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The purpose of this paper is to investigate some new dynamic inequalities on time scales.
We establish some new dynamic inequalities; the results unify and extend some continuous
inequalities and their corresponding discrete analogues. The inequalities given here can be used as
tools in the qualitative theory of certain dynamic equations. Some examples are given in the end
of this paper.

1. Introduction

The theory of time scales was introduced by Hilger [1] in 1988 in order to contain both
difference and differential calculus in a consistent way. Recently, many authors have extended
some fundamental integral inequalities used in the theory of differential and integral
equations on time scales. For example, we refer the reader to the papers [2–12] and the
references cited there in.

In this paper, we investigate some nonlinear integral inequalities on time scales,
which extend some inequalities established by Li and Sheng [8] and Li [9]. The obtained
inequalities can be used as important tools in the study of dynamic equations on time scales.

Throughout this paper, let us assume that we have already acquired the knowledge
of time scales and time scales notation; for an excellent introduction to the calculus on time
scales, we refer the reader to Bohner and Peterson [4] for general overview.

2. Some Preliminaries on Time Scales

In what follows, R denotes the set of real numbers, Z denotes the set of integers, N0 denotes
the set of nonnegative integers, C denotes the set of complex numbers, and C(M,S) denotes
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the class of all continuous functions defined on setMwith range in the set S. T is an arbitrary
time scale. If T has a right-scattered maximum m, then the set T

k = T − {m}; otherwise,
T
k = T. Crd denotes the set of rd-continuous functions; R denotes the set of all regressive and

rd-continuous functions. We define the set of all positively regressive functions by R+ = {p ∈
R : 1 + μ(t)p(t) > 0, t ∈ T}. Obviously, if p ∈ Crd and p(t) ≥ 0 for t ∈ T, then p ∈ R+.

For f : T → R and t ∈ T
k, we define fΔ(t) as follows (provided it exists):

fΔ(t) := lim
s→ t

fσ(t) − f(s)
σ(t) − s

; (2.1)

we call fΔ(t) the delta derivative of f at t.
The following lemmas are very useful in our main results.

Lemma 2.1 (see [4]). If p ∈ R and fix t0 ∈ T, then the exponential function ep(·, t0) is for the unique
solution of the initial value problem

xΔ = p(t)x, x(t0) = 1 on T. (2.2)

Lemma 2.2 (see [4]). Let t0 ∈ T
k and w : T × T

k → R be continuous at (t, t), where t ≥ t0.
Assume that wΔ(t, ·) is rd-continuous on [t0, σ(t)]. If for any ε > 0, there exists a neighborhood U of
t, independent of τ ∈ [t0, σ(t)], such that

∣
∣
∣w(σ(t), τ) −w(s, τ) −wΔ(t, τ)(σ(t) − s)

∣
∣
∣ ≤ ε|σ(t) − s|, s ∈ U, (2.3)

where wΔ denotes the derivative of w with respect to the first variable, then

g(t) :=
∫ t

t0

w(t, τ)Δτ (2.4)

implies

gΔ(t) :=
∫ t

t0

wΔ(t, τ)Δτ +w(σ(t), t). (2.5)

The following theorem is a foundational result in dynamic inequalities.

Lemma 2.3 (Comparison Theorem [4]). Suppose u, b ∈ Crd, a ∈ R+; then

uΔ(t) ≤ a(t)u(t) + b(t), t ≥ t0, t ∈ T
k, (2.6)

implies

u(t) ≤ u(t0)ea(t, t0) +
∫ t

t0

b(τ)ea(t, σ(τ))Δτ, t ≥ t0, t ∈ T
k. (2.7)
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The following lemma is useful in our main results.

Lemma 2.4 (see [7]). Let a ≥ 0, p ≥ q > 0, then

aq/p ≤ q

p
K(q−p)/pa +

p − q

p
Kq/p, K > 0. (2.8)

3. Main Results

In this section, we study some integral inequalities on time scales. We always assume that
p, q, r,m are constants, p ≥ q > 0, p ≥ m > 0, p ≥ r > 0, and t ≥ t0, t ∈ T

k.

