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We use the Wiener-Hopf equations and the Yosida approximation notions to prove the existence
theorem of a system of nonlinear mixed implicit equilibrium problems (SMIE) in Hilbert spaces.
The algorithm for finding a solution of the problem (SMIE) is suggested; the convergence criteria
and stability of the iterative algorithm are discussed. The results presented in this paper are more
general and are viewed as an extension, refinement, and improvement of the previously known
results in the literature.

1. Introduction and Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let F1, F2 : H ×H → H be given two bi-functions satisfying Fi(x, x) = 0 for all
x ∈ H and i = 1, 2. Let T : H ×H → H be a nonlinear mapping. Let C be a nonempty closed
convex subset ofH. In this paper, we consider the following problem.

Find x∗, y∗ ∈ H such that

F1(x∗, z) +
〈
T1
(
x∗, y∗), z − x∗〉 ≥ 0, ∀z ∈ C,

F2
(
y∗, z

)
+
〈
T2
(
x∗, y∗), z − y∗〉 ≥ 0, ∀z ∈ C.

(1.1)

The problem of type (1.1) is called the system of nonlinear mixed implicit equilibrium problems.
We denote by SMIE (F1, F2, T1, T2, C) the set of all solutions (x∗, y∗) of the problem

(1.1).
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Some examples of the problem (1.1) are as follows.
(I) If Fi(x, z) = supξ∈Mi(x)〈ξ, z − x〉, where Mi : C → 2H is a maximal monotone

mapping for i = 1, 2, then the problem (1.1) becomes the following problem.
Find x∗, y∗ ∈ H such that

0 ∈ T1
(
x∗, y∗) +M1(x∗),

0 ∈ T2
(
x∗, y∗) +M2

(
y∗),

(1.2)

which is called the system of variational inclusion problems. In particular, when T1 = T2 and
M1 = M2, the problem (1.2) is reduced to the problem, so-called the generalized variational
inclusion problem, which was studied by Kazmi and Bhat [1].

It is worth noting that the variational inclusions and related problems are being
studied extensively bymany authors and have important applications in operations research,
optimization, mathematical finance, decision sciences, and other several branches of pure and
applied sciences.

(II) If Fi(x, z) = ψi(z) − ψi(x) for all x, z ∈ H, where ψi : H → R is a real valued
function for each i = 1, 2. Then the problem (1.1) reduces to the following problem.

Find x∗, y∗ ∈ H such that

〈
T1
(
x∗, y∗), z − x∗〉 + ψ1(z) − ψ1(x∗) ≥ 0, ∀z ∈ C,

〈
T2
(
x∗, y∗), z − y∗〉 + ψ2(z) − ψ2

(
y∗) ≥ 0, ∀z ∈ C.

(1.3)

Some corresponding results to the problem (1.3) were considered by Kassay and
Kolumbán [2]when ψ1 = ψ2 = 0.

(III) For each i = 1, 2, let Si : H × H → H be a nonlinear mapping and λ, η fixed
positive real numbers. If T1(x, y) = λS1(y, x) + x − y and T2(x, y) = ηS2(x, y) + y − x for all
x, y ∈ H, then the problem (1.3) reduces to the following problem.

Find x∗, y∗ ∈ H such that

〈λS1
(
y∗, x∗) + x∗ − y∗, z − x∗〉 + ψ1(z) − ψ1(x∗) ≥ 0, ∀z ∈ C,

〈ηS2
(
x∗, y∗) + y∗ − x∗, z − y∗〉 + ψ2(z) − ψ2

(
y∗) ≥ 0, ∀z ∈ C,

(1.4)

which is called the system of nonlinear mixed variational inequalities problems. A special case of
the problem (1.4), when S1 = S2 and ψ1 = ψ2, has been studied by He and Gu [3].

