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We introduce a new class of sequences called GM
r

θ and give a sufficient and necessary condition
for weighted Lp integrability of trigonometric series with coefficients to belong to the above class.
This is a generalization of the result proved by M. Dyachenko and S. Tikhonov (2009). Then we
discuss the relations among the weighted best approximation and the coefficients of trigonometric
series. Moreover, we extend the results of B. Wei and D. Yu (2009) to the class GM

r

θ .

1. Introduction

Let Lp, 1 ≤ p < ∞, be the space of all p-power integrable functions f of period 2π equipped
with the norm

∥
∥f
∥
∥
Lp =

(∫π

−π

∣
∣f(x)

∣
∣
p
dx

)1/p

. (1.1)

Write

f(x) =
∞∑

k=1

ak cos kx, g(x) =
∞∑

k=1

bk sin kx (1.2)

for those x′s where the series converge. Denote by φ either f or g, and let λn be its associated
coefficients, that is, λn is either an or bn.
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For r ∈ N and a sequence (ck), let

Δrck = ck − ck+r . (1.3)

In Subsection 2.1 we generalize the following result.

Theorem 1.1. Let a nonnegative sequence (λn) ∈ R, 1 < p < ∞ and 1 − p < α < 1. Then

x−α∣∣φ(x)
∣
∣
p ∈ L1 ⇐⇒

∞∑

n=1

nα+p−2λpn < ∞. (1.4)

In the case when R denotes the classM of all decreasing sequences, this theorem was proved
in [1–4]; for R ≡ QM, the class of quasimonotone sequences, in [5]; for R ≡ GM(β) in [6, 7];
for R ≡ GM(β) in [8]; and for R ≡ GM(β∗) in [9], where

GM
(

β
)

:=

{

(cn) :
∞∑

k=n

|Δ1ck| ≤ Cβn

}

,

GM
(

β
)

:=
{

(cn) :
2n∑

k=n
|Δ1ck| ≤ Cβn

}

,

βn = |cn|, β∗n =
[cn]∑

k=[n/c]

|ck|
k

for some c > 1.

(1.5)

Note that (see [6, 8, 10–14])

M � QM ∪GM
(

β
)

� GM
(

β
)

� GM
(

β∗
)

. (1.6)

In [15] Dyachenko and Tikhonov extended Theorem 1.1 to the class GMθ :≡ GM(β#), where
θ ∈ (0, 1] and

β#n = nθ−1
∞∑

k=[n/c]

|ck|
kθ

< ∞ for some c > 1. (1.7)

We have (see [15])

GM
(

β∗
)

� GM1 ⊆ GMθ2 ⊆ GMθ1 for 0 < θ1 ≤ θ2 ≤ 1. (1.8)

Let γ be a nonnegative function defined on the interval [0, π]. Denote by En(ϕ, γ)p the best
approximation of ϕ by trigonometric polynomials of degree at most n in the weighted Lp-
norm, that is,

En

(

ϕ, γ
)

p := inf
Pn∈Πn

{∫π

0
γ(x)

∣
∣ϕ(x) − Pn(x)

∣
∣
p
dx

}1/p

, (1.9)

where Πn denotes the set of all trigonometric polynomials of degree at most n.
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A sequence (cn) of nonnegative terms is called almost increasing (decreasing) if there
exists a constant C > 0 such that

C · cn ≥ cm (cn ≤ C · cm) for n ≥ m. (1.10)

We say that a weight function γ ∈ Φ(α, β), (α, β be fixed constants), if γ is defined by the
sequence γn as follows: γ(π/n) := γn, n ∈ N, and there exist positive constants A and B such
that

Aγn ≤ γ(x) ≤ Bγn+1 (1.11)

for all x ∈ (π/(n+1), π/n], and the sequences (γnnα), (γnnβ) are almost decreasing and almost
increasing, respectively.

In Subsection 2.2 we generalize and extend the following results [16].

Theorem 1.2. Assume that (bn) ∈ GM(β∗). If γ ∈ Φ(−p − 1 + α, p − 1 + β) for some α, β > 0 and
∑∞

k=1 γnn
p−2λpn < ∞, then for 1 ≤ p < ∞

En

(

g, γ
)

p ≤ C

⎛

⎝γ
1/p
n+1n

1−1/p
[c(n+1)]∑

k=n+1

|Δ1λk| +
( ∞∑

k=n+1

γkk
p−2λpk

)1/p
⎞

⎠. (1.12)

Theorem 1.3. Assume that (an) ∈ GM(β∗). If γ ∈ Φ(−1 + α, p − 1 + β) for some α, β > 0 and
∑∞

k=1 γnn
p−2λpn < ∞, then for 1 ≤ p < ∞

En

(

f, γ
)

p ≤ C

⎛

⎝γ
1/p
n+1n

1−1/p
[c(n+1)]∑

k=n+1

|Δ1λk| +
( ∞∑

k=n+1

γkk
p−2λp

k

)1/p
⎞

⎠. (1.13)

If γ ≡ 1 and (λn) ∈ M or (λn) ∈ GM(β) the above theorem has been obtained by
Konyushkov [17] and Leindler [18] for p > 1, respectively.

In order to formulate our new results we define the next class of sequences.

