
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 543061, 17 pages
doi:10.1155/2010/543061

Research Article
Solvability Criteria for Some Set-Valued
Inequality Systems

Yingfan Liu

Department of Mathematics, College of Science, Nanjing University of Posts and Telecommunications,
Nanjing 210009, China

Correspondence should be addressed to Yingfan Liu, yingfanliu@hotmail.com

Received 23 May 2010; Accepted 9 July 2010

Academic Editor: Qamrul Hasan Ansari

Copyright q 2010 Yingfan Liu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Arising from studying some multivalued von Neumann model, three set-valued inequality
systems are introduced, and two solvability questions are considered. By constructing some
auxiliary functions and studying their minimax and saddle-point properties, solvability criteria
composed of necessary and sufficient conditions regarding these inequality systems are obtained.

1. Introduction

Arising from considering some multivalued von Neumann model, this paper aims to study
three set-valued inequality systems and try to find their solvability criteria. Before starting
with this subject, we need to review some necessary backgrounds as follows.

We denote by Rk = (Rk, ‖ ·‖) the k-dimensional Euclidean space, Rk∗ = Rk its dual, and
〈·, ·〉 the duality pairing on 〈Rk∗, Rk〉; moreover, we denote that Rk

+ = {x ∈ Rk : xi ≥ 0 ∀i} and
intRk

+ is its interior. We also define ≥ (or >) in Rk by x ≥ y ⇔ x−y ∈ Rk
+ (or by x > y ⇔ x−y ∈

intRk
+).
It is known that the generalized (linear or nonlinear) von Neumann model, which is

composed of an inequality system and a growth factor problem described by

(a) ∃x ∈ X =⇒ Bx −Ax ≥ c,
(b) λ > 1 s.t. ∃x ∈ X =⇒ Bx ≥ λAx + c,

respectively, (1.1)

is one of the most important issues in the input-output analysis [1–3], where c ∈ Rm
+ , X ⊆ Rn

+
(m may not be equal to n), and B,A are two nonnegative or positive maps from X to Rm

+ .
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A series of researches on (1.1) have been made by the authors of [1–5] for the linear case
(i.e., B,A arem × nmatrices) and by the authors of [6, 7] for the nonlinear case (i.e., B,A are
some types of nonlinear maps). Since (a) or (b) of (1.1) is precisely a special example of the
inequality λ ∈ [1,+∞) s.t. ∃x ∈ X ⇒ Sλx=̂(B − λA)x = Bx − λAx ≥ c if we restrict λ = 1 or
λ > 1, it is enough for (1.1) to consider the inequality system. This idea can be extended to the
set-valued version. Indeed, if B andA are replaced by set-valued maps G and F, respectively,
then (1.1) yields a class ofmultivalued vonNeumannmodel, and it solves a proper set-valued
inequality system to study. With this idea, by [8] (as a set-valued extension to [6, 7])we have
considered the following multivalued inequality system:

c ∈ Rm
+ s.t.

∃x ∈ X, ∃y ∈ Tx =⇒ y ≥ c
(1.2)

and obtained several necessary and sufficient conditions for its solvability, where X ⊂ Rn
+

and T : X → 2R
m
is a class of set-valued maps from X to Rm. Along the way, three further

set-valued inequality systems that we will study in the sequel can be stated as follows.
Let X, T be as above, and let G,F : X → 2R

m
+ be set-valued maps from X to Rm

+ , then
we try to find the solvability criteria (i.e., the necessary and sufficient conditions) that c ∈ Rm

+
solves

∃x ∈ X, ∃y ∈ Tx,
∃i0 ∈ {1, 2, . . . , m} =⇒ y ≥ c, yi0 = ci0 ,

(1.3)

∃x ∈ X,
∃y ∈ (G − F)x =⇒ y ≥ c, (1.4)

or
∃x ∈ X, ∃y ∈ (G − F)x,

∃i0 ∈ {1, 2, . . . , m} =⇒ y ≥ c, yi0 = ci0 .
(1.5)

When T and G,F are single-valued maps, then (1.3)–(1.5) return to the models of [6,
7]. When T and G, F are set-valued maps, there are three troubles if we try to obtain some
meaningful solvability criteria regarding (1.3)–(1.5) just like what we did in [8].

(1) For (1.2) and (1.3), it is possible that only (1.2) has solution for some c ∈ Rm
+ .

Indeed, if X is compact and T is continuous, compact valued with TX ⊂ intRm
+ , then TX is

compact and there is c ∈ Rm
+ with c < y for y ∈ TX. Hence c solves (1.2) but does not solve

(1.3).
(2) It seems that the solvability criteria (namely, necessary and sufficient results

concerning existence) to (1.4) can be obtained immediately by [8] with the replacement
T = G − F. However, this type of result is trivial because it depends only on the property
of G − F but not on the respective information of G and F. This opinion is also applicable to
(1.3) and (1.5).

(3) Clearly, (1.3) (or (1.5)) is more fine and more useful than (1.2) (or (1.4)). However,
the method used for (1.2) in [8] (or the possible idea for (1.4)) to obtain solvability criteria
fails to be applied to find the similar characteristic results for (1.3) (or (1.5)) because there are
some examples (see Examples 3.5 and 4.4) to show that, without any additional restrictions,
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no necessary and sufficient conditions concerning existence for them can be obtained. This is
also a main cause that the author did not consider (1.3) and (1.5) in [8].

So some new methods should be introduced if we want to search out the solvability
criteria to (1.3)–(1.5). In the sections below,we are devoted to study (1.3)–(1.5) by considering
two questions under two assumptions as follows:

Question 1. Whether there exist any criteria that c solves (1.3) in some proper way?

Question 2. Like Question 1, whether there exist any solvability criteria to (1.4) or (1.5) that
depend on the respective information of G and F?

Assumption 1. c ∈ Rm
+ is a fixed point and X ⊂ Rn

+ is a convex compact subset.