(IV) If ψ1(x) = ψ2 = δC(x) for all x ∈ C, where δC is the indicator function of C defined
by

δK =

⎧
⎨

⎩

0, if x ∈ K,
+∞, otherwise,

(1.5)

then the problem (1.4) reduces to the following problem.
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Find x∗, y∗ ∈ C such that

〈
λS1

(
y∗, x∗) + x∗ − y∗, z − x∗〉 ≥ 0, ∀z ∈ C,

〈
ηS2

(
x∗, y∗) + y∗ − x∗, z − y∗〉 ≥ 0, ∀z ∈ C,

(1.6)

which is called the system of nonlinear variational inequalities problems. Some corresponding
results to the problem (1.6) were studied by Agarwal et al. [4], Chang et al. [5], Cho et al.
[6], J. K. Kim and D. S. Kim, [7] and Verma [8, 9].

For the recent trends and developments in the problem (1.6) and its special cases, see
[3, 8–11] and the references therein, for examples.

(V) If S2 = 0, and S1 : C → H is a univariate mapping, then the problem (1.6) reduces
to the following problem.

Find x∗ ∈ H such that

〈S1(x∗), z − x∗〉 ≥ 0, ∀z ∈ C, (1.7)

which is known as the classical variational inequality introduced and studied by Stampacchia
[12] in 1964. This shows that a number of classes of variational inequalities and related
optimization problems can be obtained as special cases of the system (1.1) of mixed
equilibrium problems.

Inspired and motivated by the recent research going on in this area, in this paper,
we use the Wiener-Hopf equations and the Yosida approximation notion to suggest and
prove the existence and uniqueness of solutions for the problem (1.1). We also discuss the
convergence criteria and stability of the iterative algorithm. The results presented in this
paper improve and generalize many known results in the literature.

In the sequel, we need the following basic concepts and lemmas.

Definition 1.1 (Blum and Oettli [13]). A real valued bifunction F : C × C → R is said to be:
(1) monotone if

F
(
x, y

)
+ F

(
y, x

) ≤ 0, ∀x, y ∈ C; (1.8)

(2) strictly monotone if

F
(
x, y

)
+ F

(
y, x

)
< 0, ∀x, y ∈ C (

x /=y
)
; (1.9)

(3) upper-hemicontinuous if

lim sup
t→ 0+

F
(
tz + (1 − t)x, y) ≤ F(x, y), ∀x, y, z ∈ C. (1.10)

Definition 1.2. (1) A function f : H → R∪ {+∞} is said to be lower semicontinuous at x0 if, for
all α < f(x0), there exists a constant β > 0 such that

α ≤ f(x), ∀x ∈ B(x0, β
)
, (1.11)
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where B(x0, β) denotes the ball with center x0 and radius β, that is,

B
(
x0, β

)
=
{
y :

∥
∥y − x0

∥
∥ ≤ β}. (1.12)

(2) The function f is said to be lower semicontinuous onH if it is lower semicontinuous
at every point ofH.

Lemma 1.3 (Combettes and Hirstoaga [14]). Let C be a nonempty closed convex subset ofH and
F be a bifunction of C × C into R satisfying the following conditions:

(C1)F is monotone and upper hemicontinuous;
(C2) F(x, ·) is convex and lower semi-continuous for all x ∈ C.

For all ρ > 0 and x ∈ H, define a mapping TFρ : H → C as follows:

TFρ (x) =
{
w ∈ C : ρF(w, z) + 〈w − x, z −w〉, ∀z ∈ C}, ∀x ∈ H. (1.13)

Then TFρ is a single-valued mapping.

Definition 1.4. Let ρ be a positive number. For any bi-function F : C × C → R, the associated
Yosida approximation Fρ over C and the corresponding regularized operator AF

ρ are defined
as follows:

Fρ(x, z) =
1
ρ

〈
x − JFρ (x), z − x

〉
, AF

ρ (x) =
1
ρ

(
x − JFρ (x)

)
, (1.14)

in which JFρ (x) ∈ C is the unique solution of the following problem:

ρF
(
JFρ (x), z

)
+
〈
JFρ (x) − x, z − JFρ (x)

〉
≥ 0, ∀z ∈ C. (1.15)

Remark 1.5. Definition 1.4 is an extension of the Yosida approximation notion introduced
in [15]. The existence and uniqueness of the solution of the problem (1.15) follow from
Lemma 1.3.