Definition 1.4. Let r ∈ N and θ ∈ (0, 1]. One says that a sequence (cn) belongs to GM
r

θ, if the
relation

∞∑

k=n

|Δrck| ≤ Cnθ−1
∞∑

k=[n/c]

|ck|
kθ

< ∞ (1.14)

holds for all n ∈ N.
Note that for r ≥ 2 and θ ∈ (0, 1] (see Theorem 2.1(i))

GMθ ≡ GMθ
1

� GMθ
r
. (1.15)
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Throughout this paper, we use C to denote a positive constant independent of the integer n;
C may depend on the parameters such as p, α, r, θ and λ, and it may have different values in
different occurrences.

2. Statement of the Results

We formulate our results as follows.

Theorem 2.1. Suppose that θ ∈ (0, 1]. The following properties are true.

(i) For any r ≥ 2, and θ ∈ (0, 1] there exists a sequence (cn) ∈ GM
r

θ, which does not belong

to the class GMθ ≡ GM
1
θ.

(ii) Let r1, r2 ∈ N, r1 ≤ r2 and θ ∈ (0, 1]. If r1 | r2, then GM
r1
θ ⊆ GM

r2
θ .

(iii) Let r1, r2 ∈ N and θ ∈ (0, 1]. If r1 � r2 and r2 � r1, then the classes GM
r1
θ and GM

r2
θ are not

comparable.

2.1. Weighted Lp-Integrability

Let r ∈ N and α ∈ R. We define on the interval [−π,π] an even function ωα,r , which is given
on the interval [0, π] by the formula

ωα,r(x) :=

⎧

⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(

x − 2lπ
r

)−α
for x ∈

(
2lπ
r

,
(2l + 1)π

r

]

and l ∈ U1,

(
2(l + 1)π

r
− x

)−α
for x ∈

(
(2l + 1)π

r
,
2(l + 1)π

r

)

and l ∈ U2,

0 for x =
2lπ
r

and l ∈ U3,

(2.1)

where U1 = {0, 1, . . . , [r/2]} if r is an odd number, and U1 = {0, 1, . . . , [r/2] − 1} if r is
an even number; U2 = {0, 1, . . . , [r/2] − 1} for r ≥ 2, andU3 = {0, 1, . . . , [r/2]} for r ≥ 1.

Theorem 2.2. Let a nonnegative sequence (λn) ∈ GM
r

θ, where r ∈ N, θ ∈ (0, 1] and 1 ≤ p < ∞. If

1 − θp < α < 1, (2.2)

then ωα,r |φ|p ∈ L1 if and only if

∞∑

n=1

nα+p−2λpn < ∞. (2.3)

Theorem 2.3. Let a nonnegative sequence (bn) ∈ GM
r

θ (r = 1, 2), θ ∈ (0, 1], and 1 ≤ p < ∞. If

1 − θp < α < p + 1, (2.4)
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then ωα,r |g|p ∈ L1 if and only if

∞∑

n=1

nα+p−2bpn < ∞. (2.5)

Remark 2.4. If we take r = 1 (and λn = an in Theorem 2.2), then the result of Dyachenko and
Tikhonov [15, Theorems 4.2 and 4.3] follows from Theorems 2.2 and 2.3. By the embedding
relations (1.8) and (1.15) we can also derive from Theorem 2.2 the result of You, Zhou, and
Zhou [9].

2.2. Relations between The Best Approximation and Fourier Coefficients

Theorem 2.5. Let a nonnegative sequence (λn) ∈ GM
r

θ, where r ∈ N, θ ∈ (0, 1], and 1 ≤ p < ∞. If

1 − θp < α < 1 (2.6)

and (2.3) holds, then

En

(

φ,ωα,r

) ≤ C

⎛

⎝nα/p+1−1/p
[c(n+1)]∑

k=n+1

|Δrλk| +
( ∞∑

k=n+1

kα+p−2λpk

)1/p
⎞

⎠, (2.7)

where c > 1.

Theorem 2.6. Let a nonnegative sequence (bn) ∈ GM
r

θ(r = 1, 2), θ ∈ (0, 1] and 1 ≤ p < ∞. If

1 − θp < α < p + 1, (2.8)

and (2.5) holds, then

En

(

g,ωα,r

)

p ≤ C

⎛

⎝nα/p+1−1/p
[c(n+1)]∑

k=n+1

|Δrbk| +
( ∞∑

k=n+1

kα+p−2bpk

)1/p
⎞

⎠, (2.9)

where c > 1.

Remark 2.7. If we restrict our attention to the class GM(β∗), then by (1.8) and (1.15) Wei and
Yu’s result [16] follows from Theorems 2.5 and 2.6.

3. Auxiliary Results

Denote, for r ∈ N,

Dk,r(x) =
sin (k + r/2)x
2 sin (rx/2)

,

D̃k,r(x) =
cos(k + r/2)x
2 sin (rx/2)

.