Assumption 2. Consider the following: T : X → 2R
m
,G : X → 2R

m
+ , and F : X → 2intR

m
+ are

upper semicontinuous and convex set-valued maps with nonempty convex compact values.

By constructing some functions and studying their minimax properties, some progress
concerning both questions has been made. The paper is arranged as follows. We review some
concepts and known results in Section 2 and prove three Theorems composed of necessary
and sufficient conditions regarding the solvability of (1.3)–(1.5) in Sections 3 and 4. Then we
present the conclusion in Section 5.

2. Terminology

Let P ⊆ Rm, X ⊆ Rn, and Yi ⊆ Rmi (i = 1, 2). Let f, fα : X → R (α ∈ Λ), ϕ = ϕ(p, x) : P ×X →
R, and ψ = ψ(p, (u, v)) : P × (Y1 × Y2) → R be functions and T : X → 2R

m
a set-valued map.

We need some concepts concerning f , fα (α ∈ Λ) and ϕ and ψ such as convex or concave and
upper or lower semicontinuous (in short, u.s.c. or l.s.c.) and continuous (i.e., both u.s.c. and
l.s.c.), whose definitions can be found in [9–11], therefore, the details are omitted here. We
also need some further concepts to T , ϕ, and ψ as follows.

Definition 2.1. (1) T is said to be closed if its graph defined by graph T = {(u, v) ∈ X × Rm :
u ∈ X, v ∈ Tx} is closed in Rn ×Rm. Moreover, T is said to be upper semicontinuous (in short,
u.s.c.) if, for each x ∈ X and each neighborhood V (Tx) of Tx, there exists a neighborhood
U(x) of x such that T(U(x) ∩X) ⊆ V (Tx).

(2) Assume that Y ⊆ Rm (Y /= ∅), and define σ#(Y, p) = supy∈Y〈p, y〉, σ�(Y, p) =
infy∈Y〈p, y〉 (p ∈ Rm). Then T is said to be upper hemicontinuous (in short, u.h.c.)
if x �→ σ#(Tx, p) is u.s.c. on X for any p ∈ Rn.

(3) T is said to be convex if X ⊆ Rn is convex and αTx(1) + (1 − α)Tx(2) ⊆ T[αx(1) + (1 −
α)x(2)] for any α ∈ [0, 1] and x(i) ∈ X (i = 1, 2).

(4) (a) If infp∈Psupx∈Xϕ(p, x) = supx∈Xinfp∈Pϕ(p, x), then one claims that the minimax
equality of ϕ holds. Denoting by v(ϕ) the value of the preceding equality,
one also says that the minimax value v(ϕ) of ϕ exists. If (p, x) ∈ P × X
such that supx∈Xϕ(p, x) = infp∈Pϕ(p, x), then one calls (p, x) a saddle point
of ϕ. Denote by S(ϕ) the set of all saddle points of ϕ (i.e., S(ϕ) = {(p, x) ∈
P × X : supx∈Xϕ(p, x) = infp∈Pϕ(p, x)}), and define S(ϕ)|X=̂{x ∈ X : ∃ p ∈
P s.t. (p, x) ∈ S(ϕ)}, the restriction of S(ϕ) to X if S(ϕ) is nonempty.
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(b) ReplacingX by Y1×Y2 and ϕ(p, x) by ψ(p, (u, v)), with the similar method one
can also define v(ψ) (the minimax value of ψ), S(ψ) (the saddle-point set of
ψ), and S(ψ)|Y1×Y2 (the restriction of S(ψ) to Y1 × Y2).

(5) If Y is a convex set and A a subset of Y , one claims that A is an extremal subset of
Y if x, y ∈ Y and tx + (1 − t)y ∈ A for some t ∈ (0, 1) entails x, y ∈ A. x0 ∈ Y is an
extremal point of Y ifA = {x0} is an extremal subset of Y , and the set of all extremal
points of Y is denoted by ext Y .

Remark 2.2. (1) Since p ∈ Rm ⇔ −p ∈ Rm and σ#(Tx,−p) = −σ�(Tx, p), we can see that
T : X ⊂ Rn → 2R

m
is u.h.c. if and only if x �→ σ�(Tx, p) is l.s.c. on X for any p ∈ Rm.

(2) For the function ϕ = ϕ(p, x) on P×X, v(ϕ) exists if and only if infp∈P supx∈Xϕ(p, x) ≤
supx∈Xinfp∈Pϕ(p, x), and (p, x) ∈ S(ϕ) if and only if supx∈Xϕ(p, x) ≤ infp∈Pϕ(p, x) if and
only if ϕ(p, x) ≤ ϕ(p, x) ≤ ϕ(p, x) for any (p, x) ∈ P × X. If S(ϕ)/= ∅, then v(ϕ) exists, and
v(ϕ) = ϕ(p, x) = supx∈Xϕ(p, x) = infp∈Pϕ(p, x) for any (p, x) ∈ S(ϕ). The same properties are
also true for ψ = ψ(p, (u, v)) on P × (Y1 × Y2). Moreover, we have

∀x ∈ S(ϕ)|X, inf
p∈P

ϕ
(

p, x
)

= v
(

ϕ
)

,

∀(u, v) ∈ S(ψ)|Y1×Y2 , inf
p∈P

ψ
(

p, (u, v)
)

= v
(

ψ
)

.
(2.1)

We also need three known results as follows.

Lemma 2.3. (1) (see [9]) If T is u.s.c., then T is u.h.c.

(2) (see [9]) If T is u.s.c. with closed values, then T is closed.

(3) (see [9]) If TX (the closure of TX) is compact and T is closed, then T is u.s.c.

(4) If X ⊂ Rn is compact and T : X → 2R
m
is u.s.c. with compact values, then TX is compact

in Rm.

(5) If X is convex (or compact) and T1, T2 : X ⊂ Rn → 2R
m
are convex (or u.s.c. with compact

values), then αT1 + βT2 are also convex (or u.s.c.) for all α, β ∈ R.

