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We derive the modified p-adic q-measures related to q-Nasybullin’s type lemma.

1. Introduction

Let p be a fixed prime number. Throughout this paper, the symbols Z, Zp, Qp, and Cp denote
the ring of rational integers, the ring of p-adic rational integers, the field of p-adic rational
numbers, and the completion of algebraic closure of Qp, respectively. Let N be the set of
natural numbers and Z+ = N ∪ {0}. The p-adic absolute value in Cp is normalized in such
a way that |p|p = 1/p (see [1–17]). For f ∈ N with f ≡ 1 (mod 2), let f = [f, p] be the least
common multiple of f and p. We set

Zf =
lim←−n Z

fpnZ
, for n ≥ 0,

Z
∗
f
= ∪

0<a<fp
(a,p)=1

(
a + fp Zp

)
,

a + fpnZp =
{
x ∈ Zf | x ≡ a

(
mod fpn

)}
,

(1.1)

where a ∈ Z lies in 0 ≤ a < fpn.
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When one talks of q-extension, q is variously considered as an indeterminate, a
complex number q ∈ C, or a p-adic number q ∈ Cp. In this paper, we assume that q ∈ Cp

with |1 − q|p < 1 (see [1–6, 18–23]). As the definition of q-number, we use the following
notations:

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

(1.2)

(see [1–23]).
Let UD(Zp) be the space of uniformly differentiable function on Zp. For f ∈ UD(Zp),

the p-adic q-invariant integral on Zp is defined as

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

1 + q

1 + qp
N

pN−1∑
x=0

f(x)
(−q)x (1.3)

(see [2, 3]).
The q-Euler numbers, εn,q, can be determined inductively by

ε0,q = 1, q
(
qε + 1

)n + εn,q =

⎧
⎨
⎩
[2]q if n = 0,

0 if n > 0,
(1.4)

with the usual convention of replacing εi by εi,q (see [11]). The modified q-Euler numbers
En,q of εn,q are defined in [2] as follows:

E0,q =
[2]q
2

,
(
qE + 1

)n + En,q =

⎧
⎨
⎩
[2]q if n = 0,

0 ifn > 0,
(1.5)

with the usual convention of replacing Ei by Ei,q. For any positive integer N,

μq

(
a + fpNZp

)
=

(−q)a[
fpN

]
−q

(1.6)

is known as a measure on Zf (see [9]). In [2], the Witt’s type formulas for En,q are given by

En,q =
∫

Zp

q−x[x]nqdμq(x) = [2]q
1(

1 − q)n
n∑
l=0

(
n

l

)
(−1)l 1

1 + ql
. (1.7)

The modified q-Euler polynomials are also defined by

En,q(x) =
(
[x]q + qxE

)n
=

n∑
l=0

(
n

l

)
El,qq

lx[x]n−lq , (1.8)
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with the usual convention of replacing En by En,q (see [2]). Thus, we note that

En,q(x) =
∫

Zp

q−t[x + t]nqdμq(t) = [2]q
1(

1 − q)n
n∑
l=0

(
n

l

)
(−1)l qlx

1 + ql
. (1.9)

Recently Govil and Gupta [22] have introduced a new type of q-integrated Meyer-
König-Zeller-Durrmeyer (q-MKZD) operators, obtained moments for these operators, and
estimated the convergence of these integrated q-MKZD operators. In this paper, we consider
the q-extension which is in a direction different than that of Govil and Gupta [22].

Let K be a field over Qp. Then we call a function μ a K-measure on Z
∗
f
if μ is finitely

additive function defined on open-closed subsets in Z
∗
f
, whose values are in the field K. Any

open-closed subset in Z
∗
f
is a disjoint union of some finite intervals Ia,n = a + pnf Zp in Z

∗
f
,

where a ∈ Zis prime to f , and therefore a K-measure μ is determined by its values on all
intervals in Z

∗
f
. LetQ(f) denote the set of all rational numbers, whose denominator is a divisor

of fpn for some n ≥ 0. In Section 2, we derive the modified p-adic q-measures related to q-
Nasybullin’s type lemma.