(3.1)
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Lemma 3.1 (see [19]). Let r ∈ N, l ∈ Z, and (cn) ∈ C. If x /= 2lπ/r, then for all m ≥ n

m∑

k=n

ck cos kx =
m∑

k=n

ΔrckDk,r(x) −
m+r∑

k=m+1

ckDk,−r(x) +
n+r−1∑

k=n

ckDk,−r(x),

m∑

k=n

ck sin kx =
m+r∑

k=m+1

ckD̃k,−r(x) −
n+r−1∑

k=n

ckD̃k,−r(x) −
m∑

k=n

ΔrckD̃k,r(x).

(3.2)

Lemma 3.2 (see [20]). Let p ≥ 1, γn > 0 and an ≥ 0, then

∞∑

n=1

γn

(
n∑

k=1

αk

)p

≤ pp
∞∑

n=1

γ
1−p
n α

p
n

( ∞∑

k=n

γk

)p

,

∞∑

n=1

γn

( ∞∑

k=n

αk

)p

≤ pp
∞∑

n=1

γ
1−p
n α

p
n

(
n∑

k=1

γk

)p

.

(3.3)

4. Proofs of The Main Results

4.1. Proof of Theorem 2.1

(i) Let r ≥ 2, θ ∈ (0, 1] and

cn :=

⎧

⎪⎪⎨

⎪⎪
⎩

0 if r | n,
1
n

if r � n.
(4.1)

First, we prove that (cn) ∈ GM
r

θ. Let

A(r, k, n) := {k : n ≤ k and r | k} ,

B(r, k, n) := {k : n ≤ k and r � k}.
(4.2)

Then for all n

∞∑

k=n

|Δrck| =
∑

k∈B(r,k,n)

r

k(k + r)
≤ r

∞∑

k∈B(r,k,n)

1
k2

≤ rnθ−1 ∞∑

k∈B(r,k,n)

1
k1+θ

≤ rnθ−1 ∞∑

k=n

ck
kθ

(4.3)

and (cn) ∈ GM
r

θ. If r ≥ 2 then

∞∑

k=n

|Δ1ck| ≥
∞∑

k∈A(r,k,n)

|Δ1ck| =
∞∑

k∈A(r,k,n)

1
k + 1

≥ C ln(n + 1) (4.4)
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and since

nθ−1
∞∑

k=[n/c]

ck
kθ

= nθ−1
∞∑

k∈B(r,k,[n/c])

1
k1+θ

≤ nθ−1
∞∑

k=[n/c]

1
k1+θ

≤ C
1
n

(4.5)

the inequality

∞∑

k=n

|Δ1ck| ≤ Cnθ−1
∞∑

k=[n/c]

ck
kθ (4.6)

does not hold, that is, (cn) does not belong to GM
1
θ.

(ii) Let r1, r2 ∈ N, r1 ≤ r2 and θ ∈ (0, 1]. If r1 | r2, then exists a natural number p such
that r2 = p · r1. Supposing that (cn) ∈ GM

r1
θ , we have for all n

∞∑

k=n

|Δr2ck| =
∞∑

k=n

∣
∣
∣
∣
∣

p−1
∑

l=0

Δr1ck+l·r1

∣
∣
∣
∣
∣
≤

p−1
∑

l=0

∞∑

k=n+l·r1
|Δr1ck|

≤ r2
r1

∞∑

k=n

|Δr1ck| ≤ Cnθ−1
∞∑

k=[n/c]

ck
kθ

,

(4.7)

whence (cn) ∈ GM
r2
θ . Thus GM

r1
θ ⊆ GM

r2
θ .

(iii) Let r1, r2 ∈ N and θ ∈ (0, 1] and let

c1n :=

⎧

⎪⎪
⎨

⎪⎪⎩

0 if r1 | n,
1
n

if r1 � n,
c2n :=

⎧

⎪⎪
⎨

⎪⎪⎩

0 if r2 | n,
1
n

if r2 � n.
(4.8)

Supposing that r1 � r2 and r2 � r1, we can prove, similarly as in (i), that (c1n) ∈ GM
r1
θ ,

(c1)/∈GM
r2
θ , (c2) ∈ GM

r2
θ and (c2)/∈GM

r1
θ . Therefore the classes GM

r1
θ and GM

r2
θ are not

comparable.

4.2. Proof of Theorem 2.2

We prove the theorem for the case when φ(x) = g(x). The case when φ(x) = f(x) can be
proved similarly.

Sufficiency. Suppose that (2.3) holds. Then

∥
∥ωα,r

∣
∣g
∣
∣
p∥
∥
L1 = 2

∫π

0
ωα,r(x)

∣
∣g(x)

∣
∣
p
dx. (4.9)
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It is clear that for an odd r

∫π

0
ωα,r(x)

∣
∣g(x)

∣
∣
p
dx =

[r/2]∑

l=0

∫2lπ/r+π/r

2lπ/r
ωα,r(x)

∣
∣
∣
∣
∣

∞∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx

+
[r/2]−1∑

l=0

∫2(l+1)π/r

2lπ/r+π/r
ωα,r(x)

∣
∣
∣
∣
∣

∞∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx

(4.10)

(for r = 1 the last sum should be omitted), and for an even r

∫π

0
ωα,r(x)

∣
∣g(x)

∣
∣
p
dx =

[r/2]∑

l=0

(∫2lπ/r+π/r

2lπ/r
+
∫2(l+1)π/r

2lπ/r+π/r

)

