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This paper investigates the upper semicontinuity of the solution map for a parametric weak vector
variational inequality associated to a v-hemicontinuous and weakly C-pseudomonotone operator.

1. Introduction and Preliminaries

A vector variational inequality (VVI, in short) was first introduced by Giannessi [1] in the
setting of finite-dimensional Euclidean space. Later on, it was studied and generalized to
infinite-dimensional spaces. Existences of the solutions for VVI have been studied extensively
in various versions; see [2–6] and references therein.

Stability of the solution map for VVI or vector equilibrium problems is an important
topic in optimization theory. A great deal of papers have been denoted to study the
semicontinuity and continuity of the solution maps; see [7–18] and references therein. All
results of the stability of the solution map for VVI in the literature are obtained based on
continuity of the operator. It is well known that v-hemicontinuity is weaker than continuity.
In this paper, our aim is to investigate the upper semicontinuity of the solution map for a
parametric weak vector variational inequality associated to a v-hemicontinuous and weakly
C-pseudomonotone operator.

Let X, Y , and W (the spaces of parameters) be Banach spaces and let C ⊂ Y be a
pointed closed and convex cone with nonempty interior intC. Let L(X,Y ) be the space of all
linear continuous operators from X to Y . The value of a linear operator t ∈ L(X,Y ) at x ∈ X
is denoted by 〈t, x〉. Consider the following weak vector variational inequality problem:

find x ∈ K such that
〈
T(x), y − x

〉
/∈ − intC, ∀y ∈ K, (WVVI)

where K ⊂ X is a nonempty subset and T : X → L(X,Y ) is a vector-valued mapping.
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When T is perturbed by a parameter μ, which varies over a nonempty set Λ ⊂ W , for
a given μ, we can define the parametric weak vector variational inequality problem

find x ∈ K such that
〈
T
(
x, μ

)
, y − x

〉
/∈ − intC, ∀y ∈ K, (PWVVI)

where K ⊂ X is a nonempty subset and T : X ×Λ → L(X,Y ) is a vector-valued mapping.
For each μ ∈ Λ, we denote the solution map of (PWVVI) by S(μ), that is,

S
(
μ
)
=
{
x ∈ K | 〈T(x, μ), y − x

〉
/∈ − intC, ∀y ∈ K

}
. (1.1)

Throughout the paper, we always assume that S(μ) is nonempty for all μ in a
neighborhood of μ ∈ Λ. Now, we recall some basic definitions and their properties.

Definition 1.1 (see [4, 6]). LetK be a nonempty convex subset ofX and let T : K → L(X,Y ) be
an operator. T is said to be v-hemicontinuous if and only if, for every x, y ∈ K and t ∈ [0, 1],
the mapping t → 〈T(ty + (1 − t)x), y − x〉 is continuous at 0+.

Definition 1.2 (see [6]). LetK be a nonempty subset ofX and T : K → L(X,Y ) be an operator.
T is weakly C-pseudomonotone on K if, for every pair of points x ∈ K, y ∈ K, one has that
〈Tx, y − x〉/∈ − intC implies that 〈T(y), y − x〉/∈ − intC.

Proposition 1.3 (see [6, Generalized Linearization Lemma]). LetK be a nonempty convex subset
of X and let T : K → L(X,Y ) be an operator. Consider the following problems:

(I) x ∈ K such that 〈Tx, y − x〉/∈ − intC for all y ∈ K,

(II) x ∈ K such that 〈Ty, y − x〉/∈ − intC for all y ∈ K.

Then the following are obtained.

(i) Problem (I) implies Problem (II) if T is weakly C-pseudomonotone.

(ii) Problem (II) implies Problem (I) if T is v-hemicontinuous.

Let F : Λ → 2X be a set-valued mapping, given that λ ∈ Λ.

