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The purpose of this paper is to introduce certain new sequence spaces using ideal convergence and
an Orlicz function in 2-normed spaces and examine some of their properties.

1. Introduction

The notion of ideal convergence was introduced first by Kostyrko et al. [1] as a generalization
of statistical convergence which was further studied in topological spaces [2]. More
applications of ideals can be seen in [3, 4].

The concept of 2-normed space was initially introduced by Gähler [5] as an interesting
nonlinear generalization of a normed linear space which was subsequently studied by many
authors (see, [6, 7]). Recently, a lot of activities have started to study summability, sequence
spaces and related topics in these nonlinear spaces (see, [8–10]).

Recall in [11] that an Orlicz function M : [0,∞) → [0,∞) is continuous, convex,
nondecreasing function such that M(0) = 0 and M(x) > 0 for x > 0, and M(x) → ∞ as
x → ∞.

Subsequently Orlicz function was used to define sequence spaces by Parashar and
Choudhary [12] and others.

If convexity of Orlicz function, M is replaced by M(x + y) ≤ M(x) +M(y), then this
function is called Modulus function, which was presented and discussed by Ruckle [13] and
Maddox [14].

Note that ifM is an Orlicz function thenM(λx) ≤ λM(x) for all λwith 0 < λ < 1.
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Let (X, ‖·‖) be a normed space. Recall that a sequence (xn)n∈N
of elements ofX is called

to be statistically convergent to x ∈ X if the set A(ε) = {n ∈ N : ‖xn − x‖ ≥ ε} has natural
density zero for each ε > 0.

A family I ⊂ 2Y of subsets a nonempty set Y is said to be an ideal in Y if (i) ∅ ∈ I; (ii)
A,B ∈ I imply A ∪ B ∈ I; (iii) A ∈ I, B ⊂ A imply B ∈ I, while an admissible ideal I of Y
further satisfies {x} ∈ I for each x ∈ Y , [9, 10].

Given I ⊂ 2N is a nontrivial ideal in N. The sequence (xn)n∈N
in X is said to be I-

convergent to x ∈ X, if for each ε > 0 the set A(ε) = {n ∈ N : ‖xn − x‖ ≥ ε} belongs to I,
[1, 3].

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a
function ‖·, ·‖ : X × X → R which satisfies (i) ‖x, y‖ = 0 if and only if x and y are linearly
dependent, (ii) ‖x, y‖ = ‖y, x‖, (iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ R, and (iv) ‖x, y + z‖ ≤ ‖x, y‖ +
‖x, z‖. The pair (X, ‖·, ·‖) is then called a 2-normed space [6].

Recall that (X, ‖·, ·‖) is a 2-Banach space if every Cauchy sequence in X is convergent
to some x in X.

Quite recently Savaş [15] defined some sequence spaces by using Orlicz function and
ideals in 2-normed spaces.

In this paper, we continue to study certain new sequence spaces by using Orlicz
function and ideals in 2-normed spaces. In this context it should be noted that though
sequence spaces have been studied before they have not been studied in nonlinear structures
like 2-normed spaces and their ideals were not used.

2. Main Results

Let Λ = (λn) be a nondecreasing sequence of positive numbers tending to ∞ such that λn+1 ≥
λn + 1, λ1 = 0 and let I be an admissible ideal of N, let M be an Orlicz function, and let
(X, ‖·, ·‖) be a 2-normed space. Further, let p = (pk) be a bounded sequence of positive real
numbers. By S(2 −X) we denote the space of all sequences defined over (X, ‖·, ·‖). Now, we
define the following sequence spaces:

WI(λ,M, p, ‖, ·, ‖)

=

{

x ∈ S(2 −X) : ∀ε > 0

{

n ∈ N :
1
λn

∑

k∈In

[
M

(∥∥∥∥
xk − L

ρ
, z

∥∥∥∥

)]pk
≥ ε

}

∈ I

for some ρ > 0, L ∈ X and each z ∈ X

}

,

WI
0
(
λ,M, p, ‖, ·, ‖)

