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We give a simpler proof of a result of Holland concerning a mixed arithmetic-geometric mean
inequality. We also prove a result of mixed-mean inequality involving the symmetric means.

1. Introduction

Let Mn,r(x) be the generalized weighted power means: Mn,r(q, x) = (
∑n

i=1 qix
r
i )

1/r , where
q = (q1, q2, . . . , qn), x = (x1, x2, . . . , xn), and qi > 0, 1 ≤ i ≤ n, with

∑n
i=1 qi = 1. Here Mn,0(q, x)

denotes the limit ofMn,r(q, x) as r → 0+. Unless specified, we always assume that xi > 0, 1 ≤
i ≤ n. When there is no risk of confusion, we will writeMn,r forMn,r(q, x) and we also define
An = Mn,1, Gn = Mn,0, and Hn = Mn,−1.

The celebrated Hardy’s inequality (see [1, Theorem 326] ) asserts that, for p > 1, an ≥ 0,

∞∑

n=1

(∑n
k=1 ak

n

)p

≤
(

p

p − 1

)p ∞∑

n=1

a
p
n. (1.1)

Among the many different proofs of Hardy’s inequality as well as its generalizations
and extensions in the literature, one novel approach is via the mixed-mean inequalities (see,
e.g., [2, Theorem 7]). By mixed-mean inequalities, we will mean the following inequalities:

(
m∑

n=1

am,n

(
m∑

k=1

bn,kxk

)p)1/p

≤
m∑

n=1

bm,n

(
m∑

k=1

an,kx
p

k

)1/p

, (1.2)

where (ai,j), (bi,j) are two m ×m matrices with nonnegative entries and the above inequality
being meant to hold for any vector x ∈ R

m with nonnegative entries. Here p ≥ 1 and, when
0 < p ≤ 1, we want the inequality above to be reversed.



2 Journal of Inequalities and Applications

The meaning of mixed mean becomes more clear when (ai,j), (bi,j) are weighted mean
matrices. Here we say that a matrix A = (an,k) is a weighted mean matrix if an,k = 0 for n < k
and

an,k =
wk

Wn
, 1 ≤ k ≤ n, Wn =

n∑

i=1

wi, wi ≥ 0, w1 > 0. (1.3)

Now we focus our attention to the case of (1.2) for (ai,j) = (bi,j) being weighted mean
matrices given in (1.3). In this case, for fixed x = (x1, . . . , xn),w = (w1, . . . , wn), we define xi =
(x1, . . . , xi),wi = (w1, . . . , wi),Wi =

∑i
j=1 wj , Mi,r = Mi,r(xi) = Mi,r(wi/Wi, xi), and Mi,r =

(M1,r , . . . ,Mi,r). Then we have the following mixed-mean inequalities of Nanjundiah [3] (see
also [4]).

Theorem 1.1. Let r > s and n ≥ 2. If, for 2 ≤ k ≤ n − 1, Wnwk −Wkwn > 0, then

Mn,s(Mn,r) ≥ Mn,r(Mn,s), (1.4)

with equality holding if and only if x1 = · · · = xn.

A very elegant proof of Theorem 1.1 for the case r = 1, s = 0 is given by Kedlaya
in [5]. In fact, the following Popoviciu-type inequalities were established in [5] (see also [4,
Theorem 9]).

Theorem 1.2. Let n ≥ 2. If, for 2 ≤ k ≤ n − 1, Wnwk −Wkwn > 0, then

Wn−1(lnMn−1,0(Mn−1,1) − lnMn−1,1(Mn−1,0)) ≤ Wn(lnMn,0(Mn,1) − lnMn,1(Mn,0)), (1.5)

with equality holding if and only if xn = Mn−1,0 = Mn−1,1(Mn−1,0).

It is easy to see that the case r = 1, s = 0 of Theorem 1.1 follows from Theorem 1.2.
As was pointed out by Kedlaya that the method used in [5] can be applied to establish both
Popoviciu-type and Rado-type inequalities for mixed means for a general pair r > s, the
details were worked out in [6] and the following Rado-type inequalities were established in
[6].