Definition 1.4 (see [19, 20]). (i) F is called lower semicontinuous (l.s.c) at λ if, for any open
set V satisfying V ∩ F(λ)/= ∅, there exists δ > 0 such that for every λ ∈ B(λ, δ), V ∩ F(λ)/= ∅.

(ii) F is called upper semicontinuous (u.s.c) at λ if, for any open set V satisfying F(λ) ⊂
V , there exists δ > 0 such that, for every λ ∈ B(λ, δ), F(λ) ⊂ V .

We say F is l.s.c (resp., u.s.c) on Λ, if it is l.s.c (resp., u.s.c) at each λ ∈ Λ. F is said to be
continuous on Λ if it is both l.s.c and u.s.c on Λ.

Proposition 1.5 (see [19, 21]). (i) F is l.s.c at λ if and only if, for any sequence {λn} ⊂ Λ with
λn → λ and any x ∈ F(λ), there exists xn ∈ F(λn) such that xn → x.

(ii) If F has compact values (i.e., F(λ) is a compact set for each λ ∈ Λ), then F is u.s.c at λ if
and only if, for any sequence {λn} ⊂ Λ with λn → λ and for any xn ∈ F(λn), there exist x ∈ F(λ)
and a subsequence {xnk} of xn such that xnk → x.
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2. Main Results

In this section, we mainly discuss the upper semicontinuity of the solution map for (PWVVI).

Lemma 2.1. Let K be a nonempty compact convex subset of X. Suppose that, for any μ ∈ Λ, T(·, μ)
is v-hemicontinuous and weakly C-pseudomonotone on K. Then, S(·) has compact values on Λ, that
is, S(μ) is a compact set for each μ ∈ Λ.

Proof. For any μ ∈ Λ, take any sequence xn ∈ S(μ)with xn → x; we have

〈T(xn, μ
)
, y − xn〉 ∈ Y \ − intC, ∀y ∈ K. (2.1)

By Proposition 1.3 and the weakly C-pseudomonotonicity of T(·, μ), we get

〈
T
(
y, μ

)
, y − xn

〉 ∈ Y \ − intC, ∀y ∈ K. (2.2)

From T(y, μ) ∈ L(X,Y ), we have 〈T(y, μ), y − xn〉 → 〈T(y, μ), y − x〉 as n → ∞. It
follows from the closedness of Y \ − intC and (2.2) that

〈
T
(
y, μ

)
, y − x

〉 ∈ Y \ − intC, ∀y ∈ K. (2.3)

Moreover, by Proposition 1.3 and the v-hemicontinuity of T(·, μ), we have

〈
T
(
x, μ

)
, y − x

〉 ∈ Y \ − intC, ∀y ∈ K. (2.4)

That is x ∈ S(μ). Thus, S(μ) is a closed set. Furthermore, it follows from S(μ) ⊂ K and the
compactness of K that S(μ) is a compact set. The proof is complete.

Theorem 2.2. Let K be a nonempty compact convex subset of X. Suppose that the following
conditions are satisfied.

(i) For any μ ∈ Λ, T(·, μ) is v-hemicontinuous on K,

(ii) For any μ ∈ Λ, T(·, μ) is weakly C-pseudomonotone on K,

(iii) For any x ∈ X, T(x, ·) is continuous on Λ.

Then, S(·) is u.s.c on Λ.

Proof. For any μ0 ∈ Λ, any sequences {μn} ⊂ Λ with μn → μ0, and xn ∈ S(μn), we have
xn ∈ K and

〈T(xn, μn

)
, y − xn〉 ∈ Y \ − intC, ∀y ∈ K. (2.5)

SinceK is a compact set, there are an x0 ∈ K and a subsequence {xnk} ⊂ {xn} such that
xnk → x0. Particularly, from (2.5), we get

〈T(xnk , μnk

)
, y − xnk〉 ∈ Y \ − intC, ∀y ∈ K. (2.6)
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By Proposition 1.3 and (iii), we can obtain that