2. The Modified p-Adic q-Measure

Let T be a K-valued function defined on Q(f) with the following property.
There exist two constants A,B ∈ K such that

p−1∑
k=0

T

([
x + k

p

]

qp

)
(−1)k = AT

(
[x]q

)
+ BT

([
px
]
q1/p

)
,

T
(
[x + 1]q

)
= T
(
[x]q

)
,

(2.1)

for any number x ∈ Q(f). Suppose that ρ is a root of the equation y2 = Ay + Bp. Then we
define

μ(Ia,n) = ρ−n(−1)aT
⎛
⎝
[

a

pnf

]

qp
nf

⎞
⎠ + Bρ−(n+1)(−1)aT

⎛
⎝
[

a

pn−1f

]

qp
n−1f

⎞
⎠, (2.2)
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for any interval Ia,n. From (2.2), we note that

p−1∑
k=0

μ
(
Ia+pnfk,n+1

)

= ρ−(n+1)
p−1∑
k=0

T

⎛
⎝
[
a + pnfk

pn+1f

]

qp
n+1f

⎞
⎠(−1)a+k + Bρ−(n+2)

p−1∑
k=0

T

⎛
⎝
[
a + pnfk

pnf

]

qp
nf

⎞
⎠(−1)a+k

= ρ−(n+1)(−1)a
p−1∑
k=0

T

⎛
⎝
[
k+a/pnf

p

]

(qpnf )
p

⎞
⎠(−1)k + Bρ−(n+2)(−1)a

p−1∑
k=0

T

⎛
⎝
[

a

pnf
+k

]

qp
nf

⎞
⎠(−1)k

= ρ−(n+1)(−1)aAT

⎛
⎝
[

a

pnf

]

qp
nf

⎞
⎠ + ρ−(n+1)B(−1)aT

⎛
⎝
[

a

pn−1f

]

qp
n−1f

⎞
⎠

+ Bρ−(n+2)(−1)apT
⎛
⎝
[

a

pnf

]

qp
nf

⎞
⎠

= ρ−(n+2)(−1)a(ρA + Bp
)
T

⎛
⎝
[

a

pnf

]

qp
nf

⎞
⎠ + ρ−(n+1)B(−1)aT

⎛
⎝
[

a

pn−1f

]

qp
n−1f

⎞
⎠

= μ(Ia,n).
(2.3)

Thus, we have

μ(Ia,n) =
∑

b (mod pn+1f)
b≡a (mod pnf)

μ(Ib,n+1).
(2.4)

Therefore we obtain the following theorem.

Theorem 2.1. For f ∈ N with f ≡ 1 (mod 2) and f = [p, f], let T be a K-valued function defined
on Q(f) with the following properties.

There exist two constants A,B ∈ K such that

p−1∑
k=0

T

([
x + k

p

]

qp

)
(−1)k = AT

(
[x]q
)
+ BT

([
p x
]
q1/p

)
,

T
(
[x + 1]q

)
= T
(
[x]q
)
,

(2.5)
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for any x ∈ Q(f). Suppose that ρ is a root of the equation y2 = Ay + Bp. Then there exists a K(ρ)-
measure μ on Z

∗
f
such that

μ(Ia,n) = ρ−n(−1)aT
⎛
⎝
[

a

pnf

]

qp
nf

⎞
⎠ + Bρ−(n+1)(−1)aT

⎛
⎝
[

a

pn−1f

]

qp
n−1f

⎞
⎠, (2.6)

for any interval Ia,n.

From (1.9), we note that

En,q(x) =
[
p
]n
q

[2]q
[2]qp

p−1∑
a=0

(−1)aEn,qp

(
x + a

p

)
. (2.7)

Let Em,q(x) be the mth q-Euler polynomials and let Pm([x]q) be the mth q-Euler functions,
that is, for 0 ≤ x < 1,

Pm

(
[x]q

)
= Em,q(x). (2.8)

Note that limq→ 1 Pm([x]q) = Pm(x) is the Euler function. By (2.7), we see that

[2]q
[2]qp

[
p
]m
q

p−1∑
a=0

(−1)aPm

([
x + i

p

]

qp

)
= Pm

(
[x]q

)
. (2.9)

Thus, the q-Euler function Pm([x]q) satisfies the properties of Theorem 2.1 with constants

A =
[
p
]−m
q

[2]qp

[2]q
, B = 0. (2.10)

Then ρ /= 0 is equal to [p]−mq ([2]qp/[2]q), as ρ2 = Aρ + Bp reduces simply to ρ2 =
[p]−mq ([2]qp/[2]q)ρ. Therefore, we obtain the following theorem.

