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We obtain the generalized Hyers-Ulam stability of the bi-quadratic functional equation f(x+y, z+
w) + f(x + y, z −w) + f(x − y, z +w) + f(x − y, z −w) = 4[f(x, z) + f(x,w) + f(y, z) + f(y,w)] in
quasinormed spaces.

1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin
in which he discussed a number of unsolved problems, containing the stability problem of
homomorphisms as follows

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there
exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for
all x, y ∈ G1, then there is a homomorphismH : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

Hyers [2] proved the stability problem of additive mappings in Banach spaces. Rassias
[3] provided a generalization of Hyers theorem which allows the Cauchy difference to be
unbounded: let f : E → E be a mapping from a normed vector space E into a Banach space
E subject to the inequality

∥
∥f

(

x + y
) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ‖x‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. The above inequality
provided a lot of influence in the development of a generalization of the Hyers-Ulam stability
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concept. Găvruţa [4] provided a further generalization of Hyers-Ulam theorem. A square
norm on an inner product space satisfies the important parallelogram equality:

∥
∥x + y

∥
∥
2 +

∥
∥x − y∥∥2 = 2‖x‖2 + 2

∥
∥y

∥
∥
2
. (1.2)

The functional equation

f
(

x + y
)

+ f
(

x − y) = 2f(x) + 2f
(

y
)

(1.3)

is called the quadratic functional equation whose solution is said to be a quadratic mapping.
A generalized stability problem for the quadratic functional equation was proved by Skof [5]
for mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa
[6] noticed that the theorem of Skof is still true if the relevant domain E1 is replaced by
an Abelian group. Czerwik [7] proved the generalized stability of the quadratic functional
equation, and Park [8] proved the generalized stability of the quadratic functional equation
in Banach modules over a C∗-algebra.

Throughout this paper, let X and Y be vector spaces.

Definition 1.1. A mapping f : X ×X → Y is called bi-quadratic if f satisfies the system of the
following equations:

f
(

x + y, z
)

+ f
(

x − y, z) = 2f(x, z) + 2f
(

y, z
)

,
f
(

x, y + z
)

+ f
(

x, y − z) = 2f
(

x, y
)

+ 2f(x, z).
(1.4)

When X = Y = R, the function f : R × R → R given by f(x, y) := ax2y2 is a solution
of (1.4).

For a mapping f : X ×X → Y , consider the functional equation:

f
(

x + y, z +w
)

+ f
(

x + y, z −w)

+ f
(

x − y, z +w)

+ f
(

x − y, z −w)

= 4
[

f(x, z) + f(x,w) + f
(

y, z
)

+ f
(

y,w
)]

.
(1.5)

Definition 1.2 (see [9, 10]). Let X be a real linear space. A quasinorm is real-valued function
on X satisfying the following

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.

(iii) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X.

It follows from the condition (iii) that

∥
∥
∥
∥
∥

2m∑

i=1

xi

∥
∥
∥
∥
∥
≤ Km

2m∑

i=1

‖xi‖,
∥
∥
∥
∥
∥

2m+1∑

i=1

xi

∥
∥
∥
∥
∥
≤ Km+1

2m+1∑

i=1

‖xi‖ (1.6)

for allm ≥ 1 and all x1, x2, . . . , x2m+1 ∈ X.
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The pair (X, ‖ · ‖) is called a quasinormed space if ‖ · ‖ is a quasinorm on X. The smallest
possible K is called the modulus of concavity of ‖ · ‖. A quasi-Banach space is a complete
quasinormed space. A quasinorm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

∥
∥x + y

∥
∥
p ≤ ‖x‖p + ∥

∥y
∥
∥
p (1.7)

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.
Given a p-norm, the formula d(x, y) := ‖x − y‖p gives us a translation invariant

metric on X. By the Aoki-Rolewicz theorem [10] (see also [9]), each quasinorm is equivalent
to some p-norm. Since it is much easier to work with p-norms, henceforth we restrict our
attention mainly to p-norms. In [11], Tabor has investigated a version of Hyers-Rassias-Gajda
theorem (see also [3, 12]) in quasi-Banach spaces. Since then, the stability problems have been
investigated by many authors (see [13–18]).

The authors [19] solved the solutions of (1.4) and (1.5) as follows.