ωα,r(x)

∣
∣
∣
∣
∣

∞∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx. (4.11)

First, we estimate the following integral:

∫2lπ/r+π/r

2lπ/r
ωα,r(x)

∣
∣
∣
∣
∣

∞∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx

≤ C

(∫2lπ/r+π/r

2lπ/r
ωα,r(x)

∣
∣
∣
∣
∣

n∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx +
∫2lπ/r+π/r

2lπ/r
ωα,r(x)

∣
∣
∣
∣
∣

∞∑

k=n+1

bk sin kx

∣
∣
∣
∣
∣

p

dx

)

:= C(I1 + I2).
(4.12)

By (3.3), for α < 1, we have

I1 =
∞∑

n=r

∫2lπ/r+π/n

2lπ/r +π/(n+1)

(

x − 2lπ
r

)−α∣∣
∣
∣
∣

n∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx

≤ C
∞∑

n=r
nα−2

(
n∑

k=1

bk

)p

≤ C
∞∑

n=1

nα−2
(

n∑

k=1

bk

)p

≤ C
∞∑

n=1

nα+p−2bpn.

(4.13)

Using (3.2) withm → ∞ and the inequality

r

π
x − 2l ≤

∣
∣
∣sin

rx

2

∣
∣
∣ for x ∈

(
2lπ
r

,
2lπ
r

,
π

r

)

, (4.14)
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we get

I2 =
∞∑

n=r

∫2lπ/r+π/n

2lπ/r+π/(n+1)

(

x − 2lπ
r

)−α∣∣
∣
∣
∣

∞∑

k=n+1

bk sin kx

∣
∣
∣
∣
∣

p

dx

=
∞∑

n=r

∫2lπ/r+π/n

2lπ/r+π/(n+1)

(

x − 2lπ
r

)−α∣∣
∣
∣
∣

∞∑

k=n+1

ΔrbkD̃k,r(x) +
n+r∑

k=n+1

bkD̃k,−r(x)

∣
∣
∣
∣
∣

p

dx

≤ C
∞∑

n=r
nα

∫2lπ/r+π/n

2lπ/r+π/(n+1)

1
2|sin rx/2|p

( ∞∑

k=n+1

|Δrbk| +
n+r∑

k=n+1

bk

)p

dx

≤ C
∞∑

n=r
nα

∫2lπ/r+π/n

2lπ/r+π/(n+1)

1
(r/πx − 2l)p

( ∞∑

k=n+1

|Δrbk|
)p

dx

≤ C
∞∑

n=r
nα+p−2

( ∞∑

k=n

|Δrbk|
)p

.

(4.15)

If (bn) ∈ GM
r

θ, then by (3.3), for 1 − θp < α < p + 1, we obtain

I2 ≤ C
∞∑

n=r
nα+θp−2

⎛

⎝

∞∑

k=[n/c]

bk
kθ

⎞

⎠

p

≤ C

⎛

⎝

∞∑

n=r
nα+θp−2

⎛

⎝

n∑

k=[n/c]

bk
kθ

⎞

⎠

p

+
∞∑

n=r
nα+θp−2

( ∞∑

k=n

bk
kθ

)p
⎞

⎠

≤ C

( ∞∑

n=1

nα−p−2
(

n∑

k=1

kbk

)p

+
∞∑

n=1

nα+θp−2
( ∞∑

k=n

bk
kθ

)p)

≤ C
∞∑

n=1

nα+p−2bpn.

(4.16)

Now, we estimate the following integral:

∫2(l+1)π/r

2lπ/r+π/r
ωα,r(x)

∣
∣
∣
∣
∣

∞∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx

≤C
(∫2(l+1)π/r

2(l+1)π/r−π/r
ωα,r(x)

∣
∣
∣
∣
∣

n∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx +
∫2(l+1)π/r

2(l+1)π/r−π/r
ωα,r(x)

∣
∣
∣
∣
∣

∞∑

k=n+1

bk sin kx

∣
∣
∣
∣
∣

p

dx

)

:= C(I3 + I4).
(4.17)
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By (3.3), for α < 1, we have

I3 =
∞∑

n=r

∫2(l+1)π/r−π/(n+1)

2(l+1)π/r−π/n

(
2(l + 1)π

r
− x

)−α∣∣
∣
∣
∣

n∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx

≤ C
∞∑

n=1

nα−2
(

n∑

k=1

bk

)p

≤ C
∞∑

n=1

nα+p−2bpn.

