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We achieve the general solution and the generalized stability result for the following functional
equation in random normed spaces (in the sense of Sherstnev) under arbitrary t-norms: f(x +
ky) + f(x − ky) = k2[f(x + y) + f(x − y)] + (2(k2 − 1)/k2(k − 2))f(kx) − ((k3 − k2 − k + 1)/2(k −
2))f(2x) + ˜f(2y) − 8 ˜f(y), where ˜f(y) := f(y) − f(−y) for any fixed integer k with k /= 0, ±1, 2.

1. Introduction

In 1940, the stability problem of functional equations originated from a question given by
Ulam [1], that is, the stability of group homomorphisms.

Let (G1, ·) be a group and (G2, ∗, d) be a metric group with the metric d. For any
ε > 0, does there exist δ > 0, such that, if a mapping h : G1 → G2 satisfies inequality
d(h(x · y), h(x) ∗ h(y)) < δ.

For all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with
d(h(x),H(x)) < ε for all x ∈ G1?

In other words, under what condition, does there exists a homomorphism near an
approximate homomorphism? The concept of stability for functional equation arises when
we replace the functional equation by an inequality which acts as a perturbation of the
equation.

In 1941, Hyers [2] gave a first affirmative answer to the question of Ulam for Banach
spaces.
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Let f be a mapping between Banach spaces E and E′ such that, for some δ > 0,

∥

∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ δ, ∀x, y ∈ E. (1.1)

Then there exists a unique additive mapping T : E → E′ such that

∥

∥f(x) − T(x)∥∥ ≤ δ, ∀x, y ∈ E. (1.2)

Moreover, if f(tx) is continuous in t ∈ R for any fixed x ∈ E, then T is linear.
In 1978, Rassias [3] provided a generalization of Hyers’ Theorem which allows the

Cauchy difference to be unbounded. In 1991, Gajda [4] answered the question for the case
p > 1, which was raised by Rassias. This new concept is known as the Hyers-Ulam-Rassias
stability of functional equations (see [5–17]).

The functional equation

f
(

x + y
)

+ f
(

x − y) = 2f(x) + 2f
(

y
)

(1.3)

is related to symmetric biadditive mapping. It is natural that this equation is called a quadratic
functional equation. In particular, every solution of the quadratic equation (1.3) is said to be a
quadratic mapping. It is well known that a mapping f between real vector spaces E and E′

is quadratic if and only if there exits a unique symmetric biadditive mapping B such that
f(x) = B(x, x) for all x ∈ E (see [5, 18]). The biadditive mapping B is given by

B
(

x, y
)

=
1
4
(

f
(

x + y
) − f(x − y)), ∀x, y ∈ E. (1.4)

Hyers-Ulam-Rassias stability problem for the quadratic functional equation (1.3)was proved
by Skof [19] for a mapping f : E → E′, where E is a normed space and E′ is a Banach space.
Cholewa [20] noticed that the theorem of Skof is still true if the relevant domainA is replaced
by an abelian group. In [21], Czerwik proved the Hyers-Ulam-Rassias stability of (1.3) and
Grabiec [22] generalized these results mentioned above.

Recently, Jun and Kim [23] introduced the following cubic functional equation:

f
(

2x + y
)

+ f
(

2x − y) = 2f
(

x + y
)

+ 2f
(

x − y) + 12f(x), ∀x, y ∈ X, (1.5)

where f is a mapping from a real vector space X into a real vector space Y and they
established the general solution and the generalized Hyers-Ulam-Rassias stability for the
functional equation (1.5). The function f(x) = x3 satisfies the functional equation (1.5),which
is thus called a cubic functional equation. Every solution of the cubic functional equation is said
to be a cubic function. Also, Jun and Kim proved that a function f between real vector spaces
X and Y is a solution of (1.5) if and only if there exits a unique function C : X × X × X → Y
such that f(x) = C(x, x, x) for all x ∈ X and C is symmetric for each fixed one variable and is
additive for fixed two variables.

