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We find the greatest value α and least value β such that the double inequality αA(a, b) + (1 −
α)H(a, b) < P(a, b) < βA(a, b)+(1−β)H(a, b) holds for all a, b > 0 with a/= b. HereA(a, b),H(a, b),
and P(a, b) denote the arithmetic, harmonic, and Seiffert’s means of two positive numbers a and
b, respectively.

1. Introduction

For a, b > 0 with a/= b the Seiffert’s mean P(a, b)was introduced by Seiffert [1] as follows:

P(a, b) =
a − b

4 arctan
(√

a/b
)
− π

. (1.1)

Recently, the inequalities for means have been the subject of intensive research [2–
11]. In particular, many remarkable inequalities for the Seiffert’s mean can be found in the
literature [12–17]. The Seiffert’s mean P(a, b) can be rewritten as (see [14, (2.4)])

P(a, b) =
a − b

2 arcsin((a − b)/(a + b))
. (1.2)
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Let A(a, b) = (a + b)/2, G(a, b) =
√
ab, H(a, b) = 2ab/(a + b), I(a, b) = 1/e(bb/

aa)1/(b−a), and L(a, b) = (b−a)/(log b− loga) be the arithmetic, geometric, harmonic, identric,
and logarithmic means of two positive real numbers a and b with a/= b. Then

min{a, b} < H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b) < max{a, b}. (1.3)

In [1], Seiffert proved that

L(a, b) < P(a, b) < I(a, b) (1.4)

for all a, b > 0 with a/= b.
Later, Seiffert [18] established that

P(a, b) >
3A(a, b)G(a, b)

A(a, b) + 2G(a, b)
,

P(a, b) >
A(a, b)G(a, b)

L(a, b)
,

P(a, b) >
2
π
A(a, b)

(1.5)

for all a, b > 0 with a/= b.
In [19], Sándor proved that

1
2
[A(a, b) +G(a, b)] < P(a, b) <

√
A(a, b)

√
1
2
[A(a, b) +G(a, b)],

A2/3(a, b)G1/3(a, b) < P(a, b) <
2
3
A(a, b) +

1
3
G(a, b)

(1.6)

for all a, b > 0 with a/= b.
The following bounds for the Seiffert’s mean P(a, b) in terms of the power mean

Mr(a, b) = ((ar + br)/2)1/r (r /= 0) were presented by Jagers in [17]:

M1/2(a, b) < P(a, b) < M2/3(a, b) (1.7)

for all a, b > 0 with a/= b.
Hästö [13] found the sharp lower power bound for the Seiffert’s mean as follows:

Mlog 2/ logπ(a, b) < P(a, b) (1.8)

for all a, b > 0 with a/= b.
The purpose of this paper is to find the greatest value α and the least value β such that

the double inequality αA(a, b) + (1 − α)H(a, b) < P(a, b) < βA(a, b) + (1 − β)H(a, b) holds for
all a, b > 0 with a/= b.
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2. Main Result

Theorem 2.1. The double inequality αA(a, b)+(1−α)H(a, b) < P(a, b) < βA(a, b)+(1−β)H(a, b)
holds for all a, b > 0 with a/= b if and only if α ≤ 2/π and β ≥ 5/6.

Proof. Firstly, we prove that

P(a, b) <
5
6
A(a, b) +

1
6
H(a, b), (2.1)

P(a, b) >
2
π
A(a, b) +

(
1 − 2

π

)
H(a, b) (2.2)

for all a, b > 0 with a/= b.
Without loss of generality, we assume a > b. Let t =

√
a/b > 1 and p ∈ {5/6, 2/π}.

Then (1.1) leads to

P(a, b) − [
pA(a, b) +

(
1 − p

)
H(a, b)

]

=
b
[
p
(
t2 + 1

)2 + 4
(
1 − p

)
t2
]

2(t2 + 1)(4 arctan t − π)

[
2
(
t4 − 1

)

pt4 +
(
4 − 2p

)
t2 + p

− 4 arctan t + π

]
.

(2.3)

Let

f(t) =
2
(
t4 − 1

)

pt4 +
(
4 − 2p

)
t2 + p

− 4 arctan t + π. (2.4)

Then simple computations lead to

lim
t→ 1

f(t) = 0, (2.5)

lim
t→+∞

f(t) =
2
p
− π, (2.6)

f ′(t) =
4(t − 1)2

(t2 + 1)
[
pt4 +

(
4 − 2p

)
t2 + p

]2 g(t), (2.7)

where

g(t) = −p2t6 +
(
−2p2 − 2p + 4

)
t5 +

(
p2 − 12p + 8

)
t4

+
(
4p2 − 20p + 16

)
t3 +

(
p2 − 12p + 8

)
t2

+
(
−2p2 − 2p + 4

)
t − p2.

(2.8)
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We divide the proof into two cases.

Case 1. If p = 5/6, then it follows from (2.8) that

g(t) = − 1
36

(
25t4 + 16t3 + 54t2 + 16t + 25

)
(t − 1)2 < 0 (2.9)

for t > 1.

Therefore, inequality (2.1) follows from (2.3)–(2.5) and (2.7) together with (2.9).

