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Applying the moment inequality of negatively dependent random variables which was obtained
by Asadian et al. (2006), the strong limit theorem for weighted sums of sequences of negatively
dependent random variables is discussed. As a result, the strong limit theorem for negatively
dependent sequences of random variables is extended. Our results extend and improve the
corresponding results of Bai and Cheng (2000) from the i.i.d. case to ND sequences.

1. Introduction and Lemmas

Definition 1.1. Random variables X and Y are said to be negatively dependent (ND) if

P
(
X ≤ x, Y ≤ y

) ≤ P(X ≤ x)P
(
Y ≤ y

)
, (1.1)

for all x, y ∈ R. A collection of random variables is said to be pairwise negatively dependent
(PND) if every pair of random variables in the collection satisfies (1.1).

It is important to note that (1.1) implies

P
(
X > x, Y > y

) ≤ P(X > x)P
(
Y > y

)
, (1.2)

for all x, y ∈ R. Moreover, it follows that (1.2) implies (1.1), and hence, (1.1) and (1.2) are
equivalent. However, (1.1) and (1.2) are not equivalent for a collection of 3 or more random
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variables. Consequently, the following definition is needed to define sequences of negatively
dependent random variables.

Definition 1.2. The random variables X1, . . . , Xn are said to be negatively dependent (ND) if
for all real x1, . . . , xn,

P

⎛

⎝
n⋂

j=1

(
Xj ≤ xj

)
⎞

⎠ ≤
n∏

j=1

P
(
Xj ≤ xj

)
,

P

⎛

⎝
n⋂

j=1

(
Xj > xj

)
⎞

⎠ ≤
n∏

j=1

P
(
Xj > xj

)
.

(1.3)

An infinite sequence of random variables {Xn;n ≥ 1} is said to be ND if every finite subset
X1, . . . , Xn is ND.

Definition 1.3. Random variables X1, X2, . . . , Xn, n ≥ 2 are said to be negatively associated
(NA) if for every pair of disjoint subsets A1 and A2 of {1, 2, . . . , n},

cov
(
f1(Xi; i ∈ A1), f2

(
Xj ; j ∈ A2

)) ≤ 0, (1.4)

where f1 and f2 are increasing for every variable (or decreasing for every variable), such that
this covariance exists. An infinite sequence of random variables {Xn;n ≥ 1} is said to be NA
if every finite subfamily is NA.

The definition of PND is given by Lehmann [1], the concept of ND is given by
Bozorgnia et al. [2], and the definition of NA is introduced by Joag-Dev and Proschan [3].
These concepts of dependent random variables have been very useful in reliability theory
and applications.

Obviously, NA implies ND from the definition of NA and ND. But ND does not
imply NA, so ND is much weaker than NA. Because of the wide applications of ND random
variables, the notions of ND dependence of random variables have received more and more
attention recently. A series of useful results have been established (cf: [2, 4–10]). Hence,
extending the limit properties of independent or NA random variables to the case of ND
variables is highly desirable and of considerably significance in the theory and application.

Strong convergence is one of the most important problems in probability theory. Some
recent results can be found inWu and Jiang [11], Chen and Gan [12], and Bai and Cheng [13].
Bai and Cheng [13] gave the following Theorem.

Theorem 1.4. Suppose that 1 < α, β < ∞, 1 ≤ p < 2, and 1/p = 1/α + 1/β. Let {X,Xn;n ≥ 1} be
a sequence of i.i.d. random variables satisfying EX = 0, and let {ank; 1 ≤ k ≤ n, n ≥ 1} be an array of
real constants such that

lim sup
n→∞

(
1
n

n∑

k=1

|ank|α
)1/α

< ∞. (1.5)
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If E|X|β < ∞, then

lim
n→∞

n−1/p
n∑

k=1

ankXk = 0, a.s. (1.6)

In this paper, we study the strong convergence for negatively dependent random
variables. Our results generalize and improve the above Theorem.

In the following, let an � bn denote that there exists a constant c > 0 such that an ≤ cbn
for sufficiently large n. The symbol c stands for a generic positive constant which may differ
from one place to another. And Sn=̂

∑n
j=1 Xj .

Lemma 1.5 (see [2]). Let X1, . . . , Xn be ND random variables and let {fn;n ≥ 1} be a sequence
of Borel functions all of which are monotone increasing (or all are monotone decreasing), then
{fn(Xn);n ≥ 1} is still a sequence of ND r.v.s.

Lemma 1.6 (see [14]). Let {Xn;n ≥ 1} be an ND sequence with EXn = 0 and E|Xn|p < ∞, p ≥ 2,
then

E|Sn|p ≤ cp

⎧
⎨

⎩

n∑

i=1

E|Xi|p +
(

n∑

i=1

EX2
i

)p/2
⎫
⎬

⎭
, (1.7)

where cp > 0 depends only on p.

The following lemma is known, see, for example, Wu, 2006 [15].