Proof. We only need to prove (5).
(a) If Ti (i = 1, 2) are convex, α, β ∈ R, xi (i = 1, 2) ∈ X, and t ∈ [0, 1], then

(

αT1 + βT2
)

[tx1 + (1 − t)x2] = αT1[tx1 + (1 − t)x2] + βT2[tx1 + (1 − t)x2]
⊇ α[tT1x1 + (1 − t)T1x2] + β[tT2x1 + (1 − t)T2x2]
= t

(

αT1 + βT2
)

x1 + (1 − t)(αT1 + βT2
)

x2.

(2.2)

Hence αT1 + βT2 is convex.
(b) Now we assume that X is compact.
In case T : X → 2R

m
is u.s.c. with compact values and α ∈ R, then by (2), (4), T is

closed and the range (αT)X of αT is compact. If α = 0, then (αT)x = 0 for any x ∈ X; hence,
αT is u.s.c. If α/= 0, supposing that (xj , yj) ∈ graph(αT) with (xj, yj) → (x0, y0) (j → ∞),
then (xj , yj/α) ∈ graph T such that (xj , yj/α) → (x0, y0/α) as j → ∞, which implies that
y0 ∈ αTx0. Hence, αT is closed and also u.s.c. because of (3).
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In case Ti (i = 1, 2) : X → 2R
m
are u.s.c. with compact values, if (xk, yk) ∈ graph(T1 +

T2) with (xk, yk) → (x0, y0) (k → ∞), then x0 ∈ X and there exist uk ∈ T1xk, vk ∈ T2xk such
that yk = uk + vk for all k = 1, 2, . . . . By (4), T1X and T2X are compact, so we can suppose
uk → u0 and vk → v0 as k → ∞. By (2), both Ti (i = 1, 2) are closed, this implies that
y0 = u0 + v0 ∈ (T1 + T2)x0, and thus T1 + T2 is closed. Hence by (3), T1 + T2 is u.s.c. because
(T1 + T2)X =

⋃

x∈X(T1 + T2)x ⊆ T1X + T2X and T1X + T2X is compact.

Lemma 2.4 (see [8, Theorems 4.1 and 4.2]). Let X ⊂ Rn
+, P ⊂ Rm

+ be convex compact with R+P =
Rm

+ , Σ
m−1 = {p ∈ Rm

+ : Σm
i=1pi = 1}, and c ∈ Rm

+ . Assume that T : X → 2R
m
is convex and

u.s.c. with nonempty convex compact values, and define ϕ(p, x) = φc(p, x) on P × X by φc(p, x) =
supy∈Tx〈p, y − c〉 for (p, x) ∈ P ×X. Then

(1) v(φc) exists and S(φc) is a convex compact subset of P ×X,

(2) c solves (1.2) ⇔ v(φc) ≥ 0 ⇔ φc(p, x) ≥ 0 for (p, x) ∈ S(φc).

In particular, both (1) and (2) are also true if P = Σm−1.

Lemma 2.5. (1) (see [10, 11]) If x �→ fα(x) is convex or l.s.c. (resp., concave or u.s.c.) on X for
α ∈ Λ and supα∈Λfα(x) (resp., infα∈Λfα(x)) is finite for x ∈ X, then x �→ supα∈Λfα(x) (resp.,
x �→ infα∈Λfα(x)) is also convex or l.s.c. (resp., concave or u.s.c.) on X.

(2) (see [11]) If g : X×Y ⊂ Rn×Rm → R is l.s.c. (or u.s.c.) and Y is compact, then h : U → R
defined by h(x) = infy∈Yg(x, y) (or k : U → R defined by k(x) = supy∈Yg(x, y)) is also
l.s.c. (or u.s.c.).

(3) (see [9–11], Minimax Theorem) Let P ⊂ Rm, X ⊂ Rn be convex compact, and let ϕ(p, x)
be defined on P × X. If, for each x ∈ X, p �→ ϕ(p, x) is convex and l.s.c. and, for each p ∈
P, x �→ ϕ(p, x) is concave and u.s.c., then infp∈Psupx∈Xϕ(p, x) = supx∈Xinfp∈Pϕ(p, x)
and there exists (p, x) ∈ P ×X such that supx∈Xϕ(p, x) = infp∈Pϕ(p, x).

3. Solvability Theorem to (1.3)

Let Σm−1 be introduced as in Lemma 2.4, and define the functions φc(p, x) on Σm−1 × X and
φc,x(p, y) on Σm−1 × Tx (x ∈ X) by

(a) φc
(

p, x
)

= σ#(Tx − c, p) = sup
y∈Tx

〈

p, y − c〉 for
(

p, x
) ∈ Σm−1 ×X,

(b) φc,x
(

p, y
)

=
〈

p, y − c〉 for
(

p, y
) ∈ Σm−1 × Tx, x ∈ X.

(3.1)

Remark 3.1. By both Assumptions in Section 1, Definition 2.1, and Lemmas 2.4 and 2.5, we
can see that

(1) φc(p, x) = supy∈Txφc,x(p, y) for all (p, x) ∈ P ×X,

(2) v(φc) and v(φc,x) exist, and S(φc) and S(φc,x) are nonempty,

(3) c solves (1.2) if and only if v(φc) ≥ 0 if and only if (p, x) ∈ S(φc)with φc(p, x) ≥ 0.

Hence, S(φc)|X and S(φc,x)|Tx (x ∈ X) are nonempty.Moreover, we have the following.
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Theorem 3.2. For (1.3), the following three statements are equivalent to each other:

(1) v(φc) = 0,

(2) for all x ∈ S(φc)|X , for all y ∈ S(φc,x)|Tx, ∃i0 ∈ {1, 2, . . . , m} ⇒ y ≥ c, yi0 = ci0 ,
(3) ∃x ∈ S(φc)|X , ∃y ∈ S(φc,x)|Tx, ∃i0 ∈ {1, 2, . . . , m} ⇒ y ≥ c, yi0 = ci0 .