Theorem A. A mapping f : X × X → Y satisfies (1.4) if and only if there exist a multi-additive
mapping M : X × X × X × X → Y such that f(x, y) = M(x, x, y, y) and M(x, y, z,w) =
M(y, x, z,w) =M(x, y,w, z) for all x, y, z,w ∈ X.

Theorem B. A mapping f : X ×X → Y satisfies (1.4) if and only if it satisfies (1.5).

In this paper, we investigate the generalized Hyers-Ulam stability of (1.4) and (1.5) in
quasi-Banach spaces.

2. Stability of (1.4) and (1.5) in Quasi-normed Spaces

Throughout this section, assume that X is a quasinormed space with quasinorm ‖ · ‖X and
that Y is a p-Banach space with p-norm ‖ · ‖Y . Let K be the modulus of concavity of ‖ · ‖Y .

Let ϕ : X ×X ×X → [0,∞) and ψ : X ×X ×X → [0,∞) be two functions such that

lim
n→∞

1
4n
ϕ
(

2nx, 2ny, z
)

= 0, lim
n→∞

1
4n
ψ
(

2nx, y, z
)

= 0, lim
n→∞

1
4n
ϕ
(

x, y, 2nz
)

= 0,

lim
n→∞

1
4n
ψ
(

x, 2ny, 2nz
)

= 0

(2.1)

for all x, y, z ∈ X.
Let ϕ, ψ : X ×X ×X → [0,∞) be two functions satisfying

M
(

x, y, z
)

:=
∞∑

j=0

1
4pj

ϕ
(

2jx, 2jy, z
)p

<∞, (2.2)

N
(

x, y, z
)

:=
∞∑

j=0

1
4pj

ψ
(

x, 2jy, 2jz
)p

<∞ (2.3)

for all x, y, z ∈ X.
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Theorem 2.1. Let f : X ×X → Y be a mapping such that

∥
∥f(x + y, z) + f(x − y, z) − 2f(x, z) − 2f(y, z)

∥
∥
Y ≤ ϕ(x, y, z), (2.4)

∥
∥f(x, y + z) + f(x, y − z) − 2f(x, y) − 2f(x, z)

∥
∥
Y ≤ ψ(x, y, z), (2.5)

and let f(x, 0) = 0 and f(0, y) = 0 for all x, y, z ∈ X. Then there exist two bi-quadratic mappings
F1, F2 : X ×X → Y such that

∥
∥f(x, y) − F1(x, y)

∥
∥
Y ≤ 1

4
M

(

x, x, y
)1/p

, (2.6)

∥
∥f(x, y) − F2(x, y)

∥
∥
Y ≤ 1

4
N
(

x, y, y
)1/p (2.7)

for all x, y ∈ X.

Proof. Letting y = x in (2.4), we get

∥
∥
∥
∥
f(x, z) − 1

4
f(2x, z)

∥
∥
∥
∥
Y

≤ 1
4
ϕ(x, x, z) (2.8)

for all x, z ∈ X. Thus we have

∥
∥
∥
∥

1
4j
f(2jx, z) − 1

4j+1
f(2j+1x, z)

∥
∥
∥
∥
Y

≤ 1
4j+1

ϕ
(

2jx, 2jx, z
)

(2.9)

for all x, z ∈ X. Replacing z by y in the above inequality, we obtain

∥
∥
∥
∥

1
4j
f(2jx, y) − 1

4j+1
f
(

2j+1x, y
)
∥
∥
∥
∥
Y

≤ 1
4j+1

ϕ
(

2jx, 2jx, y
)

(2.10)

for all x, y ∈ X. Since Y is a p-Banach space, for given integers l,m (0 ≤ l < m), we see that

∥
∥
∥
∥

1
4l
f(2lx, y) − 1

4m
f(2mx, y)

∥
∥
∥
∥

p

Y

≤
m−1∑

j=l

∥
∥
∥
∥

1
4j
f
(

2jx, y
)

− 1
4j+1

f
(

2j+1x, y
)
∥
∥
∥
∥

p

Y

≤ 1
4p

m−1∑

j=l

1
4pj

ϕ
(

2jx, 2jx, y
)p

(2.11)

for all x, y ∈ X. By (2.2) and (2.11), the sequence {(1/4j)f(2jx, y)} is a Cauchy sequence for
all x, y ∈ X. Since Y is complete, the sequence {(1/4j)f(2jx, y)} converges for all x, y ∈ X.
Define F1 : X ×X → Y by

F1
(

x, y
)

