

2
+,

a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(0, 0),

(
a b

b c

))
| (2b, 0) ∈ (−∞, 1] × (−∞, 2

√
ε0
]
,

a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(0, 0),

(
a b

b c

))
| a � 0, c � 0, b � 1

2
, b2 � ac

}
,

B̃ :=

{(
(0, x2),

(
a b

b c

))
| x2 > 0, 0 ∈ ∂ε0f(0, x2) − F̂∗

(
a b

b c

)
+Nε1

R
2
+
(0, x2)

a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(0, x2),

(
a b

b c

))
| x2 > 0, 0 ∈ {1} × [2x2 − 2

√
ε0, 2x2 + 2

√
ε0
] − (2b, 0)

+ (−∞, 0] ×
[
− ε1
x2

, 0
]
, a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(0, x2),

(
a b

b c

))
| x2 > 0, (2b, 0) ∈ (−∞, 1] ×

[
2x2 − ε1

x2
− 2

√
ε0, 2x2 + 2

√
ε0

]
,

a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(0, x2),

(
a b

b c

))
| 0 < x2 �

√
ε0 +
√
ε0 + 2ε1
2

, a � 0, c � 0, b � 1
2
, b2 � ac,

ε0+ε1 ∈ [0, ε]

}
,
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C̃ :=

{(
(x1, 0),

(
a b

b c

))
| x1 > 0, 0 ∈ ∂ε0f(x1, 0) − F̂∗

(
a b

b c

)
+Nε1

R
2
+
(x1, 0),

a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(x1, 0),

(
a b

b c

))
| x1 > 0, 0 ∈ {1} × [−2√ε0,+2

√
ε0
] − (2b, 0)

+
[
− ε1
x1

, 0
]
× (−∞, 0], a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(x1, 0),

(
a b

b c

))
| x1 > 0, (2b, 0) ∈

[
1 − ε1

x1
, 1
]
× (−∞, 2

√
ε0
]
,

a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(x1, 0),

(
a b

b c

))
| 0 < x1, −ε1 � −x1 + 2bx1, a � 0, c � 0, b � 1

2
, b2 � ac,

ε0+ε1 ∈ [0, ε]

}
,

D̃ :=

{(
(x1, x2),

(
a b

b c

))
| x1 > 0, x2 > 0, 0 ∈ ∂ε0f(x1, x2) − F̂∗

(
a b

b c

)

+ Nε1
R

2
+
(x1, x2), a � 0, c � 0, b2 � ac, ε0 + ε1 ∈ [0, ε]

}

=

{(
(x1, x2),

(
a b

b c

))
| x1 > 0, x2 > 0,

0 ∈ {1} × [2x2 − 2
√
ε0, 2x2 + 2

√
ε0
] − (2b, 0) +

[
− ε11
x1

, 0

]
×
[
− ε21
x2

, 0

]
,

a � 0, c � 0, b2 � ac, ε11 + ε21 = ε1, ε0 + ε1 ∈ [0, ε]

}

=

{(
(x1, x2),

(
a b

b c

))
| x1 > 0, x2 > 0,

(2b, 0) ∈
[
1 − ε11

x1
, 1

]
×
[
2x2 −

ε21
x2

− 2
√
ε0, 2x2 + 2

√
ε0

]
,

a � 0, c � 0, b2 � ac, ε11 + ε21 = ε1, ε0 + ε1 ∈ [0, ε]

}
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=

{(
(x1, x2),

(
a b

b c

))
| 0 < x1, −ε11 � −x1 + 2bx1,

0 < x2 �
√
ε0 +
√
ε0 + 2ε21
2

, a � 0, c � 0, b � 1
2
, b2 � ac, ε11 + ε21 = ε1,

ε0+ε1 ∈ [0, ε]

}
.

(3.28)

Thus F = Ã ∪ B̃ ∪ C̃ ∪ D̃. We can check that for any (x1, x2) ∈ A and any ((y1, y2),
(
a b
b c

)
) ∈ F,

f(x1, x2) � f
(
y1, y2

) − Tr

((
a b

b c

)
F
(
y1, y2

)
)

− ε, (3.29)

that is, ε-weak duality holds.
Let (x1, x2) ∈ A be an ε-approximate solution of SDP. Then x1 = 0 and 0 � x2 � √

ε.
So, we can easily check that ((x1, x2),

(
0 0
0 0

)
) ∈ F.

Since Tr(
(
0 0
0 0

)
F(x1, x2))) = 0, from (3.29),

f(x1, x2) � f
(
y1, y2

) − Tr

((
a b

b c

)
F
(
y1, y2

)
)

− ε, (3.30)

for any ((y1, y2),
(
a b
b c

)
) ∈ F. So ((x1, x2),

(
a b
b c

)
) is an ε-approximate solution of SDD. Hence

ε-strong duality holds.
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