Remark 3.3. Clearly, each of (2) and (3) implies that c solves (1.3) because x ∈ X and y ∈ Tx.
So we conclude from Theorem 3.2 that c solves (1.3) in the way of (2) or in the way of (3) if
and only if v(φc) = 0.

Proof of Theorem 3.2. We only need to prove (1)⇒(2) and (3)⇒(1).
(1)⇒(2). Assume that (1) holds. By (3.1) and Remarks 2.2 and 3.1, it is easy to see that

∀x ∈ S(φc
)|X, inf

p∈Σm−1
sup
y∈Tx

〈p, y − c〉 = inf
p∈Σm−1

φc
(

p, x
)

= v
(

φc
)

= 0,

∀y ∈ S(φc,x
)|Tx, inf

p∈Σm−1
〈p, y − c〉 = v

(

φc,x
)

= inf
p∈Σm−1

sup
y∈Tx

〈p, y − c〉.
(3.2)

Then for each x ∈ S(φc)|X and each y ∈ S(φc,x)|Tx, we have

inf
p∈Σm−1

〈p, y − c〉 = v
(

φc,x
)

= v
(

φc
)

= 0. (3.3)

By taking pi = ei = (

i
︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0) ∈ Σm−1 (i = 1, 2, . . . , m), it follows that yi ≥ ci (i =
1, 2, . . . , m). Hence, y ≥ c. On the other hand, it is easy to verify that Σ∗ = {p ∈ Σm−1 :
〈p, y − c〉 = 0} is a nonempty extremal subset of Σm−1. The Crain-Milmann Theorem (see
[12]) shows that extΣ∗ is nonempty with extΣ∗ ⊂ extΣm−1 = {e1, e2, . . . , em}. So there exists
i0 ∈ {1, 2, . . . , m} such that p = ei0 ∈ extΣ∗. This implies by (3.3) that yi0 = ci0 , and therefore
(2) follows.

(3)⇒(1). Let x ∈ S(φc)|X , y ∈ S(φc,x)|Tx, and let i0 be presented in (3). Since c solves
(1.3) and also solves (1.2), by (3.1) and Remarks 2.2 and 3.1, we obtain

0 = 〈ei0 , y − c〉 ≥ inf
p∈Σm−1

〈p, y − c〉

= v
(

φc,x
)

= inf
p∈Σm−1

sup
y∈Tx

φc,x
(

p, y
)

= inf
p∈Σm−1

φc
(

p, x
)

= v
(

φc
) ≥ 0,

(3.4)

where ei0 = (

i0
︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0) ∈ Σm−1. Hence, v(φc) = 0 and the theorem follows.

Remark 3.4. From the Theorem, we know that v(φc) = 0 implies that c solves (1.3). However,
without any additional restricting conditions, the inverse may not be true.



Journal of Inequalities and Applications 7

Example 3.5. Let X = [0, 1]2, c = (s, s) (s ∈ [0, 1)), and let T : X → 2R
2
be defined by

Tx = [1/2, 1]2 for x = (x1, x2) ∈ X. Then T is an u.s.c. and convex set-valued mapwith convex
compact values, and for each p = (p1, p2) ∈ Σ1, x = (x1, x2) ∈ X and c = (s, s) (s ∈ [0, 1)),
φc(p, x) = σ#(Tx − c, p) = (p1 + p2) − s(p1 + p2) = (1 − s). Hence, v(φc) = 1 − s for all s ∈ [0, 1)
and therefore,

v
(

φc
)

> 0 and c solves (1.3) for s ∈
[

1
2
, 1
)

,

v
(

φc
)

> 0 and c does not solve (1.3) for s ∈
[

0,
1
2

)

.

(3.5)

This implies that v(φc) = 0 (or v(φc) > 0) may not be the necessary (or the sufficient)
condition that c solves (1.3).

4. Solvability Theorems to (1.4) and (1.5)

Taking T = G−F, then from both Assumptions, Lemma 2.4, and Theorem 3.2, we immediately
obtain the necessary and sufficient conditions to the solvability of (1.4) and (1.5). However,
just as indicated in Section 1, this type of result is only concerned with G − F. To get some
further solvability criteria to (1.4) and (1.5) depending on the respective information ofG and
F, we define the functionsHc(p, x) on Σm−1×X andHc,x(p, (u, v)) on Σm−1×(Gx×Fx) (x ∈ X)
by

(a) Hc

(

p, x
)

=
σ#(Gx, p

) − 〈

p, c
〉

σ�
(

Fx, p
) for

(

p, x
) ∈ Σm−1 ×X,

(b) Hc,x

(

p, (u, v)
)

=

〈

p, u − c〉
〈

p, v
〉 for

(

p, (u, v)
) ∈ Σm−1 × (Gx × Fx), x ∈ X.

(4.1)

By both Assumptions, we know that σ#(Gx, p) = supu∈Gx〈p, u〉 and σ�(Fx, p) =
infv∈Fx〈p, v〉 are finite with σ#(Gx, p) ≥ 0 and 〈p, v〉 ≥ σ�(Fx, p) > 0 (v ∈ Fx) for x ∈ X
and p ∈ Σm−1, so the functions Hc(p, x) and Hc,x(p, (u, v)) (x ∈ X) defined by (4.1) are well
defined.

In view of Definition 2.1, we denote by v(Hc) (or v(Hc,x)) the minimax value of
ϕ(p, x) = Hc(p, x) (or ψ(p, (u, v)) = Hc,x(p, (u, v))) if it exists, S(Hc) (or S(Hc,x)) the saddle
point set if it is nonempty, and S(Hc)|X (or S(Hc,x)|Gx×Fx (x ∈ X)) the restriction of S(Hc) to
X (or S(Hc,x) to Gx × Fx). Then we have the solvability result to (1.4) and (1.5) as follows.

Theorem 4.1. (i) v(Hc) exists if and only if S(Hc)/= ∅.

(ii) (1) c solves (1.4) if and only if v(Hc) exists with v(Hc) ≥ 1 if and only if S(Hc)/= ∅
withHc(p, x) ≥ 1 for (p, x) ∈ S(Hc).