In the sequel, we adopt the usual terminology, notations and conventions of the theory
of random normed spaces as in [24–28]. Throughout this paper,Δ+ is the space of distribution



Journal of Inequalities and Applications 3

functions, that is, the space of all mappings F : R ∪ {−∞,∞} → [0, 1] such that F is left-
continuous and nondecreasing on R,F(0) = 0 and F(+∞) = 1. D+ is a subset of Δ+ consisting
of all functions F ∈ Δ+ for which l−F(+∞) = 1, where l−f(x) denotes the left limit of the
function f at the point x, that is, l−f(x) = limt→x−f(t). The space Δ+ is partially ordered by
the usual pointwise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all t ∈ R.
The maximal element for Δ+ in this order is the distribution function ε0 given by

ε0(t) =

⎧

⎨

⎩

0, if t ≤ 0,

1, if t > 0.
(1.6)

Definition 1.1 (see [27]). A mapping T : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular
norm (briefly, a continuous t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b) and
TL(a, b) = max(a + b − 1, 0) (the Lukasiewicz t-norm).

Recall (see [29, 30]) that, if T is a t-norm and {xn} is a given sequence of numbers in
[0, 1], then Tni=1xi is defined recurrently by

T1
i=1xi = x1, Tni=1xi = T

(

Tn−1i=1 xi, xn
)

, ∀n ≥ 2, (1.7)

and T∞
i=nxi is defined as T∞

i=1xn+i.
It is known [30] that, for the Lukasiewicz t-norm, the following implication holds:

lim
n→∞

(TL)∞i=1xn+i = 1 ⇐⇒
∞
∑

n=1

(1 − xn) <∞. (1.8)

Definition 1.2 (see [28]). A random normed space (briefly, RN-space) is a triple (X, μ, T), where
X is a vector space, T is a continuous t-norm and μ is a mapping from X into D+ satisfying
the following conditions:

(RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) μαx(t) = μx(t/|α|) for all x ∈ X, and α ∈ R with α/= 0;

(RN3) μx+y(t + s) ≥ T(μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

Every normed spaces (X, ‖ · ‖) defines a random normed space (X, μ, TM), where

μx(t) =
t

t + ‖x‖ , ∀t > 0, (1.9)

and TM is the minimum t-norm. This space is called the induced random normed space.



4 Journal of Inequalities and Applications

Definition 1.3. Let (X, μ, T) be a RN-space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for any ε > 0 and
λ > 0, there exists a positive integerN such that μxn−x(ε) > 1 − λ for all n ≥N.

(2) A sequence {xn} in X is called a Cauchy sequence if, for any ε > 0 and λ > 0, there
exists a positive integerN such that μxn−xm(ε) > 1 − λ for all n ≥ m ≥N.

(3) A RN-space (X, μ, T) is said to be complete if every Cauchy sequence in X is
convergent to a point in X.

Theorem 1.4 (see [27]). If (X, μ, T) is a RN-space and {xn} is a sequence in X such that xn → x,
then limn→∞μxn(t) = μx(t) almost everywhere.

The stability of different functional equations in fuzzy normed spaces and random
normed spaces has been studied in [13, 31–42].

In this paper, we deal with the following functional equation for fixed integers k with
k /= 0, ±1, 2:

f
(

x + ky
)

+ f
(

x − ky) = k2[f(x + y
)

+ f
(

x − y)] + 2
(

k2 − 1
)

k2(k − 2)
f(kx)

− k3 − k2 − k + 1
2(k − 2)

f(2x) + ˜f
(

2y
) − 8 ˜f

(

y
)

,

(1.10)

where ˜f(y) := f(y) − f(−y) on random normed spaces. It is easy to see that the mapping
f(x) = ax2 +bx3 + c is a solution of the functional equation (1.10). In Section 2, we investigate
the general solution of functional equation (1.10)when f is a mapping between vector spaces
and, in Section 3, we establish the stability of the functional equation (1.10) in RN-spaces.

2. General Solutions

Before proceeding to the proof of Theorem 2.3 which is the main result in this section, we
need the following two lemmas.

Lemma 2.1. If an even function f : X → Y with f(0) = 0 satisfies (1.10), then f is quadratic.