Theorem 3.1. Assume that u, a, b, f, g, h ∈ Crd;u(t), a(t), b(t), f(t), g(t), and h(t) are nonnega-
tive; then

up(t) ≤ a(t) + b(t)
∫ t

t0

[

f(s)uq(s) + g(s)ur(s) +
∫s

t0

h(τ)um(τ)Δτ

]

Δs, t ∈ T
k, (3.1)

implies

u(t) ≤
{

a(t) + b(t)
∫ t

t0

B(τ)eA(τ)(t, σ(τ))Δτ

}1/p

, K > 0, t ∈ T
k, (3.2)

where

A(t) =
[
q

p
K(q−p)/pf(t) +

r

p
K(r−p)/pg(t)

]

b(t) +
m

p
K(m−p)/p

∫ t

t0

b(τ)h(τ)Δτ,

B(t) = f(t)
[
q

p
K(q−p)/pa(t) +

p − q

p
Kq/p

]

+ g(t)
[
r

p
K(r−p)/pa(t) +

p − r

p
Kp/r

]

+
∫ t

t0

[
m

p
K(m−p)/pa(τ) +

p −m

p
Km/p

]

h(τ)Δτ, t ∈ T
k.

(3.3)

Proof. Define z(t) by

z(t) =
∫ t

t0

[

f(s)uq(s) + g(s)ur(s) +
∫s

t0

h(τ)um(τ)Δτ

]

Δs, (3.4)

then z(t0) = 0, and (3.1) can be restated as

up(t) ≤ a(t) + b(t)z(t). (3.5)
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Using Lemma 2.1, for any k > 0, we obtain

uq(t) ≤ [a(t) + b(t)z(t)]q/p ≤ q

p
K(q−p)/p[a(t) + b(t)z(t)] +

p − q

p
Kq/p,

ur(t) ≤ [a(t) + b(t)z(t)]r/p ≤ r

p
K(r−p)/p[a(t) + b(t)z(t)] +

p − r

p
Kr/p,

um(t) ≤ [a(t) + b(t)z(t)]m/p ≤ m

p
K(m−p)/p[a(t) + b(t)z(t)] +

p −m

p
Km/p.

(3.6)

It follows from (3.4) and (3.6) that

zΔ(t) = f(t)uq(t) + g(t)ur(t) +
∫ t

t0

h(τ)um(τ)Δτ

≤ f(t)
[
q

p
K(q−p)/p(a(t) + b(t)z(t)) +

p − q

p
Kq/p

]

+ g(t)
[
r

p
K(r−p)/p(a(t) + b(t)z(t)) +

p − r

p
Kr/p

]

+
∫ t

t0

h(τ)
[
m

p
K(m−p)/p(a(τ) + b(τ)z(τ)) +

p −m

p
Km/p

]

Δτ

≤ B(t) +A(t)z(t), t ∈ T
k,

(3.7)

where A(t), and B(t) are defined as in (3.3) and A(t) is regressive obviously.
From Lemma 2.3 and (3.7), noting z(t0) = 0, we obtain

z(t) ≤
∫ t

t0

B(τ)eA(τ)(t, σ(τ))Δτ. (3.8)

Therefore, the desired inequality (3.2) follows from (3.5) and (3.8).

Remark 3.2. Theorem 3.1 extends some known inequalities on time scales. If q = 1, r = 0, h(t) =
0, then Theorem 3.1 reduces to [7, Theorem 3.1]. If q = p, h(t) = 0, then Theorem 3.1 reduces
to [8, Theorem 3.2].

Remark 3.3. The result of Theorem 3.1 holds for an arbitrary time scale. If T = R, then
Theorem 3.1 becomes the Theorem 1 established by Yuan et al. [13]. If T = Z, we can have the
following Corollary.

Corollary 3.4. Let T = Z and assume that u(t), a(t), b(t), f(t), g(t), and h(t) are nonnegative
functions defined for t ∈ N0. Then the inequality

up(t) ≤ a(t) + b(t)
t−1∑

s=0

[

f(s)uq(s) + g(s)ur(s) +
s−1∑

τ=0

h(τ)um(τ)

]

, t ∈ N0, (3.9)
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implies

u(t) ≤
{

a(t) + b(t)
t−1∑

s=0

B(s)
t−1∏

τ=s+1

(1 +A(τ))

}1/p

, K > 0, t ∈ N0, (3.10)

where

A(t) =
[
q

p
K(q−p)/pf(t) +

r

p
K(r−p)/pg(t)

]

b(t) +
m

p
K(m−p)/p

t−1∑

τ=0

b(τ)h(τ),

B(t) = f(t)
[
q

p
K(q−p)/pa(t) +

p − q

p
Kq/p

]

+ g(t)
[
r

p
K(r−p)/pa(t) +

p − r

p
Kp/r

]

+
t−1∑

τ=0

[
m

p
K(m−p)/pa(τ) +

p −m

p
Km/p

]

h(τ), t ∈ N0.