(2) In particular, if v(Hc) exists with v(Hc) ≥ 1, then for each x ∈ S(Hc)|X , there exists
y ∈ (G − F)x such that y ≥ c.
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Theorem 4.2. For (1.5), the following three statements are equivalent to each other:

(1) v(Hc) = 1,

(2) S(Hc)/= ∅, S(Hc,x)/= ∅ (x ∈ S(Hc)|X), and for all x ∈ S(Hc)|X , for all (u, v) ∈
S(Hc,x)|Gx×Fx, ∃i0 ∈ {1, . . . , m} ⇒ u − v ≥ c, ui0 − vi0 = ci0 ,

(3) S(Hc)/= ∅, S(Hc,x)/= ∅ (x ∈ S(Hc)|X), and ∃x̂ ∈ S(Hc)|X , ∃(û, v̂) ∈ S(Hc,x̂)|Gx̂×Fx̂,
∃i0 ∈ {1, . . . , m} ⇒ û − v̂ ≥ c, ûi0 − v̂i0 = ci0 .

That is, c solves (1.5) in the way of (2) or in the way of (3) if and only if v(Hc) = 1.

Remark 4.3. It is also needed to point out that v(Hc) = 1 is not the necessary condition of c
making (1.5) solvable without any other restricting conditions.

Example 4.4. Let X = [0, 1]2, c = (s, s) ∈ R2
+ (s ∈ (5/12, 3/4)), and G,F : X → 2R

m
+ be defined

by Gx ≡ [3/4, 1]2, Fx ≡ [1/4, 1/3]2 for x = (x1, x2) ∈ X. Then both G and F are u.s.c. convex
set-valued maps with convex compact values, and for any p = (p1, p2) ∈ Σ1, x = (x1, x2) ∈ X,
and c = (s, s) ∈ R2

+, we have (G − F)x = Gx − Fx = [3/4, 1]2 − [1/4, 1/3]2 = [5/12, 3/4]2,
σ#(Gx, p) = 1, σ�(Fx, p) = 1/4, and 〈p, c〉 = s. Therefore,

Hc

(

p, x
)

=
σ#(Gx, p

) − 〈

p, c
〉

σ�
(

Fx, p
) = 4(1 − s) for p ∈ Σ1, x ∈ X,

v(Hc) exists with v(Hc) = 4(1 − s) > 1 for
5
12

< s <
3
4
.

(4.2)

This implies that, for each c = (s, s) (s ∈ (5/12, 3/4)), c solves (1.5) but v(Hc) > 1.

The proof of both Theorems 4.1 and 4.2 can be divided into eight lemmas.
Let t ∈ R+, Tt = G − tF, and c ∈ Rm

+ . Consider the auxiliary inequality system

∃x ∈ X,
∃y ∈ Ttx = Gx − tFx =⇒ y ≥ c.

(4.3)

Then t ∈ R+ solves (4.3) if and only if c solves (1.2) for T = Tt, and in particular, t = 1 solves
(4.3) if and only if c solves (1.4). Define ϕ(p, x) = Kt(p, x) on Σm−1 ×X by

Kt

(

p, x
)

= σ#(Ttx − c, p) = σ#(Gx, p
) − tσ�(Fx, p) − 〈p, c〉, (

p, x
) ∈ Σm−1 ×X, (4.4)

denote by v(Kt) the minimax value of ϕ = Kt if it exists, and denote by S(Kt) the saddle point
set if it is nonempty. Then we have the following.

Lemma 4.5. (1) For each t ∈ R+ = [0,+∞), v(Kt) exists and S(Kt) is nonempty. Moreover, t ∈ R+

solves (4.3) if and only if v(Kt) ≥ 0 if and only if Kt(p, x) ≥ 0 for (p, x) ∈ S(Kt).

(2) The function t �→ v(Kt) is continuous and strictly decreasing on R+ with v(K+∞) =
limt→+∞v(Kt) = −∞.

Proof. (1) By both Assumptions and Lemmas 2.3(4) and 2.3(5), Tt = G−tF is convex and u.s.c.
with nonempty convex compact values for each t ∈ R+. Since Kt(p, x) = supy∈Gx−tFx〈p, y − c〉



Journal of Inequalities and Applications 9

for (p, x) ∈ Σm−1 ×X, applying Lemma 2.4 to T = Tt and substituting Kt(p, x) for φc(p, x), we
know that (1) is true.

(2) We prove (2) in three steps as follows.

(a) By Lemma 2.3(1), G and F are u.h.c., which implies by Definition 2.1(2) and
Remark 2.2(1) that for each p ∈ Σm−1, (t, x) �→ Kt(p, x) = σ#(Gx, p) −
tσ�(Fx, p) − 〈p, c〉 is u.s.c. on R+ × X. Then from Lemma 2.5(1)(2), we know
that both functions

(t, x) �−→ inf
p∈Σm−1

Kt

(

p, x
)

on R+ ×X,

and t �−→ sup
x∈X

inf
p∈Σm−1

Kt

(

p, x
)

on R+ are u.s.c.
(4.5)

SinceGX and FX are compact by both Assumptions and Lemma 2.3(4),CGX =
supu∈GX‖u‖ and CFX = supv∈FX‖v‖ are finite. Then for any x ∈ X, p, p0 ∈ Σm−1,
and t, t0 ∈ R+, we have

σ#(Gx, p
)

= sup
u∈Gx

(〈p0, u〉 + 〈p − p0, u〉
) ≤ σ#(Gx, p0

)

+ ‖p − p0‖CGX,

σ�
(

Fx, p
)

= inf
v∈Fx

(〈p0, v〉 + 〈p − p0, v〉
) ≥ σ�(Fx, p0

) − ‖p − p0‖CFX.
(4.6)

This implies that, for each x ∈ X,

∣

∣σ#(Gx, p
) − σ#(Gx, p0

)∣

∣ ≤ ‖p − p0‖CGX,
∣

∣σ�
(

Fx, p
) − σ�(Fx, p0

)∣

∣ ≤ ‖p − p0‖CFX.
(4.7)

Hence for each x ∈ X, (t, p) �→ Kt(p, x) = σ#(Gx, p) − tσ�(Fx, p) − 〈p, c〉 is
continuous on R+ × Σm−1. Also from Lemmas 2.5(1) and 2.5(2), it follows that
both functions

(

t, p
) �−→ sup

x∈X
Kt

(

p, x
)

on R+ × Σm−1,

and t �−→ inf
p∈Σm−1

sup
x∈X

Kt

(

p, x
)

on R+ are l.s.c.
(4.8)

So we conclude from (4.5), (4.8), and Statement (1) that t �→ v(Kt) is
continuous on R+.