Theorem 2.2. For m ∈ Z+, let the function μm = μm,q be defined on Ia,n as follows:

μm(Ia,n) =
[
fpn
]m
q

[2]q
[2]qpnf

(−1)aPm

⎛
⎝
[

a

pnf

]

qp
nf

⎞
⎠. (2.11)

Then μm is a Qp(q)-measure on Z
∗
f
.
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For f ∈ N with f ≡ 1 (mod 2) and f = [f, p ], let χ be a primitive Dirichlet character
modulo f . Then the generalized q-Euler numbers are defined as follows:

En,χ,q =
[
f
]n
q

[2]q
[2]qf

f−1∑
a=0

χ(a)(−1)aEn,qf

(
a

f

)
. (2.12)

From (2.12) and (2.7), we can easily derive the following Witt’s formula:

En,χ,q =
∫

Zf

[x]nqq
−xχ(x)dμq(x)

= [d]nq
[2]q
[2]qd

f−1∑
a=0

χ(a)(−1)a
∫

Zp

[a
d
+ x
]
qf
q−dxdμqd(x)

=
[
f
]n
q

[2]q
[2]qf

f−1∑
a=0

χ(a)(−1)a
∫

Zp

[
a

f
+ x

]

qf

q−fxdμqf (x)

=
[
f
]n
q

[2]q
[2]qf

f−1∑
a=0

χ(a)(−1)aEn,qf

(
a

f

)
.

(2.13)

We can compute a q-analogue of the p-adic q-l-function by the following p-adic q-
Mellin Mazur transform with respect to μm.

Let

L
(
μm, χ

)
=
∫

Z
∗
f

χ(a)dμm(a)

= lim
ρ→∞

∑

a (mod pρf)
a∈Z, (a,p)=1

χ(a)μm

(
Ia,ρ
)
.

(2.14)

Since the character χ is constant on the interval Ia,0,

L
(
μm, χ

)
=

∑

a (mod f)
(a,p)=1

χ(a)μm(Ia,0)

=
∑

a (mod f)
(a,p)=1

χ(a)
[
f
]m
q

[2]q
[2]qf

(−1)aPm

⎛
⎝
[
a

f

]

qf

⎞
⎠

= Em,χ,q − χ
(
p
) [2]q
[2]qp

[
p
]m
q Em,χ,qp ,

(2.15)
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where Em,χ,q are the mth generalized q-Euler numbers attached to χ. For m ∈ Z+, we have

L
(
μm, χw

−m) = Em,χw−m,q − χw−m
(
p
) [2]q
[2]qp

[
p
]m
q Em,χw−m,qp

= lp,q
(−m,χ

)
.

(2.16)

Assume that q ∈ Cp with |1 − q|p < p−1/(p−1). Letw be the Teichmüller character mod p.
For x ∈ Z

∗
f
, we set 〈x〉q = [x]q/w(x). Note that |〈x〉q − 1|p < p−1/(p−1) and 〈x〉sq are defined by

exp(s logp〈x〉q) for |s|p ≤ 1. For s ∈ Zp, we define

lp,q(s, x) =
∫

Z
∗
f

〈x〉−sq χ(x)dμq(x). (2.17)

For (2.14), (2.16) and (2.17), we note that

lp,q
(
−k, χwk

)
=
∫

Z
∗
f

[x]kqχ(x)dμq(x) =
∫

Z
∗
f

χ(x)dμk(x). (2.18)

Since |〈x〉q −1|p < p−1/(p−1) for x ∈ Z
∗
f
, we have 〈x〉pnq ≡ 1 (mod pn). Let k ≡ k′(mod pn(p−1)).

Then we have

lp,q
(
−k, χwk

)
≡ lp,q

(
−k′, χwk′

) (
mod pn

)
. (2.19)

Therefore, we obtain the following theorem.

Theorem 2.3. For k ≡ k′(mod pn(p − 1)), we have

L
(
μk, χ

) ≡ L
(
μk′ , χ

) (
mod pn

)
. (2.20)
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