(3.11)

Corollary 3.5. Let T = lZ ∩ [0,∞), where lZ = {lk : k ∈ Z, l > 0}. We assume that
u(t), a(t), b(t), f(t), g(t),and h(t) are nonnegative functions defined for t ∈ T. Then the inequality

up(t) ≤ a(t) + b(t)
t/l−1∑

s=0

[

f(ls)uq(ls) + g(ls)ur(ls) +
s/l−1∑

τ=0

h(lτ)um(lτ)

]

, t ∈ T (3.12)

implies

u(t) ≤
{

a(t) + b(t)
t/l−1∑

s=0

B(ls)
t/l−1∏

τ=s/l+1

(1 +A(τ))

}1/p

, K > 0, t ∈ T, (3.13)

where

A(t) =
[
q

p
K(q−p)/pf(t) +

r

p
K(r−p)/pg(t)

]

b(t) +
m

p
K(m−p)/p

t/l−1∑

τ=0

b(lτ)h(lτ),

B(t) = f(t)
[
q

p
K(q−p)/pa(t) +

p − q

p
Kq/p

]

+ g(t)
[
r

p
K(r−p)/pa(t) +

p − r

p
Kp/r

]

+
t/l−1∑

τ=0

[
m

p
K(m−p)/pa(lτ) +

p −m

p
Km/p

]

h(lτ), t ∈ T.

(3.14)
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Theorem 3.6. Assume that u, a, b, f, h are defined as in Theorem 3.1, L(t, y),M(t, y) : T
k × R →

R+ are continuous functions, and L(t, y) is nondecreasing about the second variable and satisfies

0 ≤ L(t, x) − L
(

t, y
) ≤ M

(

t, y
)(

x − y
)

(3.15)

for t ∈ T
k and x ≥ y ≥ 0; then

up(t) ≤ a(t) + b(t)
∫ t

t0

[

f(s)uq(s) + L(s, ur(s)) +
∫ s

t0

h(τ)um(τ)Δτ

]

Δs, t ∈ T
k (3.16)

implies

u(t) ≤
{

a(t) + b(t)
∫ t

t0

B1(τ)eA1(t, σ(τ))Δτ

}1/p

, K > 0, t ∈ T
k, (3.17)

where

A1(t) =
q

p
K(q−p)/pf(t)b(t) +

m

p
K(m−p)/p

∫ t

t0

h(τ)b(τ)Δτ

+
r

p
K(r−p)/pM

(

t,
r

p
K(r−p)/pa(t) +

p − r

p
Kr/p

)

b(t),

B1(t) = f(t)
(
q

p
K(q−p)/pa(t) +

p − q

p
Kq/p

)

+
∫ t

t0

h(τ)
(
m

p
K(m−p)/pa(τ) +

p −m

p
Km/p

)

Δτ

+ L

(

t,
r

p
K(r−p)/pa(t) +

p − r

p
Kr/p

)

, t ∈ T
k.

(3.18)

Proof. Define z(t) by

z(t) =
∫ t

t0

[

f(s)uq(s) + L(s, ur(s)) +
∫s

t0

h(τ)um(τ)Δτ

]

Δs, (3.19)

then z(t0) = 0, and (3.16) can be written as (3.5).
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Therefore, from (3.6) and (3.19), we have

zΔ(t) = f(t)uq(t) + L(t, ur(t)) +
∫ t

t0

h(τ)um(τ)Δτ

≤ f(t)
[
q

p
K(q−p)/p(a(t) + b(t)z(t)) +

p − q

p
Kq/p

]

+ L

(

t,
r

p
K(r−p)/p(a(t) + b(t)z(t)) +

p − r

p
Kr/p

)

− L

(

t,
r

p
K(r−p)/pa(t) +

p − r

p
Kr/p

)

+
∫ t

t0

h(τ)
[
m

p
K(m−p)/p(a(τ) + b(τ)z(τ)) +

p −m

p
Km/p

]