(b) Assume that t2 > t1 ≥ 0. Since FX ⊂ intRm
+ is compact, it is easy to see that

ε0 = inf{〈p, v〉 : (p, v) ∈ Σm−1 × FX} > 0. Thus for any (p, x) ∈ Σm−1 × X, we
have

Kt1

(

p, x
)

= σ#(Gx, p
) − t2σ�

(

Fx, p
) − 〈p, c〉 + (t2 − t1)σ�

(

Fx, p
)

≥ Kt2

(

p, x
)

+ (t2 − t1)ε0,
(4.9)
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which implies that v(Kt1) > v(Kt2), and hence t �→ v(Kt) is strict decreasing
on R+.

(c) Let ε1 = sup{〈p, u〉 : p ∈ Σm−1, u ∈ GX} and ε2 = inf{〈p, c〉 : p ∈ Σm−1}. By both
Assumptions, ε1 and ε2 are finite. Thus for any t > 0 and (p, x) ∈ Σm−1 ×X, we
have

Kt

(

p, x
)

= σ#(Gx, p
) − tσ�(Fx, p) − 〈p, c〉

≤ ε1 − tε0 − ε2.
(4.10)

This implies that v(Kt) ≤ ε1−tε0−ε2. Therefore, v(K+∞) = limt→+∞v(Kt) = −∞.
This completes the proof.

Lemma 4.6. (1) p �→ Hc(p, x) (x ∈ X) and p �→ supx∈XHc(p, x) are l.s.c. on Σm−1.

(2) x �→ Hc(p, x) (p ∈ Σm−1) and x �→ infp∈PHc(p, x) are u.s.c. on X.

(3) v(Hc) exists if and only if S(Hc) is nonempty.

Proof. (1) Since, for each x ∈ X and (u, v) ∈ Gx × Fx, the function p �→ 〈p, u − c〉/〈p, v〉 is
continuous on Σm−1, from Lemma 2.5(1), we can see that p �→ Hc(p, x) = sup(u,v)∈Gx×Fx(〈p, u−
c〉/〈p, v〉) (x ∈ X) and p �→ supx∈XHc(p, x) are l.s.c., hence (1) is true.

(2) Assume that {(pk, xk)} ⊂ Σm−1 ×X is a sequence with (pk, xk) → (p0, x0) (k → ∞),
then for each k, there exist uk ∈ Gxk and vk ∈ Fxk such that σ#(Gxk, pk) = 〈pk, uk〉,
σ�(Fxk, pk) = 〈pk, vk〉. SinceGX,FX are compact andGxk ⊂ GX, Fxk ⊂ FX (k ≥ 1),
we may choose {ukj} ⊂ {uk} and {vkj} ⊂ {vk} such that

ukj −→ u0, vkj −→ v0 (k → ∞),

lim sup
k→∞

〈pk, uk〉 = lim
j→∞

〈pkj , ukj〉, lim inf
k→∞

〈pk, vk〉 = lim
j→∞

〈pkj , vkj〉. (4.11)

By Lemma 2.3(2), both G and F are closed. Hence, (xkj , ukj ) → (x0, u0) ∈ graphG
and (xkj , vkj ) → (x0, v0) ∈ graphF, which in turn imply that u0 ∈ Gx0, v0 ∈ Fx0

and

lim sup
k→∞

σ#
(

Gxk, pk
)

= lim
j→∞

〈pkj , ukj〉 = 〈p0, u0〉 ≤ σ#
(

Gx0, p0
)

,

lim inf
k→∞

σ�
(

Fxk, pk
)

= lim
j→∞

〈pkj , vkj〉 = 〈p0, v0〉 ≥ σ�
(

Fx0, p0
)

.

(4.12)

Combining this with σ�(Fx, p) > 0 for (p, x) ∈ Σm−1 ×X, it follows that

lim sup
k→∞

σ#(Gxk, pk
) − 〈pk, c〉

σ�
(

Fxk, pk
) ≤ lim supk→∞

[

σ#(Gxk, pk
) − 〈pk, c〉]

lim infk→∞σ�
(

Fxk, pk
) ≤ σ#(Gx0, p0

) − 〈p0, c〉
σ�
(

Fx0, p0
) .

(4.13)
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Hence by (4.1), (p, x) �→ Hc(p, x) is u.s.c. on Σm−1 × X, so is x �→ infp∈Σm−1Hc(p, x)
on X thanks to Lemma 2.5(1).

(3) Assume that v(Hc) exists. By (1) and (2), there exist p ∈ Σm−1 and x ∈ X such that

sup
x∈X

Hc

(

p, x
)

= inf
p∈Σm−1

sup
x∈X

Hc

(

p, x
)

= v(Hc) = sup
x∈X

inf
p∈Σm−1

Hc

(

p, x
)

= inf
p∈Σm−1

Hc

(

p, x
)

. (4.14)

By Remark 2.2(2), (p, x) ∈ S(Hc). Hence S(Hc) is nonempty. The inverse is obvious. This
completes the proof.

Lemma 4.7. (1) If c solves(1.4), then v(Hc) exists with v(Hc) ≥ 1.

(2) If v(Hc) exists with v(Hc) ≥ 1, then S(Hc)/= ∅ andHc(p, x) ≥ 1 for (p, x) ∈ S(Hc).

