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We introduce a generalized quadratic functional equation f(rx + sy) = rf(x) + sf(y)− rsf(x − y),
where r, s are nonzero real numbers with r + s = 1. We show that this functional equation is quad-
ratic if r, s are rational numbers. We also investigate its stability problem on restricted domains.
These results are applied to study of an asymptotic behavior of these generalized quadratic map-
pings.

1. Introduction

Under what conditions does there exist a group homomorphism near an approximate group homo-
morphism? This question concerning the stability of group homomorphisms was posed by
Ulam [1]. The case of approximately additive mappings was solved by Hyers [2] on Banach
spaces. In 1950 Aoki [3] provided a generalization of the Hyers’ theorem for additive
mappings and in 1978 Th. M. Rassias [4] generalized the Hyers’ theorem for linear mappings
by allowing the Cauchy difference to be unbounded (see also [5]). The result of Rassias’
theorem has been generalized by Găvruţa [6] who permitted the Cauchy difference to be
bounded by a general control function. This stability concept is also applied to the case of
other functional equations. For more results on the stability of functional equations, see [7–
24]. We also refer the readers to the books in [25–29].

It is easy to see that the quadratic function f(x) = x2 is a solution of each of the fol-
lowing functional equations:

f
(
x + y

)
+ f

(
x − y) = 2f(x) + 2f

(
y
)
, (1.1)

f
(
rx + sy

)
+ rsf

(
x − y) = rf(x) + sf

(
y
)
, (1.2)



2 Journal of Inequalities and Applications

where r, s are nonzero real numbers with r +s = 1. So, it is natural that each equation is called
a quadratic functional equation. In particular, every solution of the quadratic equation (1.1)
is said to be a quadratic function. It is well known that a function f : X → Y between real
vector spaces X and Y is quadratic if and only if there exists a unique symmetric biadditive
function B : X ×X → Y such that f(x) = B(x, x) for all x ∈ X (see [13, 25, 27]).

We prove that the functional equations (1.1) and (1.2) are equivalent if r, s are nonzero
rational numbers. The functional equation (1.1) is a spacial case of (1.2). Indeed, for the case
r = s = 1/2 in (1.2), we get (1.1).

In 1983 Skof [30] was the first author to solve the Hyers-Ulam problem for additive
mappings on a restricted domain (see also [31–33]). In 1998 Jung [34] investigated the Hyers-
Ulam stability for additive and quadratic mappings on restricted domains (see also [35–37]).
J. M. Rassias [38] investigated the Hyers-Ulam stability of mixed type mappings on restricted
domains.

2. Solutions of (1.2)

In this section we show that the functional equation (1.2) is equivalent to the quadratic
equation (1.1). That is, every solution of (1.2) is a quadratic function. We recall that r, s are
nonzero real numbers with r + s = 1.

Theorem 2.1. Let X and Y be real vector spaces and f : X → Y be an odd function satisfying (1.2).
If r is a rational number, then f ≡ 0.

Proof. Since f is odd, f(0) = 0. Letting x = 0 (resp., y = 0) in (1.2), we get

f
(
sy

)
= s(1 + r)f

(
y
)
, f(rx) = r2f(x) (2.1)

for all x, y ∈ X. Replacing y by −y in (1.2) and adding the obtained functional equation to
(1.2), we get

f
(
rx + sy

)
+ f

(
rx − sy) = 2rf(x) − rs[f(x + y

)
+ f

(
x − y)] (2.2)

for all x, y ∈ X. Replacing y by ry in (2.2) and using (2.1), we have

r
[
f
(
x + sy

)
+ f

(
x − sy)] = 2f(x) − s[f(x + ry

)
+ f

(
x − ry)] (2.3)

for all x, y ∈ X. Again if we replace x by sx in (2.3) and use (2.1), we get

r(1 + r)
[
f
(
x + y

)
+ f

(
x − y)] = 2(1 + r)f(x) − [

f
(
sx + ry

)
+ f

(
sx − ry)] (2.4)

for all x, y ∈ X. Applying (1.2) and using the oddness of f , we have

f
(
sx + ry

)
+ f

(
sx − ry) = 2sf(x) + rs

[
f
(
x + y

)
+ f

(
x − y)] (2.5)
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for all x, y in X. So it follows from (2.4) and (2.5) that

f
(
x + y

)
+ f

(
x − y) = 2f(x) (2.6)

for all x, y in X. It easily follows from (2.6) that f is additive, that is, f(x + y) = f(x) + f(y)
for all x, y ∈ X. So if r is a rational number, then f(rx) = rf(x) for all x in X. Therefore, it
follows from (2.1) that (r2 − r)f(x) = 0 for all x in X. Since r, s are nonzero, we infer that
f ≡ 0.