Definition 1.6. LetM ⊂ H ×H be a set-valued mapping.
(1) M is said to be monotone if, for any (x1, y1), (x2, y2) ∈M,

〈
y1 − y2, x1 − x2

〉 ≥ 0. (1.16)

(2) A monotone operator M ⊂ H × H is said to be maximal if M is not properly
contained in any other monotone operators.

Example 1.7 (Huang et al. [16]). Let F(x, z) = supξ∈M(x)〈ξ, z − x〉, where M : H → 2H is a
maximal monotone mapping. Then it directly follows that

JFρ (x) =
(
I + ρM

)−1(x), AF
ρ (x) =Mρ(x), (1.17)
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where Mρ := (1/ρ)(I − (I + ρM)−1) is the Yosida approximation of M, and we recover the
classical concepts.

Using the idea as in Huang et al. [16], we have the following result.

Lemma 1.8. If F : C × C → R is a monotone function, then the operator JFρ is a nonexpansive
mapping, that is,

∥
∥
∥JFρ (x) − JFρ

(
y
)∥∥
∥ ≤ ∥

∥x − y∥∥, ∀x, y ∈ H. (1.18)

Proof. From (1.15), for all x, y ∈ H, we can obtain

ρF
(
JFρ (x), J

F
ρ

(
y
))

+
〈
JFρ (x) − x, JFρ

(
y
) − JFρ (x)

〉
≥ 0, (1.19)

ρF
(
JFρ

(
y
)
, JFρ (x)

)
+
〈
JFρ

(
y
) − y, JFρ (x) − JFρ

(
y
)〉 ≥ 0. (1.20)

By adding (1.19) with (1.20) and using the monotonicity of F, we have

〈
x − y −

(
JFρ (x) − JFρ

(
y
))
, JFρ (x) − JFρ

(
y
)〉 ≥ 0, (1.21)

and so

∥∥∥JFρ (x) − JFρ (y)
∥∥∥
2 ≤

〈
JFρ (x) − JFρ

(
y
)
, JFρ (x) − JFρ

(
y
)〉

≤
〈
x − y, JFρ (x) − JFρ

(
y
)〉

≤ ∥∥x − y∥∥
∥∥∥JFρ (x) − JFρ

(
y
)∥∥∥.

(1.22)

This implies that JFρ is a nonexpansive mapping. This completes the proof.

Now, for solving the problem (1.1), we consider the following equation: let (x, y) ∈
H ×H and ρ1, ρ2 be fixed positive real numbers. Find (w1, w2) ∈ H ×H such that

T1
(
x, y

)
+AF1

ρ1 (w1) = 0, x = JF1
ρ1 (w1),

T2
(
x, y

)
+AF2

ρ2 (w2) = 0, y = JF2
ρ2 (w2).

(1.23)

Lemma 1.9. (x, y) ∈ H ×H is a solution of the problem (1.1) if and only if the problem (1.23) has a
solution (w1, w2), where

x = JF1
ρ1 (w1), w1 = x − ρ1T1

(
x, y

)
,

y = JF2
ρ2 (w2), w2 = y − ρ2T2

(
x, y

)
,

(1.24)
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that is,

x = JF1
ρ1

[
x − ρ1T1

(
x, y

)]
,

y = JF2
ρ2

[
y − ρ2T2

(
x, y

)]
.

(1.25)

Proof. The proof directly follows from the definitions of JF1
ρ1 and JF2

ρ2 .

In this paper, we are interested in the following class of nonlinear mappings.