(4.18)

Using (3.2) withm → ∞ and the inequality

2(l + 1) − r

π
x ≤
∣
∣
∣sin

rx

2

∣
∣
∣ for x ∈

(
(2l + 1)π

r
,
2(l + 1)π

r

)

, (4.19)

we obtain

I4 =
∞∑

n=r

∫2(l+1)π/r−π/(n+1)

2(l+1)π/r−π/n

(
2(l + 1)π

r
− x

)−α∣∣
∣
∣
∣

∞∑

k=n+1

bk sin kx

∣
∣
∣
∣
∣

p

dx

≤ C
∞∑

n=r
nα

∫2(l+1)π/r−π/(n+1)

2(l+1)π/r−π/n

∣
∣
∣
∣
∣

∞∑

k=n+1

ΔrbkD̃k,r(x) +
n+r∑

k=n+1

bkD̃k,−r(x)

∣
∣
∣
∣
∣

p

dx

≤ C
∞∑

n=r
nα

∫2(l+1)π/r−π/(n+1)

2(l+1)π/r−π/n

1

2
∣
∣
∣sin

rx

2

∣
∣
∣

p

( ∞∑

k=n+1

|Δrbk| +
n+r∑

k=n+1

bk

)p

dx

≤ C
∞∑

n=r
nα

∫2(l+1)π/r−π/(n+1)

2(l+1)π/r−π/n

1
(2(l + 1) − r/πx)p

( ∞∑

k=n+1

|Δrbk|
)p

dx

≤ C
∞∑

n=r
nα+p−2

( ∞∑

k=n

|Δrbk|
)p

.

(4.20)

If (bn) ∈ GM
r

θ, then by (3.3), for 1 − θp < α < p + 1, we obtain

I4 ≤ C
∞∑

n=r
nα+θp−2

⎛

⎝

∞∑

k=[n/c]

bk
kθ

⎞

⎠

p

≤ C

( ∞∑

n=1

nα−p−2
(

n∑

k=1

kbk

)p

+
∞∑

n=1

nα+θp−2
( ∞∑

k=n

bk
kθ

)p)

≤ C
∞∑

n=1

nα+p−2bpn.

(4.21)
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Thus, combining (4.9), (4.12)–(4.13), (4.16)–(4.18), (4.21), and (4.10) or (4.11), we
obtain that

∫π

−π
ωα,r(x)

∣
∣g(x)

∣
∣
p
dx ≤ C

∞∑

n=1

nα+p−2bpn. (4.22)

Necessity. We follow the method adopted by S. Tikhonov [15]. Note that if 1 − p < α, then
g ∈ L1. Integrating g, we have

F(x) :=
∫x

0
g(t)dt =

∞∑

n=1

bn
n
(1 − cos nx) = 2

∞∑

n=1

bn
n
sin2nx

2 (4.23)

and consequently

F

(
π

k

)

≥
k∑

n=[k/2]

bn
n
. (4.24)

If (bn) ∈ GM
r

θ, then using (4.24),

bv ≤
v+r−1∑

l=v

bl =
∞∑

l=v

Δrbl ≤
∞∑

l=v

|Δrbl| ≤ Cvθ−1
∞∑

l=[v/c]

bl
lθ
.

= Cvθ−1
∞∑

s=0

2s+1[v/c]−1∑

l=2s[v/c]

bl
lθ

≤ Cvθ−1
∞∑

s=0
(2s[v/c])1−θ

2s+1[v/c]∑

l=2s[v/c]

bl
l

≤ Cvθ−1
∞∑

s=0
(2s[v/c])1−θF

(
π

2s+1[v/c]

)

≤ Cvθ−1
∞∑

s=0
(2s[v/c])−θ

2s+1[v/c]−1∑

l=2s[v/c]

F
(π

l

)

≤ Cvθ−1
∞∑

s=0

2s+1[v/c]−1∑

l=2s[v/c]

1
lθ
F
(π

l

)

≤ Cvθ−1
∞∑

l=[v/c]

1
lθ
F
(π

l

)

.

(4.25)
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Using this and (3.3), for 1 − θp < α < p + 1, we obtain

∞∑

k=1

kα+p−2bpk ≤ C
∞∑

k=1

kα+p−2+(θ−1)p

⎛

⎝

∞∑

v=[k/c]

1
vθ

F
(π

v

)

⎞

⎠

p

≤ C

⎛

⎝

∞∑

k=1

kα+p−2+(θ−1)p

⎛

⎝

k∑

v=[k/c]

1
vθ

F
(π

v

)

⎞

⎠

p

+
∞∑

k=1

kα+p−2+(θ−1)p
( ∞∑

v=k

1
vθ

F
(π

v

)
)p
⎞

⎠

≤ C

( ∞∑

k=1

kα−2−p
(

k∑

v=1

vF
(π

v

)
)p

+
∞∑

k=1

kα+θp−2
( ∞∑

v=k

1
vθ

F
(π

v

)
)p)

≤ C
∞∑

k=1

kα+p−2
(

F

(
π

k

))p

.

(4.26)

Defining dv :=
∫π/v

π/(v+1) |g(x)|dx we get

∞∑

k=1

kα+p−2bp
k
≤ C

∞∑

k=1

kα+p−2
( ∞∑

v=k

dv

)p

(4.27)

and by (3.3), for α > 1 − θp ≥ 1 − p, we obtain

∞∑

k=1

kα+p−2bpk ≤
∞∑

k=1

kα+2p−2dp

k. (4.28)

Applying Hölder’s inequality, for p > 1, we have

d
p

k =

(∫π/k

π/(k+1)

∣
∣g(x)

∣
∣dx

)p

≤ C
1

k2(p−1)

∫π/k

π/(k+1)

∣
∣g(x)

∣
∣
p
dx. (4.29)
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Finally,

∞∑

k=1

kα+p−2bp
k
≤ C

(
r∑

k=1

kα+2p−2dp

k
+

∞∑

k=r

kα+2p−2dp

k

)

≤ C

(
r∑

k=1

kα+2p−2
(∫π/k

π/(k+1)

∣
∣g(x)

∣
∣dx

)p

+
∞∑

k=r

kα

∫π/k

π/(k+1)

∣
∣g(x)

∣
∣
p
dx

)

≤ C

((∫π

0

∣
∣g(x)

∣
∣dx

)p

+
∞∑

k=r

∫π/k

π/(k+1)
x−α∣∣g(x)

∣
∣
p
dx

)

≤ C

((∫π

0

∣
∣g(x)

∣
∣dx

)p

+
∫π

0
ωα,r(x)

∣
∣g(x)

∣
∣
p
dx

)

,

(4.30)

which completes the proof.