Case 2. If p = 2/π , then from (2.8)we have

g(1) = 8
(
5 − 6p

)
= 8

(
5 − 12

π

)
> 0, (2.10)

lim
t→+∞

g(t) = −∞, (2.11)

g ′(t) = −6p2t5 +
(
−10p2 − 10p + 20

)
t4 +

(
4p2 − 48p + 32

)
t3

+
(
12p2 − 60p + 48

)
t2 +

(
2p2 − 24p + 16

)
t − 2p2 − 2p + 4,

(2.12)

g ′(1) = 24
(
5 − 6p

)
= 24

(
5 − 12

π

)
> 0, (2.13)

lim
t→+∞

g ′(t) = −∞, (2.14)

g ′′(t) = −30p2t4 +
(
−40p2 − 40p + 80

)
t3 +

(
12p2 − 144p + 96

)
t2

+
(
24p2 − 120p + 96

)
t + 2p2 − 24p + 16,

(2.15)

g ′′(1) = 8
(
36 − 41p − 4p2

)
= 8

(
36 − 82

π
− 16
π2

)
> 0, (2.16)

lim
t→+∞

g ′′(t) = −∞, (2.17)

g ′′′(t) = −120p2t3 +
(
−120p2 − 120p + 240

)
t2

+
(
24p2 − 288p + 192

)
t + 24p2 − 120p + 96,

(2.18)

g ′′′(1) = 48
(
11 − 11p − 4p2

)
= 48

(
11 − 22

π
− 16
π2

)
> 0, (2.19)

lim
t→+∞

g ′′′(t) = −∞, (2.20)

g(4)(t) = −360p2t2 +
(
−240p2 − 240p + 480

)
t + 24p2 − 288p + 192, (2.21)

g(4)(1) = 48
(
14 − 11p − 12p2

)
= 48

(
14 − 22

π
− 48
π2

)
> 0, (2.22)
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lim
t→+∞

g(4)(t) = −∞, (2.23)

g(5)(t) = −720p2t − 240p2 − 240p + 480, (2.24)

g(5)(1) = 240
(
2 − p − 4p2

)
= 240

(
2 − 2

π
− 16
π2

)
< 0. (2.25)

From (2.24) and (2.25) we clearly see that g(5)(t) < 0 for t ≥ 1, hence g(4)(t) is strictly
decreasing in [1,+∞). It follows from (2.22) and (2.23) together with the monotonicity of
g(4)(t) that there exists λ1 > 1 such that g(4)(t) > 0 for t ∈ [1, λ1) and g(4)(t) < 0 for t ∈ (λ1,+∞),
hence g ′′′(t) is strictly increasing in [1, λ1] and strictly decreasing in [λ1,+∞).

From (2.19) and (2.20) together with the monotonicity of g ′′′(t) we know that there
exists λ2 > 1 such that g ′′′(t) > 0 for t ∈ [1, λ2) and g ′′′(t) < 0 for t ∈ (λ2,+∞), hence, g ′′(t) is
strictly increasing in [1, λ2] and strictly decreasing in [λ2,∞).

From (2.16) and (2.17) together with the monotonicity of g ′′(t)we clearly see that there
exists λ3 > 1 such that g ′(t) is strictly increasing in [1, λ3] and strictly decreasing in [λ3,∞). It
follows from (2.13) and (2.14) together with the monotonicity of g ′(t) that there exists λ4 > 1
such that g(t) is strictly increasing in [1, λ4] and strictly decreasing in [λ4,∞). Then (2.7),
(2.10) and (2.11) imply that there exists λ5 > 1 such that f(t) is strictly increasing in (1, λ5]
and strictly decreasing in [λ5,∞).

Note that (2.6) becomes

lim
t→+∞

f(t) = 0 (2.26)

for p = 2/π .
It follows from (2.5) and (2.26) together with the monotonicity of f(t) that

f(t) > 0 (2.27)

for t > 1.
Therefore, inequality (2.2) follows from (2.3) and (2.4) together with (2.27).
Secondly, we prove that (5/6)A(a, b) + (1/6)H(a, b) is the best possible upper convex

combination bound of arithmetic and harmonic means for the Seiffert’s mean P(a, b).
For any t > 1 and β ∈ R, from (1.1) we have

P
(
1, t2

)
−
[
βA

(
1, t2

)
+
(
1 − β

)
H
(
1, t2

)]
=

t2 − 1
4 arctan t − π

− β

2

(
1 + t2

)
− 2

(
1 − β

) t2

1 + t2

=
h(t)

(4 arctan t − π)(1 + t2)
,

(2.28)

where

h(t) =
(
t4 − 1

)
− β

2

(
t2 + 1

)2
(4 arctan t − π) − 2

(
1 − β

)
t2(4 arctan t − π). (2.29)
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It follows from (2.29) that

h(1) = h′(1) = h′′(1) = 0, (2.30)

h′′′(1) = 4
(
5 − 6β

)
. (2.31)

If β < 5/6, then (2.31) leads to

h′′′(1) > 0. (2.32)

From (2.32) and the continuity of h′′′(t) we clearly see that there exists δ = δ(β) > 0
such that

h′′′(t) > 0 (2.33)

for t ∈ [1, 1 + δ). Then (2.30) and (2.33) imply that

h(t) > 0 (2.34)

for t ∈ (1, 1 + δ).
Therefore, P(1, t2) > βA(1, t2) + (1 − β)H(1, t2) for t ∈ (1, 1 + δ) follows from (2.28) and

(2.34).
Finally, we prove that (2/π)A(a, b)+(1−2/π)H(a, b) is the best possible lower convex

combination bound of arithmetic and harmonic means for the Seiffert’s mean P(a, b).
For α > 2/π , then from (1.1) one has

lim
x→+∞

αA(1, x) + (1 − α)H(1, x)
P(1, x)

=
π

2
α > 1. (2.35)

Inequality (2.35) implies that for any α > 2/π there exists X = X(α) > 1 such that
αA(1, x) + (1 − α)H(1, x) > P(1, x) for x ∈ (X,+∞).
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