=

{

x ∈ S(2 −X) : ∀ε > 0

{

n ∈ N :
1
λn

∑

k∈In

[
M

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

)]pk
≥ ε

}

∈ I

for some ρ > 0, and each z ∈ X

}

,
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W∞
(
λ,M, p, ‖, ·, ‖)

=

{

x ∈ S(2 −X) : ∃K > 0 s.t. sup
n∈N

1
λn

∑

k∈In

[
M

(∥∥
∥
∥
xk

ρ
, z

∥
∥
∥
∥

)]pk
≤ K

for some ρ > 0, and each z ∈ X

}

,

WI
∞
(
λ,M, p, ‖, ·, ‖)

=

{

x ∈ S(2 −X) : ∃K > 0 s.t.

{

n ∈ N :
1
λn

∑

k∈In

[
M

(∥∥
∥
∥
xk

ρ
, z

∥
∥
∥
∥

)]pk
≥ K

}

∈ I

for some ρ > 0, and each z ∈ X

}

,

(2.1)

where In = [n − λn + 1, n].
The following well-known inequality [16, page 190] will be used in the study.

If 0 ≤ pk ≤ sup pk = H, D = max
(
1, 2H−1

)
(2.2)

then

|ak + bk|pk ≤ D
{|ak|pk + |bk|pk

}
(2.3)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.

Theorem 2.1. WI(λ,M, p, ‖, ·, ‖), WI
0 (λ,M, p, ‖, ·, ‖), and WI

∞(λ,M, p, ‖, ·, ‖) are linear spaces.

Proof. We will prove the assertion for WI
0 (λ,M, p, ‖, ·, ‖) only and the others can be proved

similarly. Assume that x, y ∈ WI
0 (λ,M, ‖, ·, ‖) and α, β ∈ R, so

{

n ∈ N :
1
λn

∑

k∈In

[
M

(∥∥∥∥
xk

ρ1
, z

∥∥∥∥

)]pk
≥ ε

}

∈ I for some ρ1 > 0,

{

n ∈ N :
1
λn

∑

k∈Ir

[
M

(∥∥∥∥
xk

ρ2
, z

∥∥∥∥

)]pk
≥ ε

}

∈ I for some ρ2 > 0.

(2.4)
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Since ‖, ·, ‖ is a 2-norm, and M is an Orlicz function the following inequality holds:

1
λn

∑

k∈In

[

M

(∥∥
∥
∥
∥

(
αxk + βyk

)

(|α|ρ1 +
∣
∣β
∣
∣ρ2

) , z

∥
∥
∥
∥
∥

)]pk

≤ D
1
λn

∑

k∈In

[
|α|

(|α|ρ1 +
∣
∣β
∣
∣ρ2

)M
(∥∥
∥
∥
xk

ρ1
, z

∥
∥
∥
∥

)]pk

+D
1
λn

∑

k∈In

[ ∣
∣β
∣
∣

(|α|ρ1 +
∣
∣β
∣
∣ρ2

)M
(∥∥
∥
∥
yk

ρ2
, z

∥
∥
∥
∥

)]pk

≤ DF
1
λn

∑

k∈In

[
M

(∥∥
∥
∥
xk

ρ1
, z

∥
∥
∥
∥

)]pk
+DF

1
λn

∑

k∈In

[
M

(∥∥
∥
∥
yk

ρ2
, z

∥
∥
∥
∥

)]pk
,

(2.5)

where

F = max

⎡

⎣1,

(
|α|

(|α|ρ1 +
∣∣β
∣∣ρ2

)

)H

,

( ∣∣β
∣∣

(|α|ρ1 +
∣∣β
∣∣ρ2

)

)H
⎤

⎦. (2.6)

From the above inequality, we get

{

n ∈ N :
1
λn

∑

k∈In

[

M

(∥∥∥∥∥

(
αxk + βyk

)

(|α|ρ1 +
∣∣β
∣∣ρ2

) , z

∥∥∥∥∥

)]pk
≥ ε

}

⊆
{

n ∈ N : DF
1
λn

∑

k∈In

[
M

(∥∥∥∥
xk

ρ1
, z

∥∥∥∥

)]pk
≥ ε

2

}

∪
{

n ∈ N : DF
1
λn

∑

k∈In

[
M

(∥∥∥∥
yk

ρ2
, z

∥∥∥∥

)]pk
≥ ε

2

}

.

