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The purpose of this paper is to present a regularization variant of the inertial proximal point
algorithm for finding a common element of the set of solutions for a variational inequality problem
involving a hemicontinuous monotone mapping A and for a finite family of λi-inverse strongly
monotone mappings {Ai}Ni=1 from a closed convex subset K of a Hilbert space H intoH.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. LetK be a closed convex
subset of H. Denote the metric projection ofH onto K by PK, that is

PK(x) = min
y∈K

∥
∥x − y

∥
∥ (1.1)

for all x ∈ H.

Definition 1.1. A set A ⊂ H ×H is called monotone onH if A has the following property:

〈x′ − y′, x − y〉 ≥ 0, ∀(x, x′),
(

y, y′) ∈ A. (1.2)
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A monotone mapping A in H is said to be maximal monotone if it is not properly contained
in any other monotone mapping on H. Equivalently, a monotone mapping A is maximal
monotone if R(I + tA) = H for all t > 0, where R(A) denotes the range of A.

Definition 1.2. A mapping A is called hemicontinuous at a point x in K if

lim
t→ 0

〈

A(x + th),y
〉

=
〈

A(x),y
〉

, x + th ∈ K,y ∈ H. (1.3)

Definition 1.3. Amapping A of K intoH is called λ-inverse strongly monotone if there exists
a positive number λ such that

〈

A(x) −A
(

y
)

, x − y
〉 ≥ λ

∥
∥A(x) −A(y)

∥
∥
2 (1.4)

for all x, y ∈ K.

Definition 1.4. A mapping T of K into H is called Lipschitz continuous on K if there exists a
positive number L, named Lipschitz constant, such that

∥
∥Tx − Ty

∥
∥ ≤ L

∥
∥x − y

∥
∥ (1.5)

for all x, y ∈ K.

It is easy to see that any λ-inverse strongly monotone mapping A is monotone
and Lipschitz continuous with Lipschitz constant L = 1/λ. When L = 1, T is said to be
nonexpansive mapping. Note that a nonexpansive mapping in Hilbert space is (1/2)-inverse
strongly monotone [1].

Definition 1.5. Amapping T : K → H is said to be strictly pseudocontractive, if there exists a
constant k ∈ [0, 1) such that

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + k

∥
∥(I − T)x − (I − T)y

∥
∥
2 ∀x, y ∈ K. (1.6)

Clearly, when k = 0, T is nonexpansive. Therefore, the class of k-strictly pseudocontractive
mappings includes the class of nonexpansive mappings.

Definition 1.6. A mapping T from K into H is said to be demiclosed at a point v if whenever
{xn} is a sequence in D(T) such that xn ⇀ x ∈ D(T) and Txn → v, then Tx = v, where the
symbols → and ⇀ denote the strong and weak convergences of any sequence, respectively.

The variational inequality problem is to find u∗ ∈ K such that

〈A(u∗), x − u∗〉 ≥ 0 (1.7)

for all x ∈ K. The set of solutions of the variational inequality problem (1.7) is denoted by
V I(K,A).
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Let {Ai}Ni=1 be a finite family of λi-inverse strongly monotone mappings from K into
H with the set of solutions denoted by Si = {x ∈ K : Ai(x) = 0}. And set

S =
N⋂

i=1

Si. (1.8)

The problem which will be studied in this paper is to find an element

u∗ ∈ V I(K,A) ∩ S (1.9)

with assumption V I(K,A) ∩ S/= ∅.
A following example shows the fact that V I(K,A)∩S/= ∅. Consider the following case:

K = {(x1, x2) : −2 ≤ x1, x2 ≤ 2},
K1 = {(x1, x2) : −2 ≤ x1 ≤ 2, −1 ≤ x2 ≤ 1},
K2 = {(x1, x2) : −1 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 2}.