Definition 1.10. (1) A mapping T : H → H is said to be ν-strongly monotone if there exists a
constant ν > 0 such that

〈
Tx − Ty, x − y〉 ≥ ν∥∥x − y∥∥2

, ∀x, y ∈ H; (1.26)

(2) A mapping T : H ×H → H is said to be (τ, σ)-Lipschitz if there exist constants
τ, σ > 0 such that

∥∥T
(
x1, y1

) − T(x2, y2
)∥∥ ≤ τ‖x1 − x2‖ + σ

∥∥y1 − y2
∥∥, ∀x1, x2, y1, y2 ∈ H. (1.27)

2. Existence of Solutions of the Problem (1.1)

In this section, we give an existence theorem of solutions for the problem (1.1). Firstly, in view
of Lemma 1.9, we can obtain the following, which is an important tool, immediately.

Lemma 2.1. Let (x, y) ∈ H ×H. Then (x, y) ∈ SMIE (F1, F2, T1, T2, C) if and only if there exist
positive real numbers ρ1, ρ2 such that (x, y) is a fixed point of the mapping Gρ1,ρ2 : H ×H → H ×H
defined by

Gρ1,ρ2

(
x, y

)
=
(
Aρ1

(
x, y

)
, Bρ2

(
x, y

))
, ∀(x, y) ∈ H ×H, (2.1)

where Aρ1 , Bρ2 : H ×H → H are defined, respectively, by

Aρ1

(
x, y

)
= JF1

ρ1

[
x − ρ1T1

(
x, y

)]
,

Bρ2
(
x, y

)
= JF2

ρ2

[
y − ρ2T2

(
x, y

)]
.

(2.2)

Now, we are in position to prove the existence theorem of solutions for the problem
(1.1).

Theorem 2.2. For each i = 1, 2, let Fi : H×H → R be a monotone bi-function. Let T1 : H×H → H
be a ν1-strongly monotone with respect to the first argument and (τ1, σ1)-Lipschitz mapping and
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T2 : H × H → H be a ν2-strongly monotone with respect to the second argument and (τ2, σ2)-
Lipschitz mapping. Suppose that there are positive real numbers ρ1, ρ2 such that

(
1 − 2ρ1ν1 + ρ21τ

2
1

)1/2
+ ρ2τ2 < 1,

(
1 − 2ρ2ν2 + ρ22σ

2
2

)1/2
+ ρ1σ1 < 1.

(2.3)

Then SMIE (F1, F2, T1, T2, C) is a singleton.

Proof. Notice that, in view of Lemma 2.1, it is sufficient to show that the mapping Gρ1,ρ2

defined in Lemma 2.1 has the unique fixed point. Since JF1
ρ1 is nonexpansive, we have the

following estimate:

∥∥Aρ1

(
x1, y1

) −Aρ1

(
x2, y2

)∥∥

=
∥∥∥JF1

ρ1

[
x1 − ρ1T1

(
x1, y1

)] − JF1
ρ1

[
x2 − ρ1T1

(
x2, y2

)]∥∥∥

≤ ∥∥[x1 − ρ1T1
(
x1, y1

)] − [
x2 − ρ1T1

(
x2, y2

)]∥∥

≤ ∥∥x1 − x2 − ρ1
[
T1
(
x1, y1

) − T1
(
x2, y1

)]∥∥ + ρ1
∥∥T1

(
x2, y1

) − T1
(
x2, y2

)∥∥.

(2.4)

Since T1 : H × H → H is a (τ1, σ1)-Lipschitz mapping and, for all w ∈ H, the mapping
T1(·, w) : H → H is a ν1-strongly monotone, we obtain

∥∥x1 − x2 − ρ1[T1(x1, y1) − T1(x2, y1)
∥∥2

= ‖x1 − x2‖2 − 2ρ1
〈
x1 − x2, T1

(
x1, y1

) − T1
(
x2, y1

)〉

+ ρ21
∥∥T1(x1, y1) − T1(x2, y1)

∥∥2

≤ ‖x1 − x2‖2 − 2ρ1ν1‖x1 − x2‖2 + ρ21τ21‖x1 − x2‖2

=
(
1 − 2ρ1ν1 + ρ21τ

2
1

)
‖x1 − x2‖2,

∥∥T1
(
x2, y1

) − T1
(
x2, y2

)∥∥ ≤ σ1
∥∥y1 − y2

∥∥.