(2.7)

Two sets on the right hand side belong to I and this completes the proof.

It is also easy to see that the spaceW∞(λ,M, p, ‖, ·, ‖) is also a linear space and we now
have the following.

Theorem 2.2. For any fixed n ∈ N, W∞(λ,M, p, ‖, ·, ‖) is paranormed space with respect to the
paranorm defined by

gn(x) = inf

⎧
⎨

⎩
ρpn/H : ρ > 0 s.t.

(

sup
n

1
λn

∑

k∈In

[
M

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

)]pk
)1/H

≤ 1, ∀z ∈ X

⎫
⎬

⎭
. (2.8)

Proof. That gn(θ) = 0 and gn(−x) = g(x) are easy to prove. So we omit them.
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(iii) Let us take x = (xk) and y = (yk) inW∞(λ,M, p, ‖, ·, ‖). Let

A(x) =

{

ρ > 0 : sup
n

1
λn

∑

k∈In

[
M

(∥∥
∥
∥
xk

ρ
, z

∥
∥
∥
∥

)]pk
≤ 1, ∀z ∈ X

}

,

A
(
y
)
=

{

ρ > 0 : sup
n

1
λn

∑

k∈In

[
M

(∥∥
∥
∥
yk

ρ
, z

∥
∥
∥
∥

)]pk
≤ 1, ∀z ∈ X

}

.

(2.9)

Let ρ1 ∈ A(x) and ρ2 ∈ A(y), then if ρ = ρ1 + ρ2, then, we have

sup
n

1
λn

∑

n∈In
M

(∥∥
∥
∥
∥

(
xk + yk

)

ρ
, z

∥
∥
∥
∥
∥

)

≤ ρ1
ρ1 + ρ2

sup
n

1
λn

∑

k∈In
M

(∥∥
∥
∥
xk

ρ1
, z

∥∥
∥
∥

)

+
ρ2

ρ1 + ρ2
sup
n

1
λn

∑

k∈In
M

(∥∥∥∥
yk

ρ2
, z

∥∥∥∥

)
.

(2.10)

Thus, supn(1/λn)
∑

n∈In M(‖(xk + yk)/(ρ1 + ρ2), z‖)pk ≤ 1 and

gn
(
x + y

) ≤ inf
{(

ρ1 + ρ2
)pn/H : ρ1 ∈ A(x), ρ2 ∈ A

(
y
)}

≤ inf
{
ρ
pn/H

1 : ρ1 ∈ A(x)
}
+ inf

{
ρ
pn/H

2 : ρ2 ∈ A
(
y
)}

= gn(x) + gn
(
y
)
.

(2.11)

(iv) Finally using the same technique of Theorem 2 of Savaş [15] it can be easily seen
that scalar multiplication is continuous. This completes the proof.

Corollary 2.3. It should be noted that for a fixed F ∈ I the space

W∞(F)
(
λ,M, p, ‖, ·, ‖)

=

{

x ∈ S(2 −X) : ∃K > 0 s.t. sup
n∈N−F

1
λn

∑

k∈In

[
M

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

)]pk
≤ K

for some ρ > 0, and each z ∈ X

}

,

(2.12)

which is a subspace of the space WI
∞(λ,M, p, ‖, ·, ‖) is a paranormed space with the paranorms gn for

n/∈F and gF = infn∈(N−F)gn.

Theorem 2.4. LetM,M1,M2, be Orlicz functions. Then we have

(i) WI
0 (λ,M1, p, ‖, ·, ‖) ⊆ WI

0 (λ,M ◦M1, p, ‖, ·, ‖) provided (pk) is such that H0 = inf pk >
0.