(1.10)

Ai := I − PKi , i = 1, 2, where PKi denote the metric projections of K onto Ki, and the matrix
A has the elements a11 = a22 = 1, a12 = −2, and a21 = 0. Then, Ai is (1/2)-inverse strongly
monotone. Clearly, Ai(x) = 0 if and only if x ∈ Ki. It means that Si = Ki. Consequently,
S = S1 ∩ S2 = {(x1, x2) : −1 ≤ x1, x2 ≤ 1}/= ∅. It is easy to see that A is monotone, and for
y = (y1, y2), Ay = 0 if and only if y1 = y2. Therefore, V I(K,A) ∩ S/= ∅.

Since for a nonexpansive mapping T , the mapping B := I − T is (1/2)-inverse strongly
monotone, the problem of finding an element of V I(K,A)∩F(T), where F(T) denotes the set
of fixed points of the nonexpansive mapping T , is equivalent to that of finding an element of
V I(K,A) ∩ SB, where SB denotes the set of solutions of the mapping B, and contained in the
class of problem (1.9).

The case, when A is λ-inverse strongly monotone and A1 = I − T , where T is
nonexpansive, is studied in [2].

Theorem 1.7 (see [2]). Let K be a nonempty closed convex subset of a Hilbert space H. Let A be a
λ-inverse strongly monotone mapping ofK intoH for λ > 0, and let T be a nonexpansive mapping of
K into itself such that V I(K,A) ∩ F(T)/= ∅. Let {xn} be a sequence generated by

x0 ∈ K,

xn+1 = αnxn + (1 − αn)TPK(xn − αnA(xn)), n ≥ 0,
(1.11)

where {λn} ⊂ [a, b] for some a, b ∈ (0, 2λ) and {αn} ⊂ (c, d) for some c, d ∈ (0, 1). Then {xn}
converges weakly to z ∈ V I(K,A) ∩ F(T), where

z = lim
n→∞

PVI(K,A)∩F(T)(xn). (1.12)

For finding an element of the set V I(K,A)∩F(T), one can use the extragradientmethod
proposed in [3] for the case of finite-dimensional spaces. In the infinite-dimensional Hilbert
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spaces, the weak convergence result of the extragradient method was proved [1] and it was
improved to the strong convergence in [4].

On the other hand, when K ≡ H, (1.7) is equivalent to the operator equation

A(u) = 0, (1.13)

involving a maximal monotone A, since the domain of A is the whole space H, and A
is hemicontinuous ([5, 6]). A zero element of (1.13) can be approximated by the inertial
proximal point algorithm

cnA(zn+1) + zn+1 − zn = γn(zn − zn−1), z0, z1 ∈ H, (1.14)

where {cn} and {γn} are two sequences of positive numbers.
Note that the inertial proximal algorithm was proposed by Alvarez [7] in the context

of convex minimization. Afterwards, Alvarez and Attouch [8] considered its extension to
maximal monotone operators. Recently, Moudafi [9] applied this algorithm for variational
inequalities; Moudafi and Elisabeth [10] studied the algorithm by using enlargement of a
maximal monotone operator; Moudafi and Oliny [11] considered convergence of a splitting
inertial proximal method. The main results in these papers are the weak convergence of the
algorithm in Hilbert spaces.

In this paper, by introducing a regularization process we shall show that by adding
the regularization term to the inertial proximal point algorithm, called regularization inertial
proximal point algorithm, we obtain the strong convergence of the algorithm, and the
strong convergence is proved for the general case N > 1; Ai, i = 1, . . . ,N, are λi-inverse
strongly monotone nonself mappings of K into H; λi may not be 1/2, A is monotone and
hemicontinuous at each point u ∈ K.

2. Main Results

Let F be an equilibrium bifunction from K × K to R, that is F(u, u) = 0 for every u ∈ K. In
addition, assume that F(u, v) is convex and lower semicontinuous in the variable v for each
fixed u ∈ K.

The equilibrium problem for F is to find u∗ ∈ K such that

F(u∗, v) ≥ 0 ∀v ∈ K. (2.1)

First, we recall several well-known facts in [12, 13]which are necessary in the proof of
our results.