(2.5)

Consequently, from (2.4)-(2.5), it follows that

∥∥Aρ1

(
x1, y1

) −Aρ1

(
x2, y2

)∥∥ ≤
(
1 − 2ρ1ν1 + ρ21τ

2
1

)1/2
‖x1 − x2‖ + ρ1σ1

∥∥y1 − y2
∥∥. (2.6)
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Next, we have the following estimate:

∥
∥Bρ2

(
x1, y1

) − Bρ2
(
x2, y2

)∥∥

=
∥
∥
∥JF2

ρ2

[
y1 − ρ2T2

(
x1, y1

)] − JF2
ρ2

[
y2 − ρ2T2

(
x2, y2

)]∥∥
∥

≤ ∥
∥[y1 − ρ2T2

(
x1, y1

)] − [
y2 − ρ2T2

(
x2, y2

)]∥∥

≤ ∥
∥y1 − y2 − ρ2

[
T2
(
x1, y1

) − T2
(
x1, y2

)]∥∥ + ρ2
∥
∥T2

(
x1, y2

) − T2
(
x2, y2

)∥∥

≤
(
1 − 2ρ2ν2 + ρ22σ

2
2

)1/2∥
∥y1 − y2

∥
∥ + ρ2τ2‖x1 − x2‖.

(2.7)

From (2.6) and (2.7), we have

∥∥Aρ1

(
x1, y1

) −Aρ1

(
x2, y2

)∥∥ +
∥∥Bρ2

(
x1, y1

) − Bρ2
(
x2, y2

)∥∥

≤ max{κ1, κ2}
(‖x1 − x2‖ +

∥∥y1 − y2
∥∥),

(2.8)

where

κ1 = l1 + ρ2τ2, κ2 = l2 + ρ1σ1,

l1 :=
(
1 − 2ρ1ν1 + ρ21τ

2
1

)1/2
, l2 :=

(
1 − 2ρ2ν2 + ρ22σ

2
2

)1/2
.

(2.9)

Now, define the norm ‖ · ‖+ onH ×H by

∥∥(x, y)
∥∥+ = ‖x‖ + ∥∥y

∥∥, ∀(x, y) ∈ H ×H. (2.10)

Notice that (H ×H, ‖ · ‖+) is a Banach space and

∥∥Gρ1,ρ2(x1, y1) −Gρ1,ρ2(x2, y2)
∥∥+ ≤ max{κ1, κ2}

∥∥(x1, y1) − (x2, y2)
∥∥+
. (2.11)

By the condition (2.3), we have max{κ1, κ2} < 1, which implies that Gρ1,ρ2 is a contraction
mapping. Hence, by Banach contraction principle, there exists a unique (x, y) ∈ H ×H such
that Gρ1,ρ2(x, y) = (x, y). This completes the proof.

3. Convergence and Stability Analysis

In view of Lemma 2.1, for the fixed point formulation of the problem (2.1), we suggest the
following iterative algorithm.
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3.1. Mann Type Perturbed Iterative Algorithm (MTA)

For any (x0, y0) ∈ H × H, compute approximate solution (xn, yn) ∈ H × H given by the
iterative schemes:

x0 ∈ H,

xn+1 = (1 − αn)xn + αnJF1
ρ1

[
xn − ρ1T1

(
xn, yn

)]
,

yn+1 = (1 − αn)yn + αnJF2
ρ2

[
yn − ρ2T2

(
xn, yn

)]
, ∀n ≥ 0,

(3.1)

where {αn} is a sequence of real numbers such that αn ∈ [0, 1] and
∑∞

n=0 αn = ∞.
In order to consider the convergence theorem of the sequences generated by the

algorithm (MTA), we need the following lemma.