Proof. (1) If c solves (1.4), then t = 1 solves (4.3). From Lemma 4.5, we know that v(K1) ≥ 0,
and there is a unique t0 ≥ 1 such that v(Kt0) = 0. Moreover, also from Lemma 4.5, t0 is the
biggest number that makes (4.3) solvable, and thus t ∈ R+ solves (4.3) if and only if t ∈ [0, t0].
We will prove that v(Hc) exists with v(Hc) = t0. Let

v∗ = sup
x∈X

inf
p∈Σm−1

Hc

(

p, x
)

, v∗ = inf
p∈Σm−1

sup
x∈X

Hc
(

p, x
)

, (4.15)

then v∗ ≤ v∗. It is needed to show that v∗ ≤ t0 ≤ v∗.
Since t0 solves (4.3), there exist x0 ∈ X, u0 ∈ Gx0, and v0 ∈ Fx0 such that u0 − t0v0 ≥ c.

Hence for each p ∈ Σm−1, σ#(Gx0, p)−t0σ�(Fx0, p)−〈p, c〉 ≥ 〈p, u0−t0v0−c〉 ≥ 0.As σ�(Fx0, p) >
0 for p ∈ Σm−1, it follows from (4.1) thatHc(p, x0) = (σ#(Gx0, p) − 〈p, c〉)/σ�(Fx0, p) ≥ t0 (p ∈
Σm−1) and thus

v∗ ≥ inf
p∈Σm−1

Hc

(

p, x0
)

≥ t0. (4.16)

On the other hand, by (4.15), for each p ∈ Σm−1 we have supx∈XHc(p, x) ≥ v∗. By (4.1)
and Lemma 4.6(2), there exists xp ∈ X such that

σ#(Gxp, p
) − 〈p, c〉

σ�
(

Fxp, p
) = Hc

(

p, xp
)

= sup
x∈X

Hc

(

p, x
) ≥ v∗. (4.17)

It deduces from (4.4) that for each p ∈ Σm−1

sup
x∈X

Kv∗
(

p, x
) ≥ Kv∗

(

p, xp
)

= σ#(Gxp, p
) − v∗σ�

(

Fxp, p
) − 〈p, c〉 ≥ 0. (4.18)

Hence by Lemma 4.5(1), v(Kv∗) = infp∈Σm−1supx∈XKv∗(p, x) ≥ 0, and t = v∗ solves (4.3). Since
t0 is the biggest number that makes (4.3) solvable, we have v∗ ≤ t0. Combining this with
(4.16), we obtain v∗ = v∗ = t0. Therefore, v(Hc) exists and v(Hc) = t0 ≥ 1.

(2) follows immediately from Lemma 4.6(3) and Remark 2.2(2). The third lemma
follows.
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Lemma 4.8. If S(Hc)/= ∅ with Hc(p, x) ≥ 1 for (p, x) ∈ S(Hc), then c solves (1.4). Moreover, for
each x ∈ S(Hc)|X , there exists y ∈ (G − F)x such that y ≥ c.

Proof. By (4.1) and Remark 2.2(2), we know that, for each (p, x) ∈ S(Hc),

σ#(Gx, p
) − 〈p, c〉

σ�
(

Fx, p
) = Hc

(

p, x
) ≤ v(Hc) ≤ Hc

(

p, x
)

=
σ#(Gx, p

) − 〈p, c〉
σ�
(

Fx, p
) ,

(

p, x
) ∈ Σm−1 ×X.

(4.19)

Combining this with the definition ofKv(Hc)(p, x) (i.e., (4.4) for t = v(Hc)), it follows that, for
each (p, x) ∈ S(Hc) and each (p, x) ∈ Σm−1 ×X,

Kv(Hc)
(

p, x
)

= σ#(Gx, p
) − v(Hc)σ�

(

Fx, p
) − 〈p, c〉

≤ 0 ≤ σ#(Gx, p
) − v(Hc)σ�

(

Fx, p
) − 〈p, c〉

= Kv(Hc)
(

p, x
)

.

(4.20)

Hence by Definition 2.1(4) and Remark 2.2(2),

∀(p, x) ∈ S(Hc), sup
x∈X

Kv(Hc)
(

p, x
)

= 0 = inf
p∈Σm−1

Kv(Hc)
(

p, x
)

. (4.21)

It follows that (p, x) ∈ S(Hc) implies that (p, x) ∈ S(Kv(Hc)) with v(Kv(Hc)) = Kv(Hc)(p, x) = 0,
and so

S(Hc)|X ⊂ S(Kv(Hc)
)|X,

∀x ∈ S(Hc)|X, inf
p∈Σm−1

Kv(Hc)
(

p, x
)

= v
(

Kv(Hc)
)

= 0.
(4.22)

Applying Lemma 4.5(1) to Tv(Hc) = G−v(Hc)F, we then conclude that t = v(Hc) solves (4.3).
So there exist x ∈ X, u ∈ Gx, and v ∈ Fx such that u − v(Hc)v ≥ c. Hence c solves (1.4)
because Gx ⊂ Rm

+ , Fx ⊂ intRm
+ (x ∈ X), and v(Hc) ≥ 1.

For each x ∈ S(Hc)|X . Since Kv(Hc)(p, x) = supy∈(G−v(Hc)F)x〈p, y − c〉 by (4.4), applying
Lemma 2.5(3) to the function (p, y) �→ 〈p, y−c〉 on Σm−1×(G−v(Hc)F)x and associating with
(4.22), we obtain

sup
y∈(G−v(Hc)F)x

inf
p∈Σm−1

〈p, y − c〉 = inf
p∈Σm−1

sup
y∈(G−v(Hc)F)x

〈p, y − c〉

= inf
p∈Σm−1

Kv(Hc)
(

p, x
)

= v
(

Kv(Hc)
)

= 0.