Proof. Setting x = 0 in (1.10), by the evenness of f , we obtain

f
(

ky
)

= k2f
(

y
)

, ∀y ∈ X. (2.1)

Interchanging x with y in (2.1), we have

f(kx) = k2f(x), ∀x ∈ X. (2.2)

Letting y = 0 in (1.10), we have

f(x) =
−1

k2(k − 2)
f(kx) +

k − 1
4(k − 2)

f(2x), ∀x ∈ X. (2.3)
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It follows from (2.2) and (2.3) that

f(2x) = 4f(x), ∀x ∈ X. (2.4)

According to (2.2), (2.4) and using the evenness of f , (1.10) can be written as

f
(

x + ky
)

+ f
(

x − ky) = k2f(x + y
)

+ k2f
(

x − y) + 2
(

1 − k2
)

f(x), ∀x, y ∈ X. (2.5)

Replacing x by kx in (2.5) and then using (2.2), we obtain

f
(

kx + y
)

+ f
(

kx − y) = f(x + y
)

+ f
(

x − y) + 2
(

k2 − 1
)

f(x), ∀x, y ∈ X. (2.6)

Interchanging x with y in (2.5), by the evenness of f , we have

f
(

kx + y
)

+ f
(

kx − y) = k2f(x + y
)

+ k2f
(

x − y) + 2
(

1 − k2
)

f
(

y
)

, ∀x, y ∈ X. (2.7)

But, since k /= 0, ±1, 2, it follows from (2.6) and (2.7) that

f
(

x + y
)

+ f
(

x − y) = 2f(x) + 2f
(

y
)

, ∀x, y ∈ X, (2.8)

which shows that f is quadratic. This completes the proof.

Lemma 2.2. If an odd function f : X → Y satisfies (1.10), then f is cubic.

Proof. Letting x = 0 in (1.10), by the oddness of f , we have

f
(

2y
)

= 8f
(

y
)

, ∀y ∈ X. (2.9)

Setting y = 0 in (1.10) and then using (2.9), we obtain

f(kx) = k3f(x), ∀x ∈ X. (2.10)

According to (2.9), (2.10) and using the oddness of f , (1.10) can be written as

f
(

x + ky
)

+ f
(

x − ky) = k2f(x + y
)

+ k2f
(

x − y) + 2
(

1 − k2
)

f(x), ∀x, y ∈ X. (2.11)

Letting y = x in (2.11) and using (2.9), by the oddness of f, it follows that

f((k + 1)x) = f((k − 1)x) + 2
(

1 + 3k2
)

f(x), ∀x ∈ X. (2.12)
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Replacing x by (k − 1)x in (2.11), we have

f
(

(k − 1)x + ky
)

+ f
(

(k − 1)x − ky)

= k2f
(

(k − 1)x + y
)

+ k2f
(

(k − 1)x − y)

+ 2
(

1 − k2
)

f((k − 1)x), ∀x, y ∈ X.

(2.13)

Now, replacing x by (k + 1)x in (2.11) and using (2.12), we have

f
(

(k + 1)x + ky
)

+ f
(

(k + 1)x − ky)

= k2f
(

(k + 1)x + y
)

+ k2f
(

(k + 1)x − y)

+ 2
(

1 − k2
)

f((k − 1)x) + 4
(

1 − k2
)(

3k2 + 1
)

f(x), ∀x, y ∈ X.

(2.14)

Substituting x + y with x in (2.11) and then x − y with x in (2.11), we obtain

f
(

x + (k + 1)y
)

+ f
(

x − (k − 1)y
)

= k2f
(

x + 2y
)

+ 2
(

1 − k2
)

f
(

x + y
)

+ k2f(x), ∀x, y ∈ X,
(2.15)

f
(

x − (k + 1)y
)

+ f
(

x + (k − 1)y
)

= k2f
(

x − 2y
)

+ 2
(

1 − k2
)

f
(

x − y) + k2f(x), ∀x, y ∈ X.
(2.16)

If we subtract (2.16) from (2.15), we have

f
(

x + (k + 1)y
) − f(x − (k + 1)y

)

= k2f
(

x + 2y
) − k2f(x − 2y

)

+ f
(

x + (k − 1)y
) − f(x − (k − 1)y

)

+ 2
(

1 − k2
)

f
(

x + y
) − 2

(

1 − k2
)

f
(

x − y), ∀x, y ∈ X.