Lemma 3.1. Let {an} and {bn} be two nonnegative real sequences satisfying the following conditions.
There exists a positive integer n0 such that

an+1 ≤ (1 − λn)an + bn, ∀n ≥ n0, (3.2)

where {λn} ⊂ (0, 1) with
∑∞

n=0 λn = ∞ and bn = o(λn). Then limn→∞an = 0.

Now, we prove the convergence theorem for a solution for the problem (1.1).

Theorem 3.2. If all the conditions of the Theorem 2.2 hold, then the sequence {(xn, yn)} in H ×H
generated by the algorithm (3.1) converges strongly to the unique solution for the problem (1.1).

Proof. It follows from Theorem 2.2 that there exists (x∗, y∗) ∈ H × H which is the unique
solution for the problem (1.1). Moreover, in view of Lemma 2.1, we have

x∗ = JF1
ρ1

[
x∗ − ρ1T1

(
x∗, y∗)],

y∗ = JF2
ρ2

[
y∗ − ρ2T2

(
x∗, y∗)].

(3.3)

Since JF1
ρ1 is nonexpansive, from the iterative sequences (3.1) and (3.3), it follows that

‖xn+1 − x∗‖

=
∥∥∥(1 − αn)xn + αnJF1

ρ1

[
xn − ρ1T1

(
xn, yn

)] − x∗
∥∥∥

≤ (1 − αn)‖xn − x∗‖ + αn
∥∥∥JF1

ρ1

[
xn − ρ1T1

(
xn, yn

)] − JF1
ρ1

[
x∗ − ρ1T1

(
x∗, y∗)]

∥∥∥

≤ (1 − αn)‖xn − x∗‖ + αn
∥∥xn − x∗ − ρ1

[
T1
(
xn, yn

) − T1
(
x∗, y∗)]∥∥

≤ (1 − αn)‖xn − x∗‖ + αn
∥∥xn − x∗ − ρ1

[
T1
(
xn, yn

) − T1
(
x∗, yn

)]∥∥

+ αnρ1
∥∥T1

(
x∗, yn

) − T1
(
x∗, y∗)∥∥.

(3.4)
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Next, we have the following estimate:

∥
∥xn − x∗ − ρ1

[
T1
(
xn, yn

) − T1
(
x∗, yn

)]∥∥ + ρ1
∥
∥T1

(
x∗, yn

) − T1
(
x∗, y∗)∥∥

≤
(
1 − 2ρ1ν1 + ρ21τ

2
1

)1/2
‖xn − x∗‖ + ρ1σ1

∥
∥yn − y∗∥∥.

(3.5)

Substituting (3.5) into (3.4) yields that

‖xn+1 − x∗‖ ≤ (1 − αn)‖xn − x∗‖ + αn
(
1 − 2ρ1ν1 + ρ21τ

2
1

)1/2
‖xn − x∗‖ + αnρ1σ1

∥
∥yn − y∗∥∥.

(3.6)

Similarly, we have

∥∥yn+1 − y∗∥∥ ≤ (1 − αn)
∥∥yn − y∗∥∥ + αn

(
1 − 2ρ2ν2 + ρ22σ

2
2

)1/2∥∥yn − y∗∥∥ + αnρ2τ2‖xn − x∗‖.
(3.7)

Thus, from (3.6) and (3.7), we have

∥∥(xn+1, yn+1
) − (

x∗, y∗)∥∥+

≤ (1 − αn)
∥∥(xn, yn

) − (
x∗, y∗)∥∥+ + αnmax{κ1, κ2}

∥∥(xn, yn
) − (

x∗, y∗)∥∥+

= [1 − αn(1 −max{κ1, κ2})]
∥∥(xn, yn

) − (
x∗, y∗)∥∥+

,

(3.8)

where κ1 and κ2 are given in (2.9). Setting

an =
∥∥(xn, yn) −

(
x∗, y∗)∥∥+

,

λn = αn(1 −max{κ1, κ2}), bn = 0, ∀n ≥ 1.
(3.9)