Theorem 2.2. LetX and Y be real vector spaces and f : X → Y be an even function satisfying (1.2).
Then f satisfies (1.1).

Proof. Letting x = y = 0 in (1.2), we get f(0) = 0. Replacing x by x + y in (1.2), we get

f
(
rx + y

)
= rf

(
x + y

)
+ sf

(
y
) − rsf(x) (2.7)

for all x, y ∈ X. Replacing y by −y in (2.7) and using the evenness of f , we get

f
(
rx − y) = rf

(
x − y) + sf(y) − rsf(x) (2.8)

for all x, y in X. Adding (2.7) to (2.8), we obtain

f
(
rx + y

)
+ f

(
rx − y) = r

[
f
(
x + y

)
+ f

(
x − y)] + 2sf

(
y
) − 2rsf(x) (2.9)

for all x, y ∈ X. Replacing y by x + ry in (2.7), we get

f
(
r
(
x + y

)
+ x

)
= rf

(
2x + ry

)
+ sf

(
x + ry

) − rsf(x) (2.10)

for all x, y in X. Using (2.7) in (2.10), by a simple computation, we get

f
(
2x + y

)
+ 2f(x) + f

(
y
)
= 2f

(
x + y

)
+ f(2x) (2.11)

for all x, y in X. Putting y = −x in (2.11), we get that f(2x) = 4f(x) for all x ∈ X. Therefore,
it follows from (2.11) that

f
(
2x + y

)
+ f

(
y
)
= 2f

(
x + y

)
+ 2f(x) (2.12)

for all x, y inX. Replacing y by y −x in (2.12), we get that f(x+y) +f(y −x) = 2f(x) + 2f(x)
for all x, y ∈ X. So f satisfies (1.1).

Theorem 2.3. Let f : X → Y be a function between real vector spaces X and Y . If r is a rational
number, then f satisfies (1.2) if and only if f satisfies (1.1).

Proof. Let fo and fe be the odd and the even parts of f . Suppose that f satisfies (1.2). It is
clear that fo and fe satisfy (1.2). By Theorems 2.1 and 2.2, fo ≡ 0 and fe satisfies (1.1). Since
f = fo + fe, we conclude that f satisfies (1.1).
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Conversely, let f satisfy (1.1). Then there exists a unique symmetric biadditive function
B : X ×X → Y such that f(x) = B(x, x) for all x ∈ X (see [13]). Therefore

rf(x) + sf
(
y
) − rsf(x − y)

= rB(x, x) + sB
(
y, y

) − rsB(x − y, x − y)

= r2B(x, x) + s2B
(
y, y

)
+ 2rsB

(
x, y

)
(r, s are rational numbers)

= B
(
rx + sy, rx + sy

)
= f

(
rx + sy

)

(2.13)

for all x, y ∈ X. So f satisfies (1.2).

Proposition 2.4. Let X be a linear space with the norm ‖ · ‖.X is an inner product space if and only
if there exists a real number 0 < r < 1 such that

∥∥rx + sy
∥∥2 + rs

∥∥x − y∥∥2 = r‖x‖2 + s∥∥y∥∥2 (2.14)

for all x, y ∈ X, where s = 1 − r.

Proof. Let f : X → � be a function defined by f(x) = ‖x‖2. If X is an inner product space,
then f satisfies (2.14) for all r ∈ �. Conversely, let r ∈ (0, 1) and the (even) function f satisfy
(2.14). So f satisfies (1.2). By Theorem 2.3, the function f satisfies (1.1), that is,

∥
∥x + y

∥
∥2 +

∥
∥x − y∥∥2 = 2‖x‖2 + 2

∥
∥y

∥
∥2 (2.15)

for all x, y ∈ X. ThereforeX is an inner product space (see [14]).

Proposition 2.5. Let p, q, u, v ∈ � \ {0} andX be a linear space with the norm ‖ · ‖. Suppose that
∥
∥rx + sy

∥
∥p + rs

∥
∥x − y∥∥q = r‖x‖u + s∥∥y∥∥v (2.16)

for all x, y in X, where 0 < r < 1 and s = 1 − r. Then p = q = u = v = 2.

