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We establish some new Fejér-type inequalities for convex functions.

1. Introduction

Throughout this paper, let f : [a, b] → R be convex, and let g : [a, b] → [0,∞) be integrable
and symmetric to (a + b)/2. We define the following functions on [0, 1] that are associated
with the well-known Hermite-Hadamard inequality [1]
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For some results which generalize, improve, and extend the famous integral inequality
(1.1), see [2–6].

In [2], Dragomir established the following theorem which is a refinement of the first
inequality of (1.1).

Theorem A. Let f be defined as above, and letH be defined on [0, 1] by
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Then, H is convex, increasing on [0, 1], and for all t ∈ [0, 1], one has
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In [6], Yang and Hong established the following theorem which is a refinement of the
second inequality in (1.1).

Theorem B. Let f be defined as above, and let P be defined on [0, 1] by
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Then, P is convex, increasing on [0, 1], and for all t ∈ [0, 1], one has
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In [3], Fejér established the following weighted generalization of the Hermite-
Hadamard inequality (1.1).
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Theorem C. Let f, g be defined as above. Then,
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is known as Fejér inequality.

In this paper, we establish some Fejér-type inequalities related to the functions I, J ,M,
N introduced above.

2. Main Results

In order to prove our main results, we need the following lemma.

Lemma 2.1 (see [4]). Let f be defined as above, and let a ≤ A ≤ C ≤ D ≤ B ≤ b withA+B = C+D.
Then,

f(C) + f(D) ≤ f(A) + f(B). (2.1)

Now, we are ready to state and prove our results.

Theorem 2.2. Let f, g, and I be defined as above. Then I is convex, increasing on [0, 1], and for all
t ∈ [0, 1], one has the following Fejér-type inequality:
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Proof. It is easily observed from the convexity of f that I is convex on [0, 1]. Using simple
integration techniques and under the hypothesis of g, the following identity holds on [0, 1]:
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Let t1 < t2 in [0, 1]. By Lemma 2.1, the following inequality holds for all x ∈ [a, (a + b)/2]:
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Indeed, it holds when we make the choice
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in Lemma 2.1.
Multipling the inequality (2.4) by g(2x − a), integrating both sides over x on [a, (a +

b)/2] and using identity (2.3), we derive I(t1) ≤ I(t2). Thus I is increasing on [0, 1] and then
the inequality (2.2) holds. This completes the proof.

Remark 2.3. Let g(x) = 1/(b − a) (x ∈ [a, b]) in Theorem 2.2. Then I(t) = H(t) (t ∈ [0, 1]) and
the inequality (2.2) reduces to the inequality (1.4), where H is defined as in Theorem A.

Theorem 2.4. Let f, g, J be defined as above. Then J is convex, increasing on [0, 1], and for all
t ∈ [0, 1], one has the following Fejér-type inequality:
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Proof. By using a similar method to that from Theorem 2.2, we can show that J is convex on
[0, 1], the identity

J(t) =
∫ (3a+b)/4

a

[
f

(
tx + (1 − t)

3a + b

4

)
+ f

(
t

(
3a + b

2
− x

)
+ (1 − t)

3a + b

4

)

+f
(
t

(
x +

b − a

2

)
+ (1 − t)

a + 3b
4

)
+ f

(
t(a + b − x) + (1 − t)

a + 3b
4

)]

× g(2x − a)dx
(2.7)



Journal of Inequalities and Applications 5

holds on [0, 1], and the inequalities
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hold for all t1 < t2 in [0, 1] and x ∈ [a, (3a + b)/4].
By (2.7)–(2.9) and using a similar method to that from Theorem 2.2, we can show that

J is increasing on [0, 1] and (2.6) holds. This completes the proof.

The following result provides a comparison between the functions I and J .

Theorem 2.5. Let f , g, I, and J be defined as above. Then I(t) ≤ J(t) on [0, 1].
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on [0, 1], (2.3) and using a similar method to that from Theorem 2.2, we can show that I(t) ≤
J(t) on [0, 1]. The details are omited.

Further, the following result incorporates the properties of the function M.

Theorem 2.6. Let f, g,M be defined as above. Then M is convex, increasing on [0, 1], and for all
t ∈ [0, 1], one has the following Fejér-type inequality:
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Proof. Follows by the identity
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on [0, 1]. The details are left to the interested reader.

We now present a result concerning the properties of the function N.

Theorem 2.7. Let f, g,N be defined as above. Then N is convex, increasing on [0, 1], and for all
t ∈ [0, 1], one has the following Fejér-type inequality:
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Proof. By the identity
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on [0, 1] and using a similar method to that for Theorem 2.2, we can show that N is convex,
increasing on [0, 1] and (2.13) holds.

Remark 2.8. Let g(x) = 1/(b−a) (x ∈ [a, b]) in Theorem 2.7. ThenN(t) = P(t) (t ∈ [0, 1]) and
the inequality (2.13) reduces to (1.6), where P is defined as in Theorem B.

Theorem 2.9. Let f , g,M, and N be defined as above. ThenM(t) ≤ N(t) on [0, 1].
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on [0, 1], (2.12) and using a similar method to that for Theorem 2.2, we can show thatM(t) ≤
N(t) on [0, 1]. This completes the proof.

The following Fejér-type inequality is a natural consequence of Theorems 2.2–2.9.
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Corollary 2.10. Let f, g be defined as above. Then one has
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Remark 2.11. Let g(x) = 1/(b − a) (x ∈ [a, b]) in Corollary 2.10. Then the inequality (2.16)
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which is a refinement of (1.1).

Remark 2.12. In Corollary 2.10, the third inequality in (2.16) is the weighted generalization of
Bullen’s inequality [5]
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