4.3. Proof of Theorem 2.3

The proof of Theorem 2.3 goes analogously as the proof of Theorem 2.2. The only difference
is that instead of (4.13) (for r = 1, 2) and (4.18) (for r = 2) we use the below estimations.

Applying the inequalities | sin kx| ≤ kx for x ∈ (0, π), | sin kx| ≤ k(π −x) for x ∈ (0, π)
and using (3.3), for α < 1 + p,we have

I1 =
∞∑

n=r

∫π/n

π/(n+1)

(

x − 2lπ
r

)−α∣∣
∣
∣
∣

n∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx ≤ C
∞∑

n=r
nα

∫π/n

π/(n+1)

(

x
n∑

k=1

kbk

)p

dx

≤ C
∞∑

n=1

nα−p−2
(

n∑

k=1

kbk

)p

≤ C
∞∑

n=1

nα+p−2bpn

I3 =
∞∑

n=2

∫π−π/(n+1)

π−π/n
(π − x)−α

∣
∣
∣
∣
∣

n∑

k=1

bk sin kx

∣
∣
∣
∣
∣

p

dx ≤ C
∞∑

n=2

nα

∫π−π/(n+1)

π−π/n

(

(π − x)
n∑

k=1

kbk

)p

dx

≤ C
∞∑

n=1

nα−p−2
(

n∑

k=1

kbk

)p

≤ C
∞∑

n=1

nα+p−2bpn.

(4.31)

This ends our proof.

4.4. Proof of Theorem 2.5

We prove the theorem for the case when φ(x) = g(x). The case when φ(x) = f(x) can be
proved similarly.
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If n ≤ r then by (2.3) we obtain that (2.7) obviously holds. Let n ≥ r. It is clear that if r
is an odd number, then

En

(

g,ωα,r

)

p ≤
{∫π

0
ωα,r(x)

∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

}1/p

=

{
[r/2]∑

l=0

∫2lπ/r+π/r
2lπ/r ωα,r(x)

∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

+
[r/2]−1∑

l=0

∫2(l+1)π/r

2lπ/r+π/r
ωα,r(x)

∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

}1/p

(4.32)

(for r = 1 the last sum should be omitted), and if r is an even number, then

En

(

g,ωα, r
)

p ≤
{

[r/2]∑

l=0

(∫2lπ/r+π/r

2lπ/r
+
∫2(l+1)π/r

2lπ/r+π/r

)

ωα,r(x)
∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

}1/p

. (4.33)

Let

2lπ
r

+
π

m + 1
< x ≤ 2lπ

r
+
π

r
, (4.34)

wherem := m(x) ≥ r and l = 0, 1, . . . , [r/2] − 1 if r is an even number, and l = 0, 1, . . . , [r/2] if
r is an odd number.

Then, for n ≥ m, by (3.2) and (4.14), we get

∫2lπ/r+π/r

2lπ/r+π/(n+1)
ωα,r(x)

∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

=
n∑

m=r

∫2lπ/r+π/m

2lπ/r+π/(m+1)

(

x − 2lπ
r

)−α
∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

≤ C
n∑

m=r
mα

∫2lπ/r+π/m

2lπ/r+π/(m+1)

∣
∣
∣
∣
∣

∞∑

k=n+1

ΔrbkD̃k,r(x) +
n+r∑

k=n+1

bkD̃k,−r(x)

∣
∣
∣
∣
∣

p

dx

≤ C
n∑

m=r
mα

∫2lπ/r+π/m

2lπ/r+π/(m+1)

1

2
∣
∣
∣sin

rx

2

∣
∣
∣

p

( ∞∑

k=n+1

|Δrbk| +
n+r∑

k=n+1

bk

)p

dx

≤ C
n∑

m=r
mα

∫2lπ/r+π/m

2lπ/r+π/(m+1)

1
(r/πx − 2l)p

( ∞∑

k=n+1

|Δrbk|
)p

dx

≤ C
n∑

m=r
mα+p−2

( ∞∑

k=n+1

|Δrbk|
)p

dx ≤ C

⎛

⎝

n∑

m=r
mα+p−2

(
[c(n+1)]∑

k=n+1

|Δrbk|
)p

dx

+
n∑

m=r
mα+p−2

⎛

⎝

∞∑

k=[c(n+1)]

|Δrbk|
⎞

⎠

p

dx

⎞

⎠

:= C(Σ1 + Σ2).