Proof. Setting y = 0 in (2.16), we get

|r|p‖x‖p + rs‖x‖q = r‖x‖u (2.17)

for all x in X. If we take x ∈ X with ‖x‖ = 1 in (2.17), we get that p = 2. Letting y = x in
(2.16), we get

‖x‖2 = r‖x‖u + s‖x‖v (2.18)

for all x inX. Letting x = 0 in (2.16), we get

r
∥
∥y

∥
∥q =

∥
∥y

∥
∥v − s∥∥y∥∥2 (2.19)
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for all y inX. Since p = 2, it follows from (2.17) and (2.19) that

r‖x‖u − s‖x‖v = (r − s)‖x‖2 (2.20)

for all x ∈ X. Using (2.18) and (2.20), we get ‖x‖u = ‖x‖v for all x ∈ X. Hence u = v and
(2.18) implies that u = v = 2. Finally, q = 2 follows from (2.19).

Corollary 2.6. Let X be a linear space with the norm ‖ · ‖. X is an inner product space if and only if
there exists a real number 0 < r < 1 and p, q, u, v ∈ � \ {0} such that

∥∥rx + sy
∥∥p + rs

∥∥x − y∥∥q = r‖x‖u + s∥∥y∥∥v (2.21)

for all x, y ∈ X, where s = 1 − r.

3. Stability of (1.2) on Restricted Domains

In this section, we investigate the Hyers-Ulam stability of the functional equation (1.2) on a
restricted domain. As an application we use the result to the study of an asymptotic behavior
of that equation. It should be mentioned that Skof [39] was the first author who treats the
Hyers-Ulam stability of the quadratic equation. Czerwik [8] proved a Hyers-Ulam-Rassias
stability theorem on the quadratic equation. As a particular case he proved the following
theorem.

Theorem 3.1. Let δ ≥ 0 be fixed. If a mapping f : X → Y satisfies the inequality

∥∥f
(
x + y

)
+ f

(
x − y) − 2f(x) − 2f

(
y
)∥∥ ≤ δ (3.1)

for all x, y ∈ X, then there exists a unique quadratic mappingQ : X → Y such that ‖f(x)−Q(x)‖ ≤
δ/2 for all x ∈ X. Moreover, if f is measurable or if f(tx) is continuous in t for each fixed x ∈ X,
then Q(tx) = t2Q(x) for all x ∈ X and t ∈ �.

We recall that r, s are nonzero real numbers with r + s = 1.

Theorem 3.2. Let d > 0 and δ ≥ 0 be given. Assume that an even mapping f : X → Y satisfies the
inequality

∥
∥f

(
rx + sy

)
+ rsf

(
x − y) − rf(x) − sf(y)∥∥ ≤ δ (3.2)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d. Then there exists K > 0 such that f satisfies

∥∥f
(
x + y

)
+ f

(
x − y) − 2f(x) − 2f

(
y
)∥∥ ≤ 4(2 + |r| + |s|)

|rs| δ (3.3)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ K.
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Proof. Let x, y ∈ X with ‖x‖ + ‖y‖ ≥ 2d. Then, since ‖x + y‖ + ‖y‖ ≥ max{‖x‖, 2‖y‖ − ‖x‖}, we
get ‖x + y‖ + ‖y‖ ≥ d. So it follows from (3.2) that

∥
∥f

(
rx + y

)
+ rsf(x) − rf(x + y

) − sf(y)∥∥ ≤ δ (3.4)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ 2d. So

∥∥f
(
ry + x

)
+ rsf

(
y
) − rf(x + y

) − sf(x)∥∥ ≤ δ (3.5)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ 2d.
Let x, y ∈ X with ‖x‖ + ‖y‖ ≥ 4d(1/|r| + |1 − 1/|r||). We have two cases.

Case 1. ‖y‖ > 2d/|r|. Then ‖x‖ + ‖x + ry‖ ≥ |r|‖y‖ ≥ 2d.