(ii) WI
0 (λ, M1, p, ‖, ·, ‖) ∩WI

0 (λ,M2, p, ‖, ·, ‖) ⊆ WI
0 (λ, M1 +M2, p, ‖, ·, ‖).
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Proof. (i) For given ε > 0, first choose ε0 > 0 such that max{εH0 , εH0
0 } < ε. Now using

the continuity of M choose 0 < δ < 1 such that 0 < t < δ ⇒ M(t) < ε0. Let (xk) ∈
W0(λ,M1, p, ‖, ·, ‖). Now from the definition

A(δ) =

{

n ∈ N :
1
λn

∑

n∈In

[
M1

(∥∥
∥
∥
xk

ρ
, z

∥
∥
∥
∥

)]pk
≥ δH

}

∈ I. (2.13)

Thus if n/∈A(δ) then

1
λn

∑

n∈In

[
M1

(∥∥
∥
∥
xk

ρ
, z

∥
∥
∥
∥

)]pk
< δH, (2.14)

that is,

∑

n∈In

[
M1

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

)]pk
< λnδ

H, (2.15)

that is,

[
M1

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

)]pk
< δH, ∀k ∈ In, (2.16)

that is,

M1

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

)
< δ, ∀k ∈ In. (2.17)

Hence from above using the continuity of M we must have

M

(
M1

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

))
< ε0, ∀k ∈ In, (2.18)

which consequently implies that

∑

k∈In

[
M

(
M1

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

))]pk
< λn max

{
εH0 , εH0

0

}
< λnε, (2.19)

that is,

1
λn

∑

k∈In

[
M

(
M1

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

))]pk
< ε. (2.20)
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This shows that

{

n ∈ N :
1
λn

∑

k∈In

[
M

(
M1

(∥∥
∥
∥
xk

ρ
, z

∥
∥
∥
∥

))]pk
≥ ε

}

⊂ A(δ) (2.21)

and so belongs to I. This proves the result.
(ii) Let (xk) ∈ WI

0 (M1, p, ‖, ·, ‖) ∩WI
0 (M2, p, ‖, ·, ‖), then the fact

1
λn

[
M1 +M2

(∥∥
∥
∥
xk

ρ
, z

∥
∥
∥
∥

)]pk
≤ D

1
λn

[
M1

(∥∥
∥
∥
xk

ρ
, z

∥
∥
∥
∥

)]pk
+D

1
λn

[
M2

(∥∥
∥
∥
xk

ρ
, z

∥
∥
∥
∥

)]pk
(2.22)

gives us the result.

Definition 2.5. Let X be a sequence space. Then X is called solid if (αkxk) ∈ X whenever
(xk) ∈ X for all sequences (αk) of scalars with |αk| ≤ 1 for all k ∈ N.

Theorem 2.6. The sequence spacesWI
0 (λ,M, p, ‖, ·, ‖), WI

∞(λ,M, p, ‖, ·, ‖) are solid.

Proof. We give the proof forWI
0 (λ,M, p, ‖, ·, ‖) only. Let (xk) ∈ WI

0 (λ,M, p, ‖, ·, ‖) and let (αk)
be a sequence of scalars such that |αk| ≤ 1 for all k ∈ N. Then we have

{

n ∈ N :
1
λn

∑

k∈In

[
M

(∥∥∥∥
(αkxk)

ρ
, z

∥∥∥∥

)]pk
≥ ε

}

⊆
{

n ∈ N :
C

λn

∑

k∈In

[
M

(∥∥∥∥
xk

ρ
, z

∥∥∥∥

)]pk
≥ ε

}

∈ I,

(2.23)

where C = maxk{1, |αk|H}. Hence (αkxk) ∈ WI
0 (λ,M, p, ‖, ·, ‖) for all sequences of scalars (αk)

with |αk| ≤ 1 for all k ∈ N whenever (xk) ∈ WI
0 (λ,M, p, ‖, ·, ‖).
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