〈T(y, μnk

)
, y − xnk〉 ∈ Y \ − intC, ∀y ∈ K. (2.7)

Since T(y, ·) is continuous and

∥
∥〈T(y, μnk

)
, y − xnk〉 − 〈T(y, μ0

)
, y − x0〉

∥
∥

≤ ∥
∥〈T

(
y, μnk

)
, y − xnk

〉 − 〈T(y, μ0
)
, y − xnk〉

∥
∥

+
∥
∥〈T

(
y, μ0

)
, y − xnk

〉 − 〈
T
(
y, μ0

)
, y − x0

〉∥∥

≤ ∥
∥T

(
y, μnk

) − T
(
y, μ0

)∥∥
∥
∥y − xnk

∥
∥ +

∥
∥T

(
y, μ0

)∥∥‖xnk − x0‖,

(2.8)

we get 〈T(y, μnk), y −xnk〉 → 〈T(y, μ0), y − x0〉, as nk → ∞. It follows from the closedness of
Y \ − intC and (2.7) that

〈T(y, μ0
)
, y − x0〉 ∈ Y \ − intC, ∀y ∈ K. (2.9)

Moreover, by Proposition 1.3 and (ii), we have

〈T(x0, μ0
)
, y − x0〉 ∈ Y \ − intC, ∀y ∈ K, (2.10)

that is x0 ∈ S(μ0).
Thus, for any sequence μn ⊂ Λ with μn → μ0 and for any xn ∈ S(μn), there exist

x0 ∈ S(μ0) and a subsequence {xnk} of {xn} such that xnk → x0. By Proposition 1.5 and
Lemma 2.1, we have S(·) is u.s.c at μ0. From the arbitrariness of μ0, we can get S(·) is u.s.c on
Λ. The proof is complete.

Remark 2.3. In [7–10], the upper semicontinuity of the solution map for (PVVI) has been
discussed based on the continuity of the operator. Note that v-hemicontinuity is weaker
than continuity. Moreover, together with the assumption of weakly C-pseudomonotonicity,
v-hemicontinuity may not derive the continuity of the operator. Thus, it is necessary to
investigate the upper semicontinuity of the solution map for (PVVI) associated to a v-
hemicontinuous and weakly C-pseudomonotone operator. Now we give an example to
illustrate our result.

Example 2.4. Let X = R2, Y = R, K = [0, 1] × [0, 1], Λ = [0, 1] and

T
(
x, μ

)
=

⎧
⎪⎪⎨

⎪⎪⎩

μx2
1x2

x2
1 + x2

2

, if x /= (0, 0),

1, if x = (0, 0).

(2.11)
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Then,

〈T(x, μ), y − x〉 =

⎧
⎪⎪⎨

⎪⎪⎩

μx21x2

x2
1 + x2

2

(
y1 − x1, y2 − x2

)
, if x /= (0, 0),

0, if x = (0, 0).

(2.12)

It is clear that conditions (ii) and (iii) of Theorem 2.2 are satisfied. For any ray x2 =
kx1(0 ≤ k < ∞), T(·, μ) is continuous. Thus, T(·, μ) is v-hemicontinuous on K and condition
(i) of Theorem 2.2 is satisfied. By Theorem 2.2, we conclude that S(·) is u.s.c on Λ. In fact,

S
(
μ
)
=

⎧
⎨

⎩

{0}, if μ/= 0,

[0, 1], if μ = 0.
(2.13)

Then, by the definition of upper semicontinuity, it follows readily that the solutions map S(μ)
is u.s.c on Λ.

However, for x = (x1, x2)
 → x0 = (0, 0) with x2 = x2

1, we have T(x, μ) = 1/2, but
T(x0, μ) = 0. Thus, for any μ ∈ Λ, T(·, μ) is not continuous at (0, 0). Therefore, the theorems
concerning the upper semicontinuity in the literatures are not applicable.
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