From the condition (2.3), it follows that max{κ1, κ2} < 1 and so {λn} ⊂ [0, 1]. Moreover, since∑∞
n=0 αn = ∞, we have

∑∞
n=0 λn = ∞. Hence all the conditions of Lemma 3.1 are satisfied and

so an → 0 as n → ∞, that is,

∥∥(xn, yn) − (x∗, y∗)
∥∥+ −→ 0 (n −→ ∞). (3.10)

Thus the sequence {(xn, yn)} inH×H converges strongly to a solution (x∗, y∗) for the problem
(1.1). This completes the proof.

3.2. Stability of the Algorithm (MTA)

Consider the following definition as an extension of the concept of stability of the iterative
procedure given by Harder and Hicks [17].
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Definition 3.3 (Kazmi and Khan [18]). Let H be a Hilbert space and A,B : H ×H → H be
nonlinear mappings. Let G : H × H → H × H be defined as G(x, y) = (A(x, y), B(x, y))
for all (x, y) ∈ H ×H and (x0, y0) ∈ H ×H. Assume that (xn+1, yn+1) = f(G, xn, yn) defines
an iterative procedure which yields a sequence {(xn, yn)} in H × H. Suppose that F(G) =
{(x, y) ∈ H×H : G(x, y) = (x, y)}/= ∅ and the sequence {(xn, yn)} converges to some (x∗, y∗) ∈
F(G). Let {(un, vn)} be an arbitrary sequence inH ×H and

δn =
∥
∥(un, vn) − f

(
G, xn, yn

)∥∥, ∀n ≥ 0. (3.11)

If limn→∞δn = 0 implies that limn→∞(un, vn) = (x∗, y∗), then the iterative procedure
{(xn, yn)} is said to be G-stable or stablewith respect to G.

Theorem 3.4. Assume that all the conditions of Theorem 2.2 hold. Let {(un, vn)} be an arbitrary
sequence inH ×H and define {δn} ⊂ [0,∞) by

δn = ‖(un+1, vn+1) − (Cn,Dn)‖+, (3.12)

where

Cn = (1 − αn)xn + αnJF1
ρ1

[
xn − ρ1T1

(
xn, yn

)]
,

Dn = (1 − αn)yn + αnJF2
ρ2

[
yn − ρ2T2

(
xn, yn

)]
,

(3.13)

where {(xn, yn)} is a sequence defined in (3.1). If Gρ1,ρ2 is defined as in (2.1), then the iterative
procedure generated by (3.1) is Gρ1,ρ2 -stable.

Proof. Assume that limn→∞δn = 0. Let (x∗, y∗) be the unique fixed point of the mappingGρ1,ρ2 .
This means that

x∗ = JF1
ρ1

[
x∗ − ρ1T1

(
x∗, y∗)],

y∗ = JF2
ρ2

[
y∗ − ρ2T2

(
x∗, y∗)].

(3.14)

Now, from (3.12) and (3.13), it follows that

∥∥(un+1, vn+1) − (x∗, y∗)
∥∥+ ≤ δn + ‖Cn − x∗‖ + ∥∥Dn − y∗∥∥. (3.15)

Notice that (Cn,Dn) = {(xn+1, yn+1)} for each n ≥ 1, which implies that

lim
n→∞

Cn = x∗, lim
n→∞

Dn = y∗. (3.16)

Using (3.16) and the assumption limn→∞δn = 0, it follows from (3.15) that

lim
n→∞

(un+1, vn+1) =
(
x∗, y∗). (3.17)

This completes the proof.
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