The equilibrium bifunction F is said to be

(i) monotone, if for all u, v ∈ K, we have

F(u, v) + F(v, u) ≤ 0, (2.2)



Journal of Inequalities and Applications 5

(ii) strongly monotone with constant τ , if, for all u, v ∈ K, we have

F(u, v) + F(v, u) ≤ −τ‖u − v‖2, (2.3)

(iii) hemicontinuous in the variable u for each fixed v, if

lim
t→+0

F(u + t(z − u), v) = F(u, v) ∀(u, z, v) ∈ K ×K ×K. (2.4)

We can get the following proposition from the above definitions.

Proposition 2.1. (i) If F(u, v) is hemicontinuous in the first variable for each fixed v ∈ K and F is
monotone, then U∗ = V ∗, where U∗ is the solution set of (2.1), V ∗ is the solution set of F(u, v∗) ≤ 0
for all u ∈ K, and they are closed and convex.

(ii) If F(u, v) is hemicontinuous in the first variable for each v ∈ K and F is strongly
monotone, then U∗ is a nonempty singleton.

Lemma 2.2 (see [14]). Let {an}, {bn}, {cn} be the sequences of positive numbers satisfying the
conditions:

(i) an+1 ≤ (1 − bn)an + cn, bn < 1,

(ii)
∑∞

n=0 bn = +∞, limn→+∞(cn/bn) = 0.

Then, limn→+∞an = 0.

Lemma 2.3 (see [15]). LetK be a nonempty closed convex subset of a Hilbert spaceH and T : K →
K a strictly pseudocontractive mapping. Then I − T is demiclosed at zero.

We construct a regularization solution uα for (1.9) by solving the following variational
inequality problem: find uα ∈ K such that

〈

A(uα) + αμ
N∑

i=1

Ai(uα) + αuα, v − uα

〉

≥ 0 ∀v ∈ K, 0 < μ < 1, (2.5)

where α ↘ 0, is the regularization parameter.
We have the following result.

Theorem 2.4. Let K be a nonempty closed convex subset of H. Let Ai be a λi-inverse strongly
monotone mapping of K into H, and let A be a monotone hemicontinuous mapping of K into H
such that V I(K,A) ∩ F(T)/= ∅. Then, we have

(i) For each α > 0, the problem (2.5) has a unique solution uα;

(ii) If limα→+0uα = u∗, then u∗ ∈ V I(K,A) ∩ S and ‖u∗‖ ≤ ‖y‖ for all y ∈ V I(K,A) ∩ S;

(iii)

∥
∥uα − uβ

∥
∥ ≤ M

∣
∣α − β

∣
∣

α
, α, β > 0, (2.6)

whereM is a positive constant.
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Proof. (i) Let

F0(u, v) = 〈A(u), v − u〉,
Fi(u, v) = 〈Ai(u), v − u〉, i = 1, . . . ,N.

(2.7)

Then, problem (2.5) has the following form: find uα ∈ K such that

Fα(uα, v) ≥ 0 ∀v ∈ K, (2.8)

where

Fα(u, v) = F0(u, v) + αμ
N∑

i=1

Fi(u, v) + α〈u, v − u〉. (2.9)

It is not difficult to verify that Fi, i = 0, . . . ,N, are the monotone bifunctions, and for each
fixed v ∈ K, they are hemicontinuous in the variable u. Therefore, Fα(u, v) also is monotone
hemicontinuous in the variable u for each fixed v ∈ K. Moreover, it is strongly monotone
with constant α > 0. Hence, (2.8) (consequently (2.5)) has a unique solution uα for each α > 0.

(ii) Now we prove that

‖uα‖ ≤ ∥
∥y

∥
∥, ∀y ∈ V I(K,A) ∩ S. (2.10)

Since y ∈ V I(K,A) ∩ S, F0(y, uα) ≥ 0 and Ai(y) = 0, i = 1, . . . ,N, Fi(y, uα) = 0, i = 1, . . . ,N,
and

F0
(

y, uα

)

+ αμ
N∑

i=1

Fi

(

y, uα

) ≥ 0, ∀y ∈ V I(K,A) ∩ S. (2.11)

By adding the last inequality to (2.8) in which v is replaced by y and using the properties of
Fi, we obtain