:= lim
j→∞

1
4j
f
(

2jx, y
)

(2.12)
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for all x, y ∈ X. Putting l = 0 and takingm → ∞ in (2.11), one can obtain the inequality (2.6).
By (2.4) and (2.5), we get

∥
∥
∥
∥

1
4j
f
(

x + y, 2jz
)

+
1
4j
f
(

x − y, 2jz
)

− 2
1
4j
f
(

x, 2jz
)

− 2
1
4j
f
(

y, 2jz
)
∥
∥
∥
∥
Y

≤ 1
4j
ϕ
(

x, y, 2jz
)

,

∥
∥
∥
∥

1
4j
f(2jx, y + z) +

1
4j
f(2jx, y − z) − 2

1
4j
f
(

2jx, y
)

− 2
1
4j
f
(

2jx, z
)
∥
∥
∥
∥
Y

≤ 1
4j
ψ
(

2jx, y, z
)

(2.13)

for all x, y, z ∈ X and all j. Letting j → ∞ in the above two inequalities and using (2.1), F1 is
bi-quadratic.

Next, setting z = y in (2.5),

∥
∥
∥
∥
f(x, y) − 1

4
f(x, 2y)

∥
∥
∥
∥
Y

≤ 1
4
ψ
(

x, y, y
)

(2.14)

for all x, y ∈ X. By the same method as above, define F2 : X × X → Y by F2(x, y) :=
limj→∞(1/4j)f(x, 2jy) for all x, y ∈ X. By the same argument as above, F2 is a bi-quadratic
mapping satisfying (2.7).

Corollary 2.2. Let f : X ×X → Y be a mapping such that

∥
∥f(x + y, z) + f(x − y, z) − 2f(x, z) − 2f(y, z)

∥
∥
Y ≤ δ,

∥
∥f(x, y + z) + f(x, y − z) − 2f(x, y) − 2f(x, z)

∥
∥
Y ≤ ε,

(2.15)

and let f(x, 0) = 0 and f(0, y) = 0 for all x, y, z ∈ X. Then there exist two bi-quadratic mappings
F1, F2 : X ×X → Y such that

∥
∥f(x, y) − F1

(

x, y
)∥
∥
Y ≤ δ

p
√
4p − 1

,

∥
∥f(x, y) − F2

(

x, y
)∥
∥
Y ≤ ε

p
√
4p − 1

(2.16)

for all x, y ∈ X.

Proof. In Theorem 2.1, putting ϕ(x, y, z) := δ and ψ(x, y, z) := ε for all x, y, z ∈ X, we get the
desired result.

From now on, let ϕ : X ×X ×X ×X → [0,∞) be a function such that

lim
n→∞

1
16n

ϕ
(

2nx, 2ny, 2nz, 2nw
)

= 0, (2.17)

L
(

x, y, z,w
)

:=
∞∑

j=0

1
16pj

ϕ
(

2jx, 2jy, 2jz, 2jw
)p

<∞ (2.18)

for all x, y, z,w ∈ X.
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We will use the following lemma in order to prove Theorem 2.4.

Lemma 2.3 (see [20]). Let 0 < p ≤ 1 and let x1, x2, . . . , xn be nonnegative real numbers. Then

⎛

⎝

n∑

j=1

xj

⎞

⎠

p

≤
n∑

j=1

xj
p. (2.19)

Theorem 2.4. Let f : X ×X → Y be a mapping such that

∥
∥f

(

x + y, z +w
)

+ f
(

x + y, z −w)

+ f
(

x − y, z +w)

+ f
(

x − y, z −w)

−4[f(x, z) − f(x,w) − f(y, z) − f(y,w)]
∥
∥
Y ≤ ϕ(x, y, z,w)

,
(2.20)

and let f(x, 0) = 0 and f(0, y) = 0 for all x, y, z,w ∈ X. Then there exists a unique bi-quadratic
mapping F : X ×X → Y such that

∥
∥f(x, y) − F(x, y)∥∥Y ≤ 1

16
L
(

x, x, y, y
)1/p (2.21)

for all x, y ∈ X.