Lemma 1.7. Let {Xn;n ≥ 1} be an arbitrary sequence of random variables. If there exist an r.v.X and
a constant c such that P(|Xn| ≥ x) ≤ cP(|X| ≥ x) for n ≥ 1 and x > 0, then for any u > 0, t > 0, and
n ≥ 1,

E|Xn|uI(|Xn|≤t) ≤ c
(
E|X|uI(|X|≤t) + tuP(|X| > t)

)
,

E|Xn|uI(|Xn|>t) ≤ cE|X|uI(|X|>t).
(1.8)

2. Main Results and Proof

Theorem 2.1. Suppose that α, β > 0, 0 < p < 2, and 1/p = 1/α+1/β. Let {Xn;n ≥ 1} be a sequence
of ND random variables, there exist an r.v. X and a constant c satisfying

P(|Xn| ≥ x) ≤ cP(|X| ≥ x), ∀n ≥ 1, x > 0,

E|X|β < ∞.
(2.1)

If β > 1, further assume that EXn = 0. Let {ank; 1 ≤ k ≤ n, n ≥ 1} be an array of real numbers
such that

n∑

k=1

|ank|α � n, (2.2)
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then

lim
n→∞

n−1/p
n∑

k=1

ankXk = 0 a.s. (2.3)

Corollary 2.2. Suppose that α, β > 0, 0 < p < 2, and 1/p = 1/α + 1/β. Let {Xn;n ≥ 1} be a
sequence of ND identically distributed random variables with E|X1|β < ∞. If β > 1, further assume
that EX1 = 0. Let {ank; 1 ≤ k ≤ n, n ≥ 1} be an array of real numbers such that (2.2) holds, then
(2.3) holds.

Taking ank ≡ 1 in Corollary 2.2, then (2.2) is always valid for any α > 0. Hence, for any
0 < p < min(β, 2), letting α = pβ/(β − p) > 0, we can obtain the following corollary.

Corollary 2.3. Let {Xn;n ≥ 1} be a sequence of ND identically distributed random variables with
E|X1|β < ∞. If β > 1, further assume that EX1 = 0, then for any 0 < p < min(β, 2),

lim
n→∞

n−1/p
n∑

k=1

Xk = 0, a.s. (2.4)

Remark 2.4. Theorem 2.1 improves and extends Theorem 1.4 of Bai and Cheng [13] for i.i.d.
case to ND random variables, removes the identically distributed condition, and expands the
ranges α, β, and p, respectively.

Proof of Theorem 2.1. For any γ > 0, by (2.2), the Hölder inequality and the cr inequality, we
have

n∑

k=1

|ank|γ ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
n∑

k=1

|ank|α
)γ/α( n∑

k=1

1

)1−γ/α
� n,

(
n∑

k=1

|ank|α
)γ/α

� nγ/α

= nmax(1,γ/α). (2.5)

For any 1 ≤ k ≤ n, n ≥ 1, let

Yk=̂ − n1/βI(Xk<−n1/β) +XkI(|Xk |≤n1/β) + n1/βI(Xk>n1/β),

Zk=̂Xk − Yk =
(
Xk + n1/β

)
I(Xk<−n1/β) +

(
Xk − n1/β

)
I(Xk>n1/β).

(2.6)

Then

n−1/p
n∑

k=1

ankXk = n−1/p
n∑

k=1

ankZk + n−1/p
n∑

k=1

ankEYk + n−1/p
n∑

k=1

ank(Yk − EYk)

=̂In1 + In2 + In3.

(2.7)
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By (2.1),

∞∑

k=1

P(Zk /= 0) =
∞∑

k=1

P
(
|Xk| > k1/β

)
�

∞∑

k=1

P
(
|X| > k1/β

)
� E|X|β < ∞. (2.8)

Hence, by the Borel-Cantelli lemma, we can get P(Zk /= 0, i.o.) = 0. It follows that from (2.2)

|In1| = n−1/p
∣
∣
∣
∣
∣

n∑

k=1

ankZk

∣
∣
∣
∣
∣
≤ n−1/p

(
max
1≤k≤n

|ank|α
)1/α n∑

k=1

|Zk|

≤ n−1/p
(

n∑

k=1

|ank|α
)1/α n∑

k=1

|Zk|

� n−1/β
n∑

k=1

|Zk| −→ 0, a.s.

(2.9)

If 0 < β ≤ 1, by (2.1), (2.5), the Markov inequality, and Lemma 1.7, we have

|In2| = n−1/p
∣∣∣∣∣

n∑

k=1

ankEYk

∣∣∣∣∣
≤ n−1/p

n∑

k=1

|ank|E|Xk|I(|Xk |≤n1/β) + n−1/α
n∑

k=1

|ank|P
(
|Xk| > n1/β

)

� n−1/p
n∑

k=1

|ank|
(
E|X|βn(1−β)/βI(|X|≤n1/β) + n1/βP

(
|X| > n1/β

))
+ n−1/α

n∑

k=1

|ank|E|X|β
n

� n−1/α−1+max(1/α,1) −→ 0, n −→ ∞.