〈

uα, y − uα

〉 ≥ 0, ∀y ∈ V I(K,A) ∩ S, (2.12)

that implies (2.10). It means that {uα} is bounded. Let uαk ⇀ u∗ ∈ H, as k → +∞. Since K
is closed and convex, K is weakly closed. Hence u∗ ∈ K. We prove that u∗ ∈ V I(K,A). From
the monotone property of Fi, i = 0, . . . ,N and (2.8), it follows

F0(v, uαk) + α
μ

k

N∑

i=1

Fi(v, uαk) ≤ αk〈v, v − uαk〉, ∀v ∈ K. (2.13)

Letting k → ∞, we obtain F0(v, u∗) ≤ 0 for any v ∈ K. By virtue of Proposition 2.1, we have
u∗ ∈ V I(K,A).
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Now we show that u∗ ∈ Si, for all i = 1, . . . ,N. From (2.8), F0(y, uαk) ≥ 0 for any
y ∈ V I(K,A) ∩ S, and the monotone property of F0, it implies that

N∑

i=1

Fi

(

uαk , y
)

+ α
1−μ
k

〈

uαk , y − uαk

〉 ≥ 0, ∀y ∈ V I(K,A) ∩ S. (2.14)

On the base of λl-inverse strongly monotone property of Al, the monotone property of Ai,
i /= l, Ai(y) = 0, for all y ∈ V I(K,A) ∩ S, i = 1, . . . ,N. From the last inequality, we have

λl
∥
∥Al(uαk) −Al(y)

∥
∥
2 ≤ 〈

Al(uαk), uαk − y
〉

≤
N∑

i=1

〈

Ai(uαk), uαk − y
〉

≤ α
1−μ
k

〈

uαk , y − uαk

〉

≤ 2α1−μ
k

∥
∥y

∥
∥
2
.

(2.15)

Tending k → +∞ in the last inequality, we obtain

lim
k→+∞

∥
∥Al(uαk) −Al

(

y
)∥
∥ = 0. (2.16)

Since Al is λl-inverse strongly monotone, the mapping Tl := I − Al satisfies (1.6), where λl =
(1 − kl)/2. Because 0 < λl < 1, we have −1 < kl < 1. When kl < 0, this inequality will not be
changed if kl is replaced by −kl. Thus, Tl is strictly pseudocontractive. Applying Lemma 2.2,
we can conclude that Al(u∗) = Al(y) = 0. It means that u∗ ∈ Sl. It is well known that the sets
V I(K,A), Si are closed and convex. Therefore, V I(K,A) ∩ S is also closed and convex. Then,
from (2.10) it implies that u∗ is the unique element in V I(K,A) ∩ S having a minimal norm.
Consequently, we have

lim
α→+0

uα = u∗. (2.17)

(iii) From (2.8) and the properties of Fi(u, v), for each α, β > 0, it follows

(

αμ − βμ
)

N∑

i=1

Fi

(

uα, uβ

)

+ α
〈

uα, uβ − uα

〉

+ β
〈

uβ, uα − uβ

〉 ≥ 0 (2.18)

or

∥
∥uα − uβ

∥
∥ ≤

∣
∣α − β

∣
∣

α

∥
∥uβ

∥
∥ +

∣
∣αμ − βμ

∣
∣

α

N∑

i=1

∣
∣Fi

(

uα, uβ

)∣
∣. (2.19)

For each i = 1, . . . ,N, Fi is bounded since the operator Ai is Lipschitzian with Lipschitz
constants Li = 1/λi. Using (2.10), the boundedness of Fi and the Lagrange’s mean-value
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theorem for the function α(t) = t−μ, 0 < μ < 1, t ∈ [1,+∞), on [α, β] if α < β or [β, α] if β < α,
we have conclusion (iii). This completes the proof.

Remark 2.5. Obviously, if uαk → ũ, where uαk is the solution of (2.8) with α = αk → 0, as
k → +∞, then V I(K,A) ∩ S/= ∅.