Δτ

+ L

(

t,
r

p
K(r−p)/pa(t) +

p − r

p
Kr/p

)

≤ f(t)
[
q

p
K(q−p)/pa(t) +

p − q

p
Kq/p

]

+
∫ t

t0

h(τ)
(
m

p
K(m−p)/pa(τ) +

p −m

p
Km/p

)

Δτ

+

[

q

p
K(q−p)/pf(t)b(t) +

m

p
K(m−p)/p

∫ t

t0

h(τ)b(τ)Δτ

]

z(t)

+M

(

t,
r

p
K(r−p)/pa(t) +

p − r

p
Kr/p

)
r

p
K(r−p)/pb(t)z(t)

+ L

(

t,
r

p
K(r−p)/pa(t) +

p − r

p
Kr/p

)

= A1(t)z(t) + B1(t), t ∈ T
k,

(3.20)

where A1(t), and B1(t) are defined as in (3.18) and A1(t) is regressive obviously.
From Lemma 2.3 and (3.20), noting z(t0) = 0, we obtain

z(t) ≤
∫ t

t0

B1(τ)eA1(τ)(t, σ(τ))Δτ. (3.21)

Therefore, the desired inequality (3.17) follows from (3.5) and (3.21).
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Remark 3.7. If T = R, then Theorem 3.6 becomes [13, Theorem 3]. If T = Z, we can have the
following Corollary.

Corollary 3.8. Let T = Z and assume that u(t), a(t), b(t), f(t), g(t), and h(t) are nonnegative
functions defined for t ∈ N0. L,M ∈ C(R2

+,R+) satisfy

0 ≤ L(t, x) − L
(

t, y
) ≤ M

(

t, y
)(

x − y
)

(3.22)

for x ≥ y ≥ 0 and L(t, y) is nondecreasing about the second variable. Then the inequality

up(t) ≤ a(t) + b(t)
t−1∑

s=0

[

f(s)uq(s) + L(s, ur(s)) +
s−1∑

τ=0

h(τ)um(τ)

]

, t ∈ N0 (3.23)

implies

u(t) ≤
{

a(t) + b(t)
t−1∑

s=0

B1(τ)
t−1∏

τ=s+1

(1 +A1(τ))

}1/p

, K > 0, t ∈ N0, (3.24)

where

A1(t) =
q

p
K(q−p)/pf(t)b(t) +

m

p
K(m−p)/p

t−1∑

τ=0

h(τ)b(τ)

+
r

p
K(r−p)/pM

(

t,
r

p
K(r−p)/pa(t) +

p − r

p
Kr/p

)

b(t),

B1(t) = f(t)
(
q

p
K(q−p)/pa(t) +

q − p

p
Kq/p

)

+
t−1∑

τ=0

h(τ)
(
m

p
K(m−p)/pa(τ) +

p −m

p
Km/p

)

+ L

(

t,
r

p
K(r−p)/pa(t) +

p − r

p
Kr/p

)

, t ∈ N0.

(3.25)

Theorem 3.9. Assume that u(t), a(t), b(t), f(t), g(t), and h(t) are defined as in Theorem 3.1,w(t, s)
is defined as in Lemma 2.2 such that w(σ(t), t) ≥ 0, wΔ(t, s) ≥ 0 for t, s ∈ T with s ≤ t; then

up(t) ≤ a(t) + b(t)
∫ t

t0

w(t, s)

[

f(s)uq(s) + g(s)ur(s) +
∫s

t0

h(τ)um(τ)Δτ

]

Δs, t ∈ T
k,

(3.26)
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implies

u(t) ≤
{

a(t) + b(t)
∫ t

t0

B2(τ)eA2(t, σ(τ))Δτ

}1/p

, K > 0, t ∈ T
k, (3.27)

where

A2(t) = w(σ(t), t)

[(
q

p
K(q−p)/pf(t) +

r

p
K(r−p)/pg(t)

)

b(t) +
m

p
K(m−p)/p

∫ t

t0

b(τ)h(τ)Δτ

]

+
∫ t

t0

wΔ(t, s)
[(

q

p
K(q−p)/pf(s) +

r

p
K(r−p)/pg(s)

)

b(s)

+
m

p
K(m−p)/p

∫s

t0

b(τ)h(τ)Δτ

]