Proof. Letting y = x and w = z in (2.20), we have

∥
∥
∥
∥
f(x, z) − 1

16
f(2x, 2z)

∥
∥
∥
∥
Y

≤ 1
16
ϕ(x, x, z, z) (2.22)

for all x, z ∈ X. Thus we obtain

∥
∥
∥
∥

1
16j

f(2jx, 2jz) − 1
16j+1

f(2j+1x, 2j+1z)
∥
∥
∥
∥
Y

≤ 1
16j+1

ϕ
(

2jx, 2jx, 2jz, 2jz
)

(2.23)

for all x, z ∈ X and all j. Replacing z by y in the above inequality, we see that

∥
∥
∥
∥

1
16j

f(2jx, 2jy) − 1
16j+1

f(2j+1x, 2j+1y)
∥
∥
∥
∥
Y

≤ 1
16j+1

ϕ
(

2jx, 2jx, 2jy, 2jy
)

(2.24)

for all x, y ∈ X and all j. By Lemma 2.3, for given integers l,m (0 ≤ l < m), we get

∥
∥
∥
∥

1
16l

f(2lx, 2ly) − 1
16m

f(2mx, 2my)
∥
∥
∥
∥

p

Y

≤
m−1∑

j=l

∥
∥
∥
∥

1
16j

f
(

2jx, 2jy
)

− 1
16j+1

f
(

2j+1x, 2j+1y
)
∥
∥
∥
∥

p

Y

≤ 1
16

m−1∑

j=l

1
16pj

ϕ
(

2jx, 2jx, 2jy, 2jy
)p

(2.25)
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for all x, y ∈ X. By (2.18) and (2.25), the sequence {(1/16j)f(2jx, 2jy)} is a Cauchy sequence
for all x, y ∈ X. Since Y is complete, the sequence {(1/16j)f(2jx, 2jy)} converges for all
x, y ∈ X. Define F : X ×X → Y by

F
(

x, y
)

:= lim
j→∞

1
16j

f
(

2jx, 2jy
)

(2.26)

for all x, y ∈ X.
By (2.20), we have

∥
∥
∥
∥

1
16j

f
(

2j
(

x + y
)

, 2j(z +w)
)

+
1
16j

f
(

2j
(

x + y
)

, 2j(z −w)
)

+
1
16j

f
(

2j
(

x − y), 2j(z +w)
)

+
1
16j

f
(

2j
(

x − y), 2j(z −w)
)

− 4
16j

f
(

2jx, 2jz
)

− 4
16j

f
(

2jx, 2jw
)

− 4
16j

f
(

2jy, 2jz
)

− 4
16j

f
(

2jy, 2jw
)
∥
∥
∥
∥
Y

≤ 1
16j

ϕ
(

2jx, 2jy, 2jz, 2jw
)

(2.27)

for all x, y, z,w ∈ X and all j. Letting j → ∞ and using (2.17), we see that F satisfies (1.5). By
Theorem B, we obtain that F is bi-quadratic. Setting l = 0 and taking m → ∞ in (2.25), one
can obtain the inequality (2.21). If G : X ×X → Y is another bi-quadratic mapping satisfying
(2.21), we obtain

∥
∥F(x, y) −G(x, y)∥∥pY

=
1

16pn
∥
∥F(2nx, 2ny) −G(2nx, 2ny)∥∥pY

≤ 1
16pn

∥
∥F(2nx, 2ny) − f(2nx, 2ny)∥∥pY +

1
16pn

∥
∥f(2nx, 2ny) −G(2nx, 2ny)∥∥pY

≤ 1
8

1
16pn

L
(

2nx, 2nx, 2ny, 2ny
) −→ 0 as n −→ ∞

(2.28)

for all x, y ∈ X. Hence the mapping F is the unique bi-quadratic mapping, as desired.

Corollary 2.5. Let ε be a nonnegative real number. Let f : X ×X → Y be a mapping such that

∥
∥f

(

x + y, z +w
)

+ f
(

x + y, z −w)

+ f
(

x − y, z +w)

+ f
(

x − y, z −w)

−4[f(x, z) − f(x,w) − f(y, z) − f(y,w)]∥
∥
Y ≤ ε,

(2.29)
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and let f(x, 0) = 0 and f(0, y) = 0 for all x, y, z,w ∈ X. Then there exists a unique bi-quadratic
mapping F : X ×X → Y such that

∥
∥f(x, y) − F(x, y)∥∥Y ≤ ε

p
√
16p − 1

(2.30)

for all x, y ∈ X.

Proof. In Theorem 2.4, putting ϕ(x, y, z,w) := ε for all x, y, z,w ∈ X, we get the desired result.
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