(2.17)

Interchanging x with y in (2.17) and using the oddness of f , we get

f
(

(k + 1)x + y
)

+ f
(

(k + 1)x − y)

= k2f
(

2x + y
)

+ k2f
(

2x − y) + f((k − 1)x + y
)

+ f
(

(k − 1)x − y)

+ 2
(

1 − k2
)

f
(

x + y
)

+ 2
(

1 − k2
)

f
(

x − y), ∀x, y ∈ X.

(2.18)
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Thus it follows from (2.14) and (2.18) that

f
(

(k + 1)x + ky
)

+ f
(

(k + 1)x − ky)

= k2f
(

(k − 1)x + y
)

+ k2f
(

(k − 1)x − y) + k4f(2x + y
)

+ k4f
(

2x − y)

+ 2k2
(

1 − k2
)

f
(

x + y
)

+ 2k2
(

1 − k2
)

f
(

x − y)

+ 2
(

1 − k2
)

f((k − 1)x) + 4
(

1 − k2
)(

3k2 + 1
)

f(x), ∀x, y ∈ X.

(2.19)

Again, substituting x + y with y in (2.11) and then x − y with y in (2.11), we get, by the
oddness of f,

f
(

(k + 1)x + ky
) − f((k − 1)x + ky

)

= k2f
(

2x + y
)

+ k2f
(−y) + 2

(

1 − k2
)

f(x), ∀x, y ∈ X,
(2.20)

f
(

(k + 1)x − ky) − f((k − 1)x − ky)

= k2f
(

2x − y) + k2f(y) + 2
(

1 − k2
)

f(x), ∀x, y ∈ X.
(2.21)

Then, by adding (2.20) to (2.21) and then using (2.13), we have

f
(

(k + 1)x + ky
)

+ f
(

(k + 1)x − ky)

= k2f
(

(k − 1)x + y
)

+ k2f
(

(k − 1)x − y) + 2
(

1 − k2
)

f((k − 1)x)

+ k2f
(

2x + y
)

+ k2f
(

2x − y) + 4
(

1 − k2
)

f(x), ∀x, y ∈ X.

(2.22)

Finally, if we compare (2.19) with (2.22), then we conclude that

f
(

2x + y
)

+ f
(

2x − y) = 2f
(

x + y
)

+ 2f
(

x − y) + 12f(x), ∀x, y ∈ X. (2.23)

Therefore, f is a cubic function. This completes the proof.

Theorem 2.3. A function f : X → Y with f(0) = 0 satisfies (1.10) for all x, y ∈ X if and only if
there exist functionsQ : X×X → Y and C : X×X×X → Y such that f(x) = Q(x, x)+C(x, x, x)
for all x ∈ X, where the function C is symmetric for each fixed one variable and is additive for fixed
two variables and Q is symmetric biadditive.

Proof. Let f be a mapping with f(0) = 0 satisfies (1.10). We decompose f into the even part
and odd part by putting

fe(x) =
1
2
(

f(x) + f(−x)), fo(x) =
1
2
(

f(x) − f(−x)), ∀x ∈ X. (2.24)
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It is clear that f(x) = fe(x) + fo(x) for all x ∈ X and it is easy to show that the functions
fe and fo satisfy (1.10). Hence, by Lemmas 2.1 and 2.2, we know that the functions fe and
fo are quadratic and cubic, respectively. Thus there exist a symmetric biadditive function
Q : X × X → Y such that fe(x) = Q(x, x) for all x ∈ X and the function C : X × X × X → Y
such that fo(x) = C(x, x, x) for all x ∈ X,where the functionC is symmetric for each fixed one
variable and is additive for fixed two variables. Therefore, we get f(x) = C(x, x, x) +Q(x, x)
for all x ∈ X.

Conversely, let f(x) = C(x, x, x) + Q(x, x) for all x ∈ X, where the function C is
symmetric for each fixed one variable and is additive for fixed two variables and Q is
biadditive. By a simple computation, one can show that the functions x �→ C(x, x, x) and
x �→ Q(x, x) satisfy the functional equation (1.10). Thus the function f satisfies (1.10). This
completes the proof.