(4.35)
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We immediately have for α > 1 − θp ≥ 1 − p

Σ1 ≤ Cnα+p−1
(

[c(n+1)]∑

k=n+1

|Δrbk|
)p

. (4.36)

If (bn) ∈ GM
r

θ and p > 1, then by Hölder’s inequality we have for α > 1 − θp

Σ2 ≤ C
n∑

m=r
mα+p−2

(

nθ−1
∞∑

k=n+1

bk
kθ

)p

≤ Cnα+θp−1
( ∞∑

k=n+1

bk
kθ

)p

≤ Cnα+θp−1 ∞∑

k=n+1
kα+p−2bpk

( ∞∑

k=n+1
k(−p−θp−α+2)/(p−1)

)p−1
≤ Ċ

∞∑

k=n+1
kα+p−2bpk.

(4.37)

When (bn) ∈ GM
r

θ and p = 1, an elementary calculation gives for α > 1 − θ

Σ2 ≤ C
n∑

m=r
mα−1

(

nθ−1 ∞∑

k=n+1

bk
kθ

)

≤ Cnα+θp−1
∞∑

k=n+1

bk
kθ

≤ Ċ
∞∑

k=n+1

kα−1bk. (4.38)

Ifm ≥ n + 1 ≥ r + 1, then

∫2lπ/r+π/(n+1)

2lπ/r
ωα,r(x)

∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

=
∞∑

m=n+1

∫2lπ/r+π/m

2lπ/r+π/(m+1)

(

x − 2lπ
r

)−α
∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

≤ C

(
∞∑

m=n+1
mα
∫2lπ/r+π/m
2lπ/r+π/(m+1)

∣
∣
∣
∣

m∑

k=n+1
bk sin kx

∣
∣
∣
∣

p

dx

+
∞∑

m=n+1
mα
∫2lπ/r+π/m
2lπ/r+π/(m+1)

∣
∣
∣
∣
∣

[c(m+1)]∑

k=m+1
bk sin kx

∣
∣
∣
∣
∣

p

dx

+
∞∑

m=n+1

mα

∫2lπ/r+π/m

2lπ/r+π/(m+1)

∣
∣
∣
∣
∣
∣

∞∑

k=[c(m+1)]+1

bk sin kx

∣
∣
∣
∣
∣
∣

p

dx

⎞

⎠

:= C(Σ3 + Σ4 + Σ5).

(4.39)

We have

Σ3 ≤ C
∞∑

m=n+1

mα−2
(

m∑

k=n+1

bk

)p

, (4.40)
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and taking γm = mα−2 and αk = 0 for k < n + 1, αk = bk for k ≥ n + 1 in (3.3), we get for α < 1

Σ3 ≤ C
∞∑

m=n+1

m(α−2)(1−p)bpm

( ∞∑

k=m

kα−2
)p

≤ C
∞∑

m=n+1

mα+p−2bpm. (4.41)

If (bn)∈ GM
r

θ, then using (3.2) and (4.14), we have

Σ4+Σ5 ≤C

⎛

⎜
⎜
⎝

∞∑

m=n+1

mα−2
(

[c(m+1)]∑

k=m+1

bk

)p

+
∞∑

m=n+1

mα

2lπ/r+π/m∫

2lπ/r+π/(m+1)

1
(
r

π
x − 2l

)p

⎛

⎝

∞∑

k=[c(m+1)]+1

|Δrbk|
⎞

⎠

p

dx

⎞

⎟
⎟
⎠

≤ C

⎛

⎝

∞∑

m=n+1

mα+θp−2
(

[c(m+1)]∑

k=m+1

bk
kθ

)p

+
∞∑

m=n+1

mα+p−2
(

mθ−1
∞∑

k=m+1

bk
kθ

)p
⎞

⎠

≤ C
∞∑

m=n+1

mα+θp−2
( ∞∑

k=m

bk
kθ

)

.

(4.42)

Set γm = mα+θp−2, αk = 0 for k < n + 1 and αk = k−θbk for k ≥ n + 1. Then by (3.3), we
have for α > 1 − θp

Σ4 + Σ5 ≤ C
∞∑

m=n+1

m(α+θp−2)(1−p)m−θpbpm

(
m∑

k=1

kα+θp−2
)

≤ C
∞∑

m=n+1

mα+p−2bpm. (4.43)

Let

2(l + 1)π
r

− π

r
≤ x <

2(l + 1)π
r

− π

m + 1
, (4.44)

wherem := m(x) ≥ r and l = 0, 1, . . . , [r/2] − 1(r ≥ 2). Then, for n ≥ m, using (3.2) and (4.19),
we get

∫2(l+1)π/r−π/(n+1)

2(l+1)π/r−π/r
ωα,r(x)

∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

=
n∑

m=r

∫2(l+1)π/r−π/(m+1)

2(l+1)π/r−π/m

(
2(l + 1)π

r
− x

)−α
∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

≤ C
n∑

m=r
mα

∫2(l+1)π/r−π/(m+1)

2(l+1)π/r−π/m

1
2|sin rx/2|p

( ∞∑

k=n+1

|Δrbk| +
n+r∑

k=n+1

bk

)p

dx

≤ C
n∑

m=r
mα

∫2(l+1)π/r−π/(m+1)

2(l+1)π/r−π/m

1
(2(l + 1) − r/πx)p

( ∞∑

k=n+1

|Δrbk|
)p

≤ C
n∑

m=r
mα+p−2

( ∞∑

k=n+1

|Δrbk|
)p

≤ C(Σ1 + Σ2).