Δs,

B2(t) = w(σ(t), t)
[

f(t)
(
q

p
K(q−p)/pa(t) +

p − q

p
Kq/p

)

+ g(t)
(
r

p
K(r−p)/pa(t) +

p − r

p
Kp/r

)

+
∫ t

t0

h(τ)
(
m

p
K(m−p)/pa(τ) +

p −m

p
Km/p

)

Δτ

]

+
∫ t

t0

wΔ(t, s)
[

f(s)
(
q

p
K(q−p)/pa(s) +

p − q

p
Kq/p

)

+ g(s)
(
r

p
K(r−p)/pa(s) +

p − r

p
Kp/r

)

+
∫s

t0

h(τ)
(
m

p
K(m−p)/pa(τ) +

p −m

p
Km/p

)

Δτ

]

Δs, t ∈ T
k.

(3.28)

Proof. Define z(t) by

z(t) =
∫ t

t0

w(t, s)

[

f(s)uq(s) + g(s)ur(s) +
∫ s

t0

h(τ)um(τ)Δτ

]

Δs, (3.29)

then z(t0) = 0, and (3.26) can be written as (3.5).
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Therefore, from (3.6) and (3.29)we have

zΔ(t) = w(σ(t), t)

[

f(t)uq(t) + g(t)ur(t) +
∫ t

t0

h(τ)um(τ)Δτ

]

+
∫ t

t0

wΔ(t, s)

[

f(s)uq(s) + g(s)ur(s) +
∫ s

t0

h(τ)um(τ)Δτ

]

Δs

≤ w(σ(t), t)
[

f(t)
(
q

p
K(q−p)/p(a(t) + b(t)z(t)) +

p − q

p
Kq/p

)

+ g(t)
(
r

p
K(r−p)/p(a(t) + b(t)z(t)) +

p − r

p
Kr/p

)

+
∫ t

t0

h(τ)
(
m

p
K(m−p)/p(a(τ) + b(τ)z(τ)) +

p −m

p
Km/p

)]

Δτ

+
∫ t

t0

wΔ(t, s)
[

f(s)
(
q

p
K(q−p)/p(a(s) + b(s)z(s)) +

p − q

p
Kq/p

)

+ g(s)
(
r

p
K(r−p)/p(a(s) + b(s)z(s)) +

p − r

p
Kr/p

)

+
∫ s

t0

h(τ)
(
m

p
K(m−p)/p(a(τ) + b(τ)z(τ)) +

p −m

p
Km/p

)

Δτ

]

Δs

≤ B2(t) +A2(t)z(t), t ∈ T
k,

(3.30)

where A2(t), and B2(t) are defined by (3.28) and A2(t) is regressive obviously.
From Lemma 2.3 and (3.30), noting z(t0) = 0, we obtain

z(t) ≤
∫ t

t0

B2(τ)eA2(τ)(t, σ(τ))Δτ. (3.31)

Therefore, the desired inequality (3.27) follows from (3.5) and (3.31).

Remark 3.10. If q = p, h(t) = 0, then Theorem 3.9 reduces to [8, Theorem 3.8].

Using our results, we can also obtain many dynamic inequalities for some peculiar
time scales; here, we omit them.

4. Some Applications

In this section, we present some applications of Theorem 3.9 to investigate certain properties
of solution u(t) of the following dynamic equation:

[up(t)]Δ = F

(

t,U(t, u(t)),
∫ t

t0

H(s, u(s))Δs

)

, up(t0) = C, t ∈ T
k, (4.1)
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where C is a constant, F : T
k ×R ×R → R is a continuous function, andU : T

k ×R → R, H :
T
k × R → R are also continuous functions.

Example 4.1. Assume that

|F(t,U, V )| ≤ |U| + |V |,
|U(t, u)| ≤ f(t)|u|q + g(t)|u|r ,

|H(t, u)| ≤ h(t)|u|m, t ∈ T
k,

(4.2)

where p, q, r, and m are constants, p ≥ q > 0, and p ≥ m > 0, p ≥ r > 0. f, g, h ∈ Crd, f(t), g(t)
and h(t) are nonnegative. Then every solution u(t) of (4.1) satisfies

|u(t)| ≤
{

|C| +
∫ t

t0

B(τ)eA(τ)(t, σ(τ))Δτ

}1/p

, K > 0, t ∈ T
k, (4.3)

where A,B are defined as in (3.3)with a(t) = |C|, b(t) = 1.
Indeed, the solution u(t) of (4.1) satisfies the following equivalent equation

up(t) = C +
∫ t

t0

F

(

τ,U(τ, u(τ)),
∫ τ

t0

H(s, u(s))Δs

)