Now, we consider the regularization inertial proximal point algorithm

〈

cn

[

A(zn+1) + α
μ
n

N∑

i=1

Ai(zn+1) + αnzn+1

]

+ zn+1 − zn, v − zn+1

〉

≥ γn〈zn − zn−1, v − zn+1〉, ∀v ∈ K, z0, z1 ∈ K.

(2.20)

Clearly,

Fn(u, v) :=

〈

cn

[

A(u) + α
μ
n

N∑

i=1

Ai(u) + αnu

]

+ u − zn, v − u

〉

− γn〈zn − zn−1, v − u〉 (2.21)

is a bifunction. Moreover, it is strongly monotone with τ = cnαn + 1. By Proposition 2.1, there
exists a unique element zn+1 satisfying (2.20).

Theorem 2.6. LetK be a nonempty closed convex subset of a Hilbert spaceH. Let Ai be a λi-inverse
strongly monotone mapping ofK intoH, and letA be a monotone hemicontinuous mapping ofK into
H such that V I(K,A) ∩ F(T)/= ∅. Assume that the parameters cn, γn, and αn are chosen such that

(i) 0 < c0 < cn < C0, 0 ≤ γn < γ0, 1 ≥ αn ↘ 0,

(ii)
∑∞

n=1 bn = +∞, bn = cnαn/(1 + cnαn),

(iii)
∑∞

n=1 γnb
−1
n ‖zn − zn−1‖ < +∞,

(iv)

lim
n→∞

αn − αn+1

αnbn
= 0. (2.22)

Then the sequence {zn} defined by (2.20) converges strongly to the element u∗ as n → +∞.

Proof. From (2.20) it follows

〈

μn

[

A(zn+1)+α
μ
n

N∑

i=1

Ai(zn+1)

]

+zn+1, v−zn+1
〉

≥ βn〈zn, v−zn+1〉+βnγn〈zn−zn−1, v−zn+1〉,

μn = cnβn, βn =
1

(1 + cnαn)
.

(2.23)
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By the similar argument, from (2.5) it implies

〈

μn

[

A(un) + α
μ
n

N∑

i=1

Ai(un)

]

+ un,v − un

〉

≥ βn〈un, v − un〉, (2.24)

where un is the solution of (2.5) when α is replaced by αn. By setting v = un in (2.23) and
v = zn+1 in (2.24) and adding one obtained result to the other, we have,

μn

〈

A(zn+1) −A(un) + α
μ
n

N∑

i=1

(Ai(zn+1) −Ai(un)), un − zn+1

〉

+ 〈zn+1 − un, un − zn+1〉

≥ βn〈zn − un, un − zn+1〉 + βnγn〈zn − zn−1, un − zn+1〉.
(2.25)

Therefore, from the monotone property of the mappings A, Ai, i = 1, . . . ,N, it follows

‖zn+1 − un‖ ≤ βn‖zn − un‖ + βnγn‖zn − zn−1‖. (2.26)

From (2.23), (2.5)with y = u∗ and βn < 1, we have

‖zn+1 − un+1‖ ≤ ‖zn+1 − un‖ + ‖un+1 − un‖

≤ βn‖zn − un‖ + γn‖zn − zn−1‖ +M
αn − αn+1

αn

≤ (1 − bn)‖zn − xn‖ + dn,

(2.27)

where

dn = γn‖zn − zn−1‖ +M
αn − αn+1

αn
. (2.28)

Since the seris in (iii) is convergent, limn→∞γn‖zn − zn−1‖/bn = 0. Consequently,
limn→∞dn/bn = 0. From Lemma 2.2, it follows that ‖zn+1 − xn+1‖ → 0 as n → +∞.

On the other hand, ‖xn − u∗‖ → 0 as n → +∞. Therefore, we have zn → u∗, as
n → +∞. This completes the proof.

Remark 2.7. The sequences {αn} and {γn}which are defined by

αn = (1 + n)−p, 0 < 2p < 1, γn = (1 + n)−τ
‖zn − zn−1‖

1 + ‖zn − zn−1‖2
(2.29)

with τ > 1 + p satisfy all conditions in Theorem 2.6.
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