(4.45)
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Therefore,

∫2(l+1)π/r−π/(n+1)

2(l+1)π/r−π/r
ωα,r(x)

∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx ≤ C

⎛

⎝nα+p−1
(

[c(n+1)]∑

k=n+1

|Δrbk|
)p

+
∞∑

k=n+1

kα+p−2bpk

⎞

⎠.

(4.46)

Ifm ≥ n + 1 ≥ r + 1, then

∫2(l+1)π/r

2(l+1)π/r−π/(n+1)
ωα,r(x)

∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

=
∞∑

m=n+1

∫2(l+1)π/r−π/(m+1)

2(l+1)π/r−π/m

(
2(l + 1)π

r
− x

)−α
∣
∣g(x) − Sn

(

g, x
)∣
∣
p
dx

≤ C

⎛

⎝

∞∑

m=n+1

mα

∫2(l+1)π/r−π/(m+1)

2(l+1)π/r−π/m

∣
∣
∣
∣
∣

m∑

k=n+1

bk sin kx

∣
∣
∣
∣
∣

p

dx

+
∞∑

m=n+1

mα

∫2(l+1)π/r−π/(m+1)

2(l+1)π/r−π/m

∣
∣
∣
∣
∣

[c(m+1)]∑

k=m+1

bk sin kx

∣
∣
∣
∣
∣

p

dx

+
∞∑

m=n+1

mα

∫2(l+1)π/r−π/(m+1)

2(l+1)π/r−π/m

∣
∣
∣
∣
∣
∣

∞∑

k=[c(m+1)]+1

bk sin kx

∣
∣
∣
∣
∣
∣

p

dx

⎞

⎠

:= C(Σ6 + Σ7 + Σ8).

(4.47)

Similarly as in the estimation of the quantity Σ3 using (3.3) for α < 1, we have

Σ6 ≤ C
∞∑

m=n+1

mα−2
(

m∑

k=n+1

bk

)p

≤ C
∞∑

m=n+1

mα+p−2bpm. (4.48)

If (bn) ∈ GM
r

θ, then using (3.2) and (4.19), we have

Σ7 + Σ8 ≤ C

⎛

⎝

∞∑

m=n+1

mα−2
(

[c(m+1)]∑

k=m+1

bk

)p

+
∞∑

m=n+1

mα

∫2(l+1)π/r−π/(m+1)

2(l+1)π/r−π/m

1
(2(l + 1) − r/πx)p

⎛

⎝

∞∑

k=[c(m+1)]+1

|Δrbk|
⎞

⎠

p

dx

⎞

⎠

≤ C

⎛

⎝

∞∑

m=n+1

mα+θp−2
(

[c(m+1)]∑

k=m+1

bk
kθ

)p

+
∞∑

m=n+1

mα+p−2
(

mθ−1
∞∑

k=m+1

bk
kθ

)p
⎞

⎠

≤ C
∞∑

m=n+1

mα+θp−2
( ∞∑

k=m

bk
kθ

)

.

(4.49)
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Further, by (3.3), we have for α > 1 − θp

Σ7 + Σ8 ≤ C
∞∑

m−n+1
mα+p−2bpm. (4.50)

Combining (4.32) or (4.33), (4.35)–(4.43) and (4.45)–(4.50) we complete the proof of
Theorem 2.5.

4.5. Proof of Theorem 2.6

The proof of Theorem 2.6 goes analogously as the proof of Theorem 2.5. The only difference
is that instead of (4.41) (for r = 1, 2) and (4.48) (for r = 2) we use the below estimations.

Applying the inequalities | sin kx| ≤ kx for x ∈ (0, π) and | sin kx| ≤ k(π − x) for
x ∈ (0, π) and using (3.3), for α < 1 + p,we have

Σ3 =
∞∑

m=n+1

mα

∫π/m

π/(m+1)

∣
∣
∣
∣
∣

m∑

k=n+1

bk sin k x

∣
∣
∣
∣
∣

p

dx ≤
∞∑

m=n+1

mα

∫π/m

π/(m+1)

(

x
m∑

k=n+1

kbk

)p

dx

≤ C
∞∑

m=n+1

mα−p−2
(

m∑

k=n+1

kbk

)p

≤ C
∞∑

m=n+1

mα+p−2bpm,

Σ6 =
∞∑

m=n+1

mα

∫π−π/(m+1)

π−π/m

∣
∣
∣
∣
∣

m∑

k=n+1

bk sin kx

∣
∣
∣
∣
∣

p

dx

≤
∞∑

m=n+1

mα

∫π−π/(m+1)

π−π/m

(

(π − x)
m∑

k=n+1

kbk

)p

dx

≤ C
∞∑

m=n+1

mα−p−2
(

m∑

k=n+1

kbk

)p

≤ C
∞∑

m=n+1

mα+p−2bpm.

(4.51)

This completes the proof.
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