(2.10)

If β > 1, once again, using (2.1), (2.5), EXk = 0, the Markov inequality, and Lemma 1.7,
we get

|In2| = n−1/p
∣∣∣∣∣

n∑

k=1

ankEYk

∣∣∣∣∣
≤ n−1/p

n∑

k=1

(∣∣ankEXkI(|Xk |≤n1/β)
∣∣ + n1/β|ank|P

(
|Xk| > n1/β

))

= n−1/p
n∑

k=1

(∣∣ankEXkI(|Xk |>n1/β)
∣∣ + n1/β|ank|P

(
|Xk| > n1/β

))

� n−1/p
n∑

k=1

(
|ank|E|X|I(|X|>n1/β) + n1/β|ank|P

(
|X| > n1/β

))

≤ n−1/p
n∑

k=1

|ank|E|X|
( |X|
n1/β

)β−1
I(|X|>n1/β) + n−1/α

n∑

k=1

|ank|E|X|β
n

� n−1/α−1+max(1/α,1) −→ 0, n −→ ∞.

(2.11)
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Combining with (2.10), we get

In2 −→ 0, n −→ ∞. (2.12)

Obviously, Yk, k ≤ n are monotonic onXk. By Lemma 1.5, {Yk; k ≥ 1} is also a sequence
of ND random variables. Choose q such that q > 1/min{1/2, 1/α, 1/β, 1/p − 1/2}, by the
Markov inequality and Lemma 1.6, we have

∞∑

n=1

P

(

n−1/p
∣
∣
∣
∣
∣

n∑

k=1

ank(Yk − EYk)

∣
∣
∣
∣
∣
> ε

)

�
∞∑

n=1

n−q/pE

∣∣∣∣∣

n∑

k=1

ank(Yk − EYk)

∣∣∣∣∣

q

�
∞∑

n=1

n−q/p
n∑

k=1

E|ank(Yk − EYk)|q +
∞∑

n=1

n−q/p
(

n∑

k=1

a2
nkE(Yk − EYk)2

)q/2

=̂J1 + J2.

(2.13)

By the cr inequality, (2.1), (2.5), and Lemma 1.7, we have

J1 �
∞∑

n=1

n−q/p
n∑

k=1

|ank|q
(
E|Xk|qI(|Xk |≤n1/β) + nq/βP

(
|Xk| > n1/β

))

�
∞∑

n=1

n−q/p+q/α
(
E|X|qI(|X|≤n1/β) + nq/βP

(
|X| > n1/β

))

�
∞∑

n=1

n−q/β
n∑

i=1

E|X|qI((i−1)1/β<|X|≤i1/β) +
∞∑

n=1

P
(
|X| > n1/β

)

�
∞∑

i=1

E|X|qI((i−1)1/β<|X|≤i1/β)
∞∑

n=i

n−q/β + E|X|β

�
∞∑

i=1

i1−q/βE|X|qI((i−1)1/β<|X|≤i1/β)

�
∞∑

i=1

E|X|βI((i−1)1/β<|X|≤i1/β) � E|X|β

< ∞.

(2.14)
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Next, we prove that J2 < ∞. By (2.5),

n∑

k=1

a2
nk �

⎧
⎪⎨

⎪⎩

n, α ≥ 2,

n2/α, α < 2.
(2.15)

And by the Markov inequality,

EX2I(|X|≤n1/β) + n2/βP
(
|X| > n1/β

)
≤
⎧
⎨

⎩

E|X|βn(1/β)(2−β) + n2/βn−1E|X|β � n2/β−1, β < 2,

� EX2 < ∞, β ≥ 2.
(2.16)

By the cr inequality, the Markov inequality, and Lemma 1.7, combining with (2.15), we get

n∑

k=1

a2
nkE(Yk − EYk)2 �

n∑

k=1

a2
nk

(
EX2I

(
|X| ≤ n1/β

)
+ n2/βP

(
|X| > n1/β

))

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n−1+2/p, α < 2, β < 2,

n2/α, α < 2, β ≥ 2,

n2/β, α ≥ 2, β < 2,

n, α ≥ 2, β ≥ 2

≤ nt,

(2.17)

where t = max{−1 + 2/p, 2/α, 2/β, 1}. Hence, we can obtain the following:

J2 �
∞∑

n=1

n(−1/p+t/2)q < ∞, (2.18)

from (−(1/p) + (t/2))q = q ·max(−1/2,−1/β,−1/α, 1/2− 1/p) = −q ·min(1/2, 1/β, 1/α, 1/p −
1/2 < −1. By (2.13), (2.14), (2.15), and the Borel-Cantelli lemma,

In3 = n−1/p
n∑

k=1

ank(Yk − EYk) −→ 0, a.s. n −→ ∞. (2.19)

Together with (2.7), (2.9), (2.12), and (2.3) holds.
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