3. Stability Problems

From now on, we suppose that X is a real linear space, (Y, μ, T) is a complete RN-space and
f : X → Y is a function with f(0) = 0 for which there exists a mapping ρ : X × X → D+

(ρ(x, y) is denoted by ρx,y) with the property:

μf(x+ky)+f(x−ky)−k2[f(x+y)+f(x−y)]−(2(k2−1)/k2(k−2))f(kx)+((k3−k2−k+1)/2(k−2))f(2x)− ˜f(2y)+8 ˜f(y)(t)

≥ ρx,y(t), ∀x, y ∈ X, t > 0,
(3.1)

where ˜f(y) := f(y) − f(−y) for all y ∈ X.

Theorem 3.1. Let

lim
m→∞

T∞
j=1

(

ρ0,km+j−1x

(

k2m+j t
))

= 1

= lim
m→∞

ρkmx,kmy
(

k2mt
)

, ∀x, y ∈ X, t > 0.
(3.2)

Suppose that an even function f : X → Y with f(0) = 0 satisfies inequality

μf(x+ky)+f(x−ky)−k2[f(x+y)+f(x−y)]−(2(k2−1)/k2(k−2))f(kx)+((k3−k2−k+1)/2(k−2))f(2x)− ˜f(2y)+8 ˜f(y)(t)

≥ ρx,y(t), ∀x, y ∈ X, t > 0,
(3.3)

where ˜f(y) := f(y)−f(−y) for all y ∈ X. Then there exists a unique quadratic mappingQ : X → Y
such that

μQ(x)−f(x)(t) ≥ T∞
j=1

(

ρ0,kj−1x
(

kjt
))

, ∀x ∈ X, t > 0. (3.4)
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Proof. It follows from (3.3) and the evenness of f that

μf(x+ky)+f(x−ky)−k2[f(x+y)+f(x−y)]−(2(k2−1)/k2(k−2))f(kx)+((k3−k2−k+1)/2(k−2))f(2x)(t)

≥ ρx,y(t), ∀x, y ∈ X, t > 0.
(3.5)

Setting x = 0 in (3.5), we get

μ2f(ky)−2k2f(y)(t) ≥ ρ0,y(t), ∀y ∈ X, t > 0. (3.6)

If we replace y by x in (3.6) and divide both sides of (3.6) by 2, we get

μf(kx)−k2f(x)(t) ≥ ρ0,x(2t) ≥ ρ0,x(t), ∀x ∈ X, t > 0. (3.7)

In other words, we have

μf(kx)/k2−f(x)(t) ≥ ρ0,x
(

k2t
)

, ∀x ∈ X, t > 0. (3.8)

Therefore, it follows that

μf(kn+1x)/k2(n+1)−f(knx)/k2n
(

t

k2n

)

≥ ρ0,knx
(

k2t
)

, ∀x ∈ X, t > 0, n ∈ N. (3.9)

Hence we have

μf(kn+1x)/k2(n+1)−f(knx)/k2n(t) ≥ ρ0,knx
(

k2(n+1)t
)

, ∀x ∈ X, t > 0, n ∈ N. (3.10)

This means that

μf(kn+1x)/k2(n+1)−f(knx)/k2n
(

t

kn+1

)

≥ ρ0,knx
(

k(n+1)t
)

, ∀x ∈ X, t > 0, n ∈ N. (3.11)

Since 1 > 1/2 + 1/22 + · · · + 1/2m, by the triangle inequality, it follows that

μ(f(kmx)/k2m)−f(x)(t) ≥ Tm−1
n=0

(

μf(kn+1x)/k2(n+1)−f(knx)/k2n

(

m−1
∑

n=0

t

kn+1

))

≥ Tm−1
n=0

(

ρ0,knx
(

k(n+1)t
))

= Tmj=1
(

ρ0,kj−1x
(

kjt
))

, ∀x ∈ X, t > 0.

(3.12)

In order to prove the convergence of the sequence {f(kmx)/k2m}, we replace x with km
′
x in

(3.12) to find that

μf(km+m′x)/k2(m+m′)−f(km′x)/k2m′ (t) ≥ Tmj=1
(

ρ0,kj+m′−1x

(

kj+2m
′
t
))

, ∀x ∈ X, t > 0. (3.13)
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Since the right hand side of inequality (3.13) tends to 1 as m′, m → ∞, the sequence
{f(kmx)/k2m} is a Cauchy sequence. Therefore, we may define

Q(x) = lim
m→∞

f(kmx)
k2m

, ∀x ∈ X. (3.14)

Now, we show that Q is a quadratic mapping. In fact, replacing x, y with kmx and
kmy, respectively, in (3.3) and then taking the limit asm → ∞, we find that Q satisfies (1.10)
for all x, y ∈ X. Therefore, the mapping Q : X → Y is quadratic.