Δτ, t ∈ T
k. (4.4)

It follows from (4.2) and (4.4) that

|up(t)| ≤ |C| +
∫ t

t0

∣
∣
∣
∣
∣
F

(

τ,U(τ, u(τ)),
∫ τ

t0

H(s, u(s))Δs

)∣
∣
∣
∣
∣
Δτ

≤ |C| +
∫ t

t0

[

f(τ)|u(τ)|q + g(τ)|u(τ)|r +
∫ τ

t0

h(s)|u(s)|mΔs

]

Δτ.

(4.5)

Using Theorem 3.1, the inequality (4.3) is obtained from (4.5).

Example 4.2. Assume that

|F(t,U1, V1) − F(t,U2, V2)| ≤ |U1 −U2| + |V1 − V2|,

|U(t, u1) −U(t, u2)| ≤ f(t)
∣
∣
∣u

p

1 − u
p

2

∣
∣
∣,

|H(t, u1) −H(t, u2)| ≤ h(t)
∣
∣
∣u

p

1 − u
p

2

∣
∣
∣, t ∈ T

k,

(4.6)

p, f , and h are defined as in Example 4.1. If p = (m/n) (m,n ∈ N) andm is odd, then (4.1) has
at most one solution; otherwise, the two solutions u1(t), and u2(t) of (4.1) have the relation
u
p

1(t) = u
p

2(t).
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Proof. Let u1(t), and u2(t) be two solutions of (4.1). Then we have

u
p

1(t) − u
p

2(t) =
∫ t

t0

[

F

(

τ,U(τ, u1(τ)),
∫ τ

t0

H(s, u1(s))Δs

)

−F
(

τ,U(τ, u2(τ)),
∫ τ

t0

H(s, u2(s))Δs

)]

Δτ, t ∈ T
k.

(4.7)

It follows from (4.6) and (4.7) that

∣
∣
∣u

p

1(t) − u
p

2(t)
∣
∣
∣ ≤

∫ t

t0

[

f(τ)
∣
∣
∣u

p

1(τ) − u
p

2(τ)
∣
∣
∣ +

∫ τ

t0

h(s)
∣
∣
∣u

p

1(s) − u
p

2(s)
∣
∣
∣Δs

]

Δτ, t ∈ T
k. (4.8)

By Theorem 3.1, we have up

1(t) − u
p

2(t) ≡ 0, t ∈ T
k. The results are obtained.

Example 4.3. Consider the equation

up = a(t) + b(t)
∫ t

t0

F

(

t, s,U(s, u),
∫ s

t0

H(τ, u)Δτ

)

Δs, t ∈ T
k. (4.9)

If

|F(t, s,U, V )| ≤ w(t, s)(|U| + |V |),
|U(t, u)| ≤ f(t)|u|q + g(t)|u|r ,

|H(t, u)| ≤ h(t)|u|m, t ∈ T
k,

(4.10)

where p, q, r,m are constants, p ≥ q > 0, p ≥ m > 0, p ≥ r > 0. a, b, f, g, h ∈
Crd, a(t), b(t), f(t), g(t) and h(t) are nonnegative,w(t, s) is defined as in Lemma 2.2 such that
w(σ(t), t) ≥ 0, wΔ(t, s) ≥ 0 for t, s ∈ T with s ≤ t.

Then we have the estimate of the solution u(t) of (4.9) that

|u(t)| ≤
{

a(t) + b(t)
∫ t

t0

B2(τ)eA2(t, σ(τ))Δτ

}1/p

, K > 0, t ∈ T
k, (4.11)

where A2, B2 are defined as in (3.28).

Proof. From (4.10) and (4.9), we have

|u(t)|p ≤ a(t) + b(t)
∫ t

t0

w(t, s)

[

f(s)|u(s)|q + g(s)|u(s)|r +
∫s

t0

h(τ)|u(τ)|mΔτ

]

Δs, t ∈ T
k.

(4.12)

By Theorem 3.9 and (4.12), we have that (4.11) holds.
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