Case 2. ‖y‖ ≤ 2d/|r|. Then we have ‖x‖ ≥ 2d(1/|r| + 2|1 − 1/|r||). So

‖x‖ + ∥∥x + ry
∥∥ ≥ 2‖x‖ − |r|∥∥y∥∥ ≥ 2d

(
2
|r| + 4

∣∣∣
∣1 −

1
|r|

∣∣∣
∣ − 1

)
≥ 2d. (3.6)

Therefore we get that ‖x‖ + ‖x + ry‖ ≥ 2d from Cases 1 and 2. Hence by (3.4) we have

∥
∥f

(
r
(
x + y

)
+ x

)
+ rsf(x) − rf(2x + ry

) − sf(x + ry
)∥∥ ≤ δ (3.7)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ 4d(1/|r| + |1 − 1/|r||). SetM := 4d(1/|r| + |1 − 1/|r||). Then

∥∥x + y
∥∥ + ‖x‖ ≥ M

2
≥ 2d, ‖2x‖ + ∥∥y

∥∥ ≥ M ≥ 4d (3.8)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ M. From (3.4) and (3.5), we get the following inequalities:

∥∥f
(
r
(
x + y

)
+ x

)
+ rsf

(
x + y

) − rf(2x + y
) − sf(x)∥∥ ≤ δ,

∥∥
∥rf

(
ry + 2x

)
+ r2sf

(
y
) − r2f(2x + y

) − rsf(2x)
∥∥
∥ ≤ δ|r|,

∥∥∥sf
(
ry + x

)
+ rs2f

(
y
) − rsf(x + y

) − s2f(x)
∥∥∥ ≤ δ|s|.

(3.9)

Using (3.7) and the above inequalities, we get

∥∥f
(
2x + y

)
+ 2f(x) + f

(
y
) − 2f

(
x + y

) − f(2x)∥∥ ≤ 2 + |r| + |s|
|rs| δ (3.10)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ M. If x, y ∈ X with ‖x‖ + ‖y‖ ≥ 2M, then ‖x‖ + ‖y − x‖ ≥ M.
So it follows from (3.10) that

∥∥f
(
x + y

)
+ 2f(x) + f

(
y − x) − 2f

(
y
) − f(2x)∥∥ ≤ 2 + |r| + |s|

|rs| δ. (3.11)
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Letting y = 0 in (3.11), we get

∥
∥4f(x) − f(2x) − 2f(0)

∥
∥ ≤ 2 + |r| + |s|

|rs| δ (3.12)

for all x, y ∈ X with ‖x‖ ≥ 2M. Letting x = 0 (and y ∈ X with ‖y‖ ≥ 2M) in (3.11), we get
‖f(0)‖ ≤ ((2 + |r| + |s|)/|rs|)δ. Therefore it follows from (3.11) and (3.12) that

∥∥f
(
x + y

)
+ f

(
y − x) − 2f(x) − 2f

(
y
)∥∥

≤ ∥∥f
(
x + y

)
+ 2f(x) + f

(
y − x) − 2f

(
y
) − f(2x)∥∥

+
∥∥4f(x) − f(2x) − 2f(0)

∥∥ + 2
∥∥f(0)

∥∥

≤ 4(2 + |r| + |s|)
|rs| δ

(3.13)

for all x, y ∈ X with ‖x‖ ≥ 2M. Since f is even, the inequality (3.13) holds for all x, y ∈ X
with ‖y‖ ≥ 2M. Therefore

∥∥f
(
x + y

)
+ f

(
x − y) − 2f(x) − 2f

(
y
)∥∥ ≤ 4(2 + |r| + |s|)

|rs| δ (3.14)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ 4M. This completes the proof by letting K := 4M.

Theorem 3.3. Let d > 0 and δ ≥ 0 be given. Assume that an even mapping f : X → Y satisfies the
inequality (3.2) for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d. Then f satisfies

∥∥f
(
x + y

)
+ f

(
x − y) − 2f(x) − 2f

(
y
)∥∥ ≤ 19(2 + |r| + |s|)

|rs| δ (3.15)

for all x, y ∈ X.

Proof. By Theorem 3.2 there exists K > 0 such that f satisfies (3.3) for all x, y ∈ X with ‖x‖ +
‖y‖ ≥ K and ‖f(0)‖ ≤ ((2 + |r| + |s|)/|rs|)δ (see the proof of Theorem 3.2). Using Theorem 2
of [38], we get that

∥∥f
(
x + y

)
+ f

(
x − y) − 2f(x) − 2f

(
y
)∥∥ ≤ 18(2 + |r| + |s|)

|rs| δ +
∥∥f(0)

∥∥

≤ 19(2 + |r| + |s|)
|rs| δ

(3.16)

all x, y ∈ X.
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Theorem 3.4. Let d > 0 and δ ≥ 0 be given. Assume that an even mapping f : X → Y satisfies the
inequality (3.2) for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d. Then there exists a unique quadratic mapping
Q : X → Y such thatQ(x) = limn→∞4−nf(2nx) and

∥
∥f(x) −Q(x)

∥
∥ ≤ 19(2 + |r| + |s|)

2|rs| δ (3.17)

for all x ∈ X.