To prove (3.4), taking the limit asm → ∞ in (3.12), we get (3.4).
Finally, to prove the uniqueness of the quadratic function Q subject to (3.4), assume

that there exists a quadratic function Q′ which satisfies (3.4). Since Q(kmx) = k2mQ(x) and
Q′(kmx) = k2mQ′(x) for all x ∈ X andm ∈ N, it follows from (3.4) that

μQ(x)−Q′(x)(t) = μQ(kmx)−Q′(kmx)

(

k2mt
)

≥ T
(

μQ(kmx)−f(kmx)
(

k2m−1t
)

, μf(kmx)−Q′(kmx)

(

k2m−1t
))

≥ T
(

T∞
j=1

(

ρ0,kj+m−1x

(

k2m+j t
))

, T∞
j=1

(

ρ0,kj+m−1x

(

k2m+j t
)))

(3.15)

for all x ∈ X and t > 0. Therefore, by lettingm → ∞ in inequality (3.15), we find thatQ = Q′.
This completes the proof.

Theorem 3.2. Let f : X → Y be an odd mapping with f(0) = 0 satisfies inequality

μf(x+ky)+f(x−ky)−k2[f(x+y)+f(x−y)]−(2(k2−1)/k2(k−2))f(kx)+((k3−k2−k+1)/2(k−2))f(2x)− ˜f(2y)+8 ˜f(y)(t)

≥ ρx,y(t), ∀x, y ∈ X, t > 0,
(3.16)

where ˜f(y) := f(y) − f(−y) for all y ∈ X. If

lim
m→∞

T∞
j=1

(

T

(

ρ0,km+j−1x

(

2k2j+3m

k2(k − 1)
t

)

, ρkm+j−1x,0

(

k(3m+2j)(1 − k2)

k2(k − 2)
t

)))

= 1, (3.17)

lim
m→∞

ρkmx,kmy
(

k3mt
)

= 1, ∀x, y ∈ X, t > 0, (3.18)

then there exists a unique cubic mapping C : X → Y such that

μC(x)−f(x)(t) ≥ T∞
j=1

(

T

(

ρ0,kj−1x

(

2k2j

k2(k − 1)
t

)

, ρkj−1x,0

(

k2j
(

1 − k2)

k2(k − 2)
t

)))

(3.19)

for all x ∈ X and t > 0.
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Proof. It follows from (3.15) and the oddness of f that

μf(x+ky)+f(x−ky)−k2[f(x+y)+f(x−y)]−(2(k2−1)/k2(k−2))f(kx)+((k3−k2−k+1)/2(k−2))f(2x)−2f(2y)+16f(y)(t)

≥ ρx,y(t), ∀x, y ∈ X, t > 0.
(3.20)

By putting x = 0 in (3.20) and using (RN2),we obtain

μ2f(2y)−16f(y)(t) ≥ ρ0,y(t), ∀y ∈ X, t > 0. (3.21)

If we replace y by x in (3.21) and divide both sides of (3.21) by 2, we get

μf(2x)−8f(x)(t) ≥ ρ0,x(2t) ≥ ρ0,x(t), ∀x ∈ X, t > 0. (3.22)

Letting y = 0 in (3.20), we get

μ2(1−k2)f(x)−(2(k2−1)/k2(k−2))f(kx)+((k3−k2−k+1)/2(k−2))f(2x)(t)

≥ ρx,0(t), ∀x ∈ X, t > 0.
(3.23)

Therefore, we have

μk2(k−2)f(x)+f(kx)−(k2(k−1)/4)f(2x)(t) ≥ ρx,0
(

2
(

1 − k2)

k2(k − 2)
t

)

, ∀x ∈ X, t > 0. (3.24)

It follows from (3.22) and (3.24) that

μf(kx)−k3f(x)(t) ≥ T
(

ρ0,x

(

2
k2(k − 1)

t

)

, ρx,0

(
(

1 − k2)

k2(k − 2)
t

))

∀x ∈ X, t > 0, k ∈ N.