Theorem 1.3. Let 1 > s and n ≥ 2. If, for 2 ≤ k ≤ n − 1, Wnwk −Wkwn > 0, then

Wn−1(Mn−1,s(Mn−1,1) −Mn−1,1(Mn−1,s)) ≤ Wn(Mn,s(Mn,1) −Mn,1(Mn,s)), (1.6)

with equality holding if and only if x1 = · · · = xn and the above inequality reverses when s > 1.

A different proof of Theorem 1.1 for the case r = 1, s = 0 was given in [7] and Bennett
used essentially the same approach in [8, 9] to study (1.2) for the cases (ai,j), (bi,j) being lower
triangular matrices, namely, ai,j = bi,j = 0 if j > i. Among other things, he showed [8] that
inequalities (1.2) hold when (ai,j), (bi,j) are Hausdorff matrices.

In [10], Holland further improved the condition in Theorem 1.3 for the case s = 0 by
proving the following.
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Theorem 1.4. Let n ≥ 2. If, for 2 ≤ k ≤ n − 1, W2
k ≥ wk+1

∑k−1
i=1 Wi, then

Wn−1(Mn−1,0(Mn−1,1) −Mn−1,1(Mn−1,0)) ≤ Wn(Mn,0(Mn,1) −Mn,1(Mn,0)), (1.7)

with equality holding if and only if x1 = · · · = xn.

It is our goal in this paper to first give a simpler proof of the above result by modifying
Holland’s own approach. This is done in the next section and, in Section 3, we will prove a
result of mixed-mean inequality involving the symmetric means.

2. A Proof of Theorem 1.4

First, we recast (1.7) as

Gn(An) − Wn−1
Wn

Gn−1(An−1) − wn

Wn
Gn ≥ 0. (2.1)

We now note that

Gn(An) = (Gn−1(An−1))Wn−1/WnAwn/Wn
n ,

Gn−1(An−1) = An

n−1∏

i=1

(
Ai

Ai+1

)Wi/Wn−1
.

(2.2)

Wemay assume that xk > 0, 1 ≤ k ≤ n, and the case xk = 0 for some kwill follow by continuity.
Thus on dividing Gn(An) on both sides of (2.1) and using (2.2), we can recast (2.1) as

Wn−1
Wn

n−1∏

i=1

(
Ai

Ai+1

)Wiwn/(Wn−1Wn)

+
wn

Wn

n∏

i=1

(
xi

Ai

)wi/Wn

≤ 1. (2.3)

We now express that xi = (WiAi −Wi−1Ai−1)/wi, 1 ≤ i ≤ n, withW0 = A0 = 0 to recast (2.3) as

Wn−1
Wn

n−1∏

i=1

(
Ai

Ai+1

)Wiwn/(Wn−1Wn)

+
wn

Wn

n∏

i=1

(
WiAi −Wi−1Ai−1

wiAi

)wi/Wn

≤ 1. (2.4)

We now set yi = Ai/Ai+1, 1 ≤ i ≤ 2, to further recast the above inequality as

Wn−1
Wn

n−1∏

i=1

y
Wiwn/(Wn−1Wn)
i +

wn

Wn

n−1∏

i=1

(
Wi+1

wi+1
− Wi

wi+1
yi

)wi+1/Wn

≤ 1. (2.5)

It now follows from the assumption of Theorem 1.4 that

cn = 1 −
n−1∑

i=1

Wiwn

Wn−1Wn
≥ 0, (2.6)
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so that by the arithmetic-geometric mean inequality we have

n−1∏

i=1

y
Wiwn/(Wn−1Wn)
i = 1cn

n−1∏

i=1

y
Wiwn/(Wn−1Wn)
i ≤

n−1∑

i=1

Wiwnyi

Wn−1Wn
+ 1 −

n−1∑

i=1

Wiwn

Wn−1Wn
. (2.7)

Similarly, we have

n−1∏

i=1

(
Wi+1

wi+1
− Wi

wi+1
yi

)wi+1/Wn

≤
n−1∑

i=1

wi+1

Wn

(
Wi+1

wi+1
− Wi

wi+1
yi

)

+
w1

Wn
. (2.8)

Now it is easy to see that inequality (2.5) follows on adding inequalities (2.7) and (2.8), and
this completes the proof of Theorem 1.4.