Proof. The result follows from Theorems 3.1 and 3.3.

Skof [39] has proved an asymptotic property of the additive mappings and Jung [34]
has proved an asymptotic property of the quadratic mappings (see also [36]). We prove such
a property also for the quadratic mappings.

Corollary 3.5. An even mapping f : X → Y satisfies (1.2) if and only if the asymptotic condition

∥
∥f

(
rx + sy

)
+ rsf

(
x − y) − rf(x) − sf(y)∥∥ −→ 0, as ‖x‖ + ∥

∥y
∥
∥ −→ ∞ (3.18)

holds true.

Proof. By the asymptotic condition (3.18), there exists a sequence {δn}monotonically decreas-
ing to 0 such that

∥∥f
(
rx + sy

)
+ rsf

(
x − y) − rf(x) − sf(y)∥∥ ≤ δn (3.19)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ n. Hence, it follows from (3.19) and Theorem 3.4 that there
exists a unique quadratic mapping Qn : X → Y such that

∥∥f(x) −Qn(x)
∥∥ ≤ 19(2 + |r| + |s|)

2|rs| δn (3.20)

for all x ∈ X. Since {δn} is a monotonically decreasing sequence, the quadratic mapping Qm

satisfies (3.20) for allm ≥ n. The uniqueness of Qn implies Qm = Qn for all m ≥ n. Hence, by
letting n → ∞ in (3.20), we conclude that f is quadratic.

Corollary 3.6. Let r be rational. An even mapping f : X → Y is quadratic if and only if the
asymptotic condition (3.18) holds true.
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10 Journal of Inequalities and Applications

[28] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic
Press, Palm Harbor, Fla, USA, 2001.

[29] Th. M. Rassias, Ed., Functional Equations, Inequalities and Applications, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2003.

[30] F. Skof, “Sull’ approssimazione delle applicazioni localmente δ-additive,” Atti della Accademia delle
Scienze di Torino, vol. 117, pp. 377–389, 1983.

[31] D. H. Hyers, G. Isac, and Th. M. Rassias, “On the asymptoticity aspect of Hyers-Ulam stability of
mappings,” Proceedings of the American Mathematical Society, vol. 126, no. 2, pp. 425–430, 1998.

[32] S.-M. Jung, “Hyers-Ulam-Rassias stability of Jensen’s equation and its application,” Proceedings of the
American Mathematical Society, vol. 126, no. 11, pp. 3137–3143, 1998.

[33] S.-M. Jung, M. S. Moslehian, and P. K. Sahoo, “Stability of a generalized Jensen equation on restricted
domains,” Journal of Mathematical Inequalities, vol. 4, pp. 191–206, 2010.

[34] S.-M. Jung, “On the Hyers-Ulam stability of the functional equations that have the quadratic
property,” Journal of Mathematical Analysis and Applications, vol. 222, no. 1, pp. 126–137, 1998.

[35] S.-M. Jung, “Stability of the quadratic equation of Pexider type,”Abhandlungen aus demMathematischen
Seminar der Universität Hamburg, vol. 70, pp. 175–190, 2000.

[36] S.-M. Jung and B. Kim, “On the stability of the quadratic functional equation on bounded domains,”
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 69, pp. 293–308, 1999.

[37] S.-M. Jung and P. K. Sahoo, “Hyers-Ulam stability of the quadratic equation of Pexider type,” Journal
of the Korean Mathematical Society, vol. 38, no. 3, pp. 645–656, 2001.

[38] J. M. Rassias, “On the Ulam stability of mixed type mappings on restricted domains,” Journal of
Mathematical Analysis and Applications, vol. 276, no. 2, pp. 747–762, 2002.

[39] F. Skof, “Proprieta’ locali e approssimazione di operatori,” Rendiconti del Seminario Matematico e Fisico
di Milano, vol. 53, no. 1, pp. 113–129, 1983.