(3.25)

Let

ψ(x,x)(t) = T

(

ρ0,x

(

2
k2(k − 1)

t

)

, ρx,0

(
(

1 − k2)

k2(k − 2)
t

))

, ∀x ∈ X, t > 0. (3.26)

Then we get

μf(kx)−k3f(x)(t) ≥ ψ(x,x)(t), ∀x ∈ X, t > 0. (3.27)

It follows that

μf(kx)/k3−f(x)(t) ≥ ψ(x,x)

(

k3t
)

, ∀x ∈ X, t > 0. (3.28)
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Hence we have

μf(kn+1x)/k3(n+1)−f(knx)/k3n
(

t

k3n

)

≥ ψ(knx,knx)

(

k3t
)

, ∀x ∈ X, t > 0, (3.29)

which implies that

μf(kn+1x)/k3(n+1)−f(knx)/k3n(t) ≥ ψ(knx,knx)

(

k3(n+1)t
)

, ∀x ∈ X, t > 0, n ∈ N. (3.30)

Thus we have

μf(kn+1x)/k3(n+1)−f(knx)/k3n
(

t

kn+1

)

≥ ψ(knx,knx)

(

k2(n+1)t
)

, ∀x ∈ X, t > 0, n ∈ N. (3.31)

Since 1 > 1/2 + 1/22 + · · · + 1/2m, by the triangle inequality, it follows that

μf(kmx)/k3m−f(x)(t) ≥ Tm−1
n=0

(

μf(kn+1x)/k3(n+1)−f(knx)/k3n

(

m−1
∑

n=0

t

kn+1

))

≥ Tm−1
n=0

(

ψknx,knx
(

k2(n+1)t
))

= Tmj=1
(

ψkj−1x,kj−1x
(

k2j t
))

, ∀x ∈ X, t > 0.

(3.32)

In order to prove the convergence of the sequence {f(kmx)/k3m}, we replace x with km
′
x in

(3.32) to find that

μf(km+m′x)/k3(m+m′)−f(km′x)/k3m′ (t) ≥ Tmj=1
(

ψkj+m′−1x,kj+m′−1x

(

k2j+3m
′
t
))

. (3.33)

Since the right hand side of inequality (3.33) tends to 1 as m′, m → ∞, the sequence
{f(kmx)/k3m} is a Cauchy sequence. Therefore, we can define

C(x) = lim
m→∞

f(kmx)
k3m

, ∀x ∈ X. (3.34)

Now, we show that C is a cubic mapping. In fact, replacing x, y with kmx and kmy in
(3.15), respectively, and then taking the limit m → ∞, we find that C satisfies (1.10) for all
x, y ∈ X. Therefore, the mapping C : X → Y is cubic.

Letting the limitm → ∞ in (3.32), we get inequality (3.18) by (3.26).
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Finally, to prove the uniqueness of the cubic function C subject to inequality (3.19),
assume that there exists a cubic function C′ which satisfies inequality (3.19). Since C(kmx) =
k3mC(x) and C′(kmx) = k3mC′(x) for all x ∈ X andm ∈ N, it follows from (3.19) that

μC(x)−C′(x)(t)

= μC(kmx)−C′(kmx)

(

k3mt
)

≥ T
(

μC(kmx)−f(kmx)
(

k3m−1t
)

, μf(kmx)−C′(kmx)

(

k3m−1t
))

≥ T
[

T∞
j=1

(

T

(

ρ0,km+j−1x

(

2k2j+3m

k2(k − 1)
t

)

, ρkm+j−1x,0

(

k(3m+2j)(1 − k2)

k2(k − 2)
t

)))

,

T∞
j=1

(

T

(

ρ0,km+j−1x

(

2k2j+3m

k2(k − 1)
t

)

, ρkm+j−1x,0

(

k(3m+2j)(1 − k2)

k2(k − 2)
t

)))]

(3.35)

for all x ∈ X and t > 0. By letting m → ∞ in inequality (3.35), we know that C = C′. This
completes the proof.