3. A Discussion on Symmetric Means

Let 0 ≤ r ≤ n; we recall that the rth symmetric function En,r of x and its mean Pn,r are defined
by

En,r(x) =
∑

1≤i1<···<ir≤n

r∏

j=1

xij , P
r
n,r(x) =

En,r(x)
( n
r )

, 1 ≤ r ≤ n, En,0 = Pn,0 = 1. (3.1)

It is well known that, for fixed x of dimension n, Pn,r is a nonincreasing function of r for
1 ≤ r ≤ n with Pn,1 = An, Pn,n = Gn (with weights wi = 1, 1 ≤ i ≤ n). In view of the mixed-
mean inequalities for the generalized weighted power means (Theorem 1.1), it is natural to
ask whether similar results hold for the symmetric means. Of course one may have to adjust
the notion of such mixed means in order for this to make sense for all n. For example, when
r = 3, n = 2, the notion of P2,3 is not even defined. From now on, we will only focus on the
extreme cases of the symmetric means; namely, r = 2 or r = n − 1. In these cases it is then
natural to define P1,2 = x1, and, on recasting Pn,n−1 = G

n/(n−1)
n /H

1/(n−1)
n , we see that it is also

natural for us to define P1,0 = x1 (note that this is not consistent with our definition of Pn,0

above).
We now prove a mixed-mean inequality involving Pn,2 and An. We first note the

following result of Marcus and Lopes [11] (see also [12, pages 33–35]).

Theorem 3.1. Let 0 < r ≤ n and xi, yi > 0 for i = 1, 2, . . . , n. Then

Pn,r(x + y) ≥ Pn,r(x) + Pn,r(y), (3.2)

with equality holding if and only if r = 1 or there exists a constant λ such that x = λy.

We also need the following lemma of C. D. Tarnavas and D. D. Tarnavas [6].
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Lemma 3.2. Let f : R1 → R1 be a convex function and suppose that for n ≥ 2, 1 ≤ k ≤ n − 1, that
Wnwk −Wkwn > 0. Then

1
Wn−1

n−1∑

k=1

wkf(Wn−1Ak) ≥ 1
Wn

n∑

k=1

wkf(WnAk −wnxk). (3.3)

The equality holds if and only if n = 2 or x1 = · · · = xn when f(x) is strictly convex. When f(x) is
concave, then the above inequality is reversed.

We now apply Lemma 3.2 to obtain the following.

Lemma 3.3. For n ≥ 2 and wi = 1, 1 ≤ i ≤ n,

Pn−1,2((n − 1)An−1) ≤ Pn,2(nAn − xn), (3.4)

with equality holding in both cases if and only if n = 2 or x1 = · · · = xn.

Proof. The case n = 2 yields an identity, so we may assume that n ≥ 3 here. Write ai =
(n − 1)Ai, 1 ≤ i ≤ n − 1; bj = nAj − xj , 1 ≤ j ≤ n. Note that n

∑n−1
i=1 ai = (n − 1)

∑n
i=1 bi,

and now Lemma 3.2 with f(x) = x2 implies that (n − 1)
∑n

i=1 b
2
i ≤ n

∑n−1
i=1 a2

i . On expanding
(n

∑n−1
i=1 ai)

2 = ((n − 1)
∑n

i=1 bi)
2, we obtain

n2
n−1∑

i=1

a2
i + 2n2

∑

1≤i /= j≤n−1
aiaj = (n − 1)2

n∑

i=1

b2i + 2(n − 1)2
∑

1≤i /= j≤n
bibj

≤ n(n − 1)
n−1∑

i=1

a2
i + 2(n − 1)2

∑

1≤i /= j≤n
bibj .

(3.5)

Hence,

n
n−1∑

i=1

a2
i + 2n2

∑

1≤i /= j≤n−1
aiaj ≤ 2(n − 1)2

∑

1≤i /= j≤n
bibj . (3.6)

Using Mn,2 ≥ An = Pn,1 ≥ Pn,2, we obtain

1
n − 1

n−1∑

i=1

a2
i ≥

1
(
n−1
2

)
∑

1≤i /= j≤n−1
aiaj . (3.7)

So by (3.6),

1
(
n−1
2

)
∑

1≤i /= j≤n−1
aiaj ≤ 1

( n
2 )

∑

1≤i /= j≤n
bibj , (3.8)

which is just what we want.



6 Journal of Inequalities and Applications

We now prove the following mixed-mean inequality involving the symmetric means.

Theorem 3.4. Let n ≥ 1 and define Pn,2 = (P1,2, . . . , Pn,2). Then

(n − 1)(Pn−1,2(Pn−1,1) − Pn−1,1(Pn−1,2)) ≤ n(Pn,2(Pn,1) − Pn,1(Pn,2)), (3.9)

with equality holding if and only if x1 = · · · = xn. It follows that

Pn,1(Pn,2) ≤ Pn,2(Pn,1), (3.10)

with equality holding if and only if x1 = · · · = xn.

Proof. It suffices to prove (3.9) here. We may assume that n ≥ 2 here and we will use the idea
in [6]. Lemma 3.3 implies that

Pn,2 + (n − 1)Pn−1,2(Pn−1,1) ≤ Pn,2 + Pn,2(nAn − xn)

≤ Pn,2(nAn − xn + xn) = nPn,2(Pn,1),
(3.11)

where the last inequality follows from Theorem 3.1 for the case r = 2. It is easy to see that the
above inequality is equivalent to (3.9) and this completes the proof.

Now we let n ≥ 1 and define Pn,n−1 = (P1,0, . . . , Pn,n−1) with P1,0 = x1 here. Then it is
interesting to see whether the following inequality holds or not:

Pn,1(Pn,n−1) ≤ Pn,n−1(Pn,1). (3.12)

We note here that, if the above inequality holds, then it is easy to deduce from it via the
approach in [2] the following Hardy-type inequality:

n∑

i=1

G
i/(i−1)
i

H
1/(i−1)
i

(xi) ≤ e
n∑

i=1

xi, (3.13)

where we define G1/0
1 /H1/0

1 = x1. We now end this paper by proving the following result.

Theorem 3.5. Let n ≥ 1 and x ≥ 0. Then

n∑

i=1

G
i/(i−1)
i

H
1/(i−1)
i

(xi) ≤ 3
n∑

i=1

xi, (3.14)

where one defines G1/0
1 /H1/0

1 = x1.
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Proof. We follow an approach of Knopp [13, 14] here (see also [15]). For i ≥ 1, we define

ai =
i∑

k=1

kxk

i(i + 1)
. (3.15)

It is easy to check by partial summation that

n∑

i=1

ai ≤
n∑

i=1

xi. (3.16)

Certainly, we have a1 = x1/2 = P1,0(x1)/2 and, for i ≥ 2, we apply the inequality Pi,1 ≥ Pi,i−1
to the numbers x1/(i + 1), 2x2/(i + 1), . . . , ixi/(i + 1) to see that

ai ≥
(

(i − 1)!

(i + 1)i−1

)1/(i−1)
Pi,i−1(xi) := γiPi,i−1(xi) . (3.17)

We now show by induction that γi ≥ 1/3 for i ≥ 2; equivalently, this is

3i−1(i − 1)! ≥ (i + 1)i−1. (3.18)

Note first that the above inequality holds when i = 2, 3 and suppose now that it holds for
some i = k ≥ 3. Then by induction,

3kk! ≥ 3k(k + 1)k−1. (3.19)

Now using (1 + 1/n)n < e, we have

3k(k + 1)k−1

(k + 2)k
=

3k(k + 2)

(k + 1)2

(
k + 1
k + 2

)k+1

≥ 3k(k + 2)

e(k + 1)2
. (3.20)

It is easy to see that the last expression above is no less than 1 when k ≥ 3 and this proves
inequality (3.18) for the case i = k + 1. This completes the proof of the theorem.
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