Theorem 3.3. If

lim
m→∞

T∞
j=1

[

T
(

ρ0,km+j−1x

(

kj+2mt
)

, ρ0,−km+j−1x

(

kj+2mt
))]

= 1

= lim
m→∞

T∞
j=1

[

T

(

ρ0,km+j−1x

(

2k2j+3m

k2(k − 1)
t

)

, ρkm+j−1x,0

(

k2j+3m
(

1 − k2)

k2(k − 2)
t

))

,

T

(

ρ0,−km+j−1x

(

2k2j+3m

k2(k − 1)
t

)

, ρ−km+j−1x,0

(

k2j+3m
(

1 − k2)

k2(k − 2)
t

))]

(3.36)

for all x ∈ X and t > 0 and

lim
m→∞

T
(

ρkmx,kmy
(

k2n−1t
)

, ρkmx,kmy
(

k2n−1t
))

= 1

= lim
m→∞

T
(

ρkmx,kmy
(

k3n−1t
)

, ρkmx,kmy
(

k3n−1t
))

, ∀x, y ∈ X, t > 0,

(3.37)

then there exist a unique quadratic mapping Q : X → Y and a unique cubic mapping C : X → Y
such that
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μf(x)−C(x)−Q(x)(t)

≥ T
[

T∞
j=1

[

T

(

ρ0,kj−1x

(

kj

2
t

)

, ρ0,−kj−1x

(

kj

2
t

))]

,

T∞
j=1

[

T

(

ρ0,kj−1x

(

k2j

k2(k − 1)
t

)

, ρkj−1x,0

(

k2j
(

1 − k2)

2k2(k − 2)
t

))

,

T

(

ρ0,−kj−1x

(

k2j

k2(k − 1)
t

)

, ρ−kj−1x,0

(

k2j
(

1 − k2)

2k2(k − 2)
t

))]]

, ∀x ∈ X, t > 0.

(3.38)

Proof. If fe(x) = (1/2)[f(x) + f(−x)] for all x ∈ X. Then fe(0) = 0, fe(−x) = fe(x), and

μfe(x+ky)+fe(x−ky)−k2[fe(x+y)+fe(x−y)]−(2(k2−1)/k2(k−2))fe(kx)+((k3−k2−k+1)/2(k−2))fe(2x)− ˜fe(2y)+8 ˜fe(y)(t)

≥ T(ρx,y(2t), ρ−x,−y(2t)
)

≥ T(ρx,y(t), ρ−x,−y(t)
)

, ∀x, y ∈ X, t > 0,
(3.39)

where ˜fe(y) := fe(y) − fe(−y) for all x, y ∈ X. Hence, in view of Theorem 3.1, there exists a
unique quadratic function Q : X → Y such that

μQ(x)−fe(x)(t) ≥ T∞
j=1

[

T
(

ρ0,kj−1x
(

kjt
)

, ρ0,−kj−1x
(

kjt
))]

, ∀x ∈ X, t > 0. (3.40)

Let fo(x) = (1/2)[f(x) − f(−x)] for all x ∈ X. Then fo(0) = 0, fo(−x) = −fo(x) and

μfo(x+ky)+fo(x−ky)−k2[fo(x+y)+fo(x−y)]−(2(k2−1)/k2(k−2))fo(kx)+((k3−k2−k+1)/2(k−2))fo(2x)− ˜fo(2y)+8 ˜fo(y)(t)

≥ T(ρx,y(2t), ρ−x,−y(2t)
)

≥ T(ρx,y(t), ρ−x,−y(t)
)

, ∀x, y ∈ X, t > 0,
(3.41)

where ˜fo(y) := fo(y) − fo(−y) for all x, y ∈ X. From Theorem 3.2, it follows that there exists a
unique cubic mapping C : X → Y such that

μC(x)−fo(x)(t) ≥ T∞
j=1

[

T

(

ρ0,kj−1x

(

2k2j

k2(k − 1)
t

)

, ρkj−1x,0

(

k2j
(

1 − k2)

k2(k − 2)
t

))

,

T

(

ρ0,−kj−1x

(

2k2j

k2(k − 1)
t

)

, ρ−kj−1x,0

(

k2j
(

1 − k2)

k2(k − 2)
t

))]

, ∀x ∈ X, t > 0.

(3.42)

Obviously, (3.38) follows from (3.40) and (3.42). This completes the proof.
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