(4.23)
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Since y �→ infp∈Σm−1〈p, y − c〉 is u.s.c. on (G − v(Hc)F)x, from (4.23) there exist u ∈ Gx, v ∈ Fx
such that ŷ = u − v(Hc)v ∈ (G − v(Hc)F)x satisfies

inf
p∈Σm−1

〈p, ŷ − c〉 = sup
y∈(G−v(Hc)F)x

inf
p∈Σm−1

〈p, y − c〉 = 0. (4.24)

By taking pi = ei ∈ Σm−1 (i = 1, 2, . . . , m), we get ŷ = u − v(Hc)v ≥ c, and therefore y = u − v ∈
(G − F)x satisfies y ≥ c because v(Hc) ≥ 1. This completes the proof.

Proof of Theorem 4.1. By Lemmas 4.6(3), 4.7, and 4.8, we know that Theorem 4.1 is true.

To prove Theorem 4.2, besides using Lemmas 4.5–4.8, for c ∈ Rm
+ and x ∈ X, we also

need to study the condition that t ∈ R+ solves

∃u ∈ Gx, ∃v ∈ Fx
=⇒ u − tv ≥ c.

(4.25)

Define ψ(p, (u, v)) = Lt,c,x(p, (u, v)) on P × (Y1 × Y2) = Σm−1 × (Gx × Fx) by

Lt,c,x
(

p, (u, v)
)

=
〈

p, u − tv − c〉 for
(

p, (u, v)
) ∈ Σm−1 × (Gx × Fx). (4.26)

We denote by v(Lt,c,x) the minimax values of Lt,c,x if it exists, S(Lt,c,x) the saddle point set if it
is nonempty, and S(Lt,c,x)|Gx×Fx its restriction to Gx × Fx.

Lemma 4.9. Let c ∈ Rm
+ and x ∈ X be fixed. Then one has the following.

(1) For each t ∈ R+, v(Lt,c,x) exists and S(Lt,c,x) is nonempty.

(2) t ∈ R+ solves (4.25) if and only if v(Lt,c,x) ≥ 0 if and only if (p, (u, v)) ∈ S(Lt,c,x) implies
that Lt,c,x(p, (u, v)) ≥ 0.

(3) t �→ v(Lt,c,x) is continuous and strict decreasing on R+ with v(L+∞,c,x) = −∞.

Proof. Define Tt,x from Gx × Fx ⊂ R2m
+ to Rm by

Tt,x(u, v) = u − tv, (u, v) ∈ Gx × Fx. (4.27)

Then Tt,x is a single-valued continuous map with the convex condition defined by
Definition 2.1(3) because Tt,x[α(u1, v1) + (1 − α)(u2, v2)] = αTt,x(u1, v1) + (1 − α)Tt,x(u2, v2)
for all α ∈ [0, 1] and (ui, vi) ∈ Gx × Fx (i = 1, 2).
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Since Gx × Fx is convex and compact in R2m
+ , replacing x ∈ X(⊂ Rn

+) by (u, v) ∈ Gx ×
Fx(⊂ R2m

+ ), Tx by Tt,x(u, v), and φc(p, x) = supy∈Tx〈p, y−c〉 by Lt,c,x(p, (u, v)) = 〈p, Tt,x(u, v)−
c〉, from Lemma 2.4, we know that both (1) and (2) are true. Moreover, with the samemethod
as in proving Lemma 4.5(2), we can show that (3) is also true. (In fact, since (t, p, (u, v)) �→
〈p, u − tv − c〉 is continuous on R+ × Σm−1 × (Gx × Fx) and Gx × Fx and Σm−1 are compact, by
(4.26) and Lemmas 2.5(1) and 2.5(2), we can see that

t �−→ sup
(u,v)∈Gx×Fx

inf
p∈Σm−1

Lt,c,x
(

p, (u, v)
)

is u.s.c.,

t �−→ inf
p∈Σm−1

sup
(u,v)∈Gx×Fx

Lt,c,x
(

p, (u, v)
)

is l.s.c.
(4.28)

Hence by (1), t �→ v(Lt,c,x) is continuous on R+.
Let ε0, ε1, and ε2 be defined as in the proof of Lemma 4.5(2).
If t2 > t1 ≥ 0, also by (4.26), we can see that Lt1,c,x(p, (u, v)) ≥ Lt2,c,x(p, (u, v))+(t2− t1)ε0

for (p, (u, v)) ∈ Σm−1 × (Gx × Fx). It follows that v(Lt1,c,x) ≥ v(Lt2,c,x) + (t2 − t1)ε0 and thus
t �→ v(Lt,c,x) is strict decreasing on R+.

If t > 0, then Lt,c,x(p, (u, v)) = 〈p, u − tv − c〉 ≤ ε1 − tε0 − ε2 for (p, (u, v)) ∈ Σm−1 × (Gx ×
Fx). This implies that v(Lt,c,x) ≤ ε1 − tε0 − ε2 with v(L+∞,c,x) = −∞.) Hence the fifth lemma
follows.

Lemma 4.10. (1) v(Hc,x) exists if and only if S(Hc,x) is nonempty, whereHc,x is defined by (4.1)(b).

(2) If t = 1 solves (4.25) for c ∈ Rm
+ and x ∈ X, then v(Hc,x) exists with v(Hc,x) ≥

1, S(Hc,x) is nonempty with Hc,x(p, (u, v)) ≥ 1 for (p, (u, v)) ∈ S(Hc,x), and
infp∈Σm−1Hc,x(p, (u, v)) = v(Hc,x) for (u, v) ∈ S(Hc,x)|Gx×Fx.

Proof. Since (p, (u, v)) �→ Hc,x(p, (u, v)) = 〈p, u− c〉/〈p, v〉 is continuous on Σm−1 × (Gx ×Fx),
by Lemma 2.5(1), it is easy to see that

(a)
(u, v) �−→ Hc,x

(

p, (u, v)
) (

p ∈ Σm−1),
(u, v) �−→ inf

p∈Σm−1
Hc,x

(

p, (u, v)
)

are u.s.c. on Gx × Fx,

(b)
p �−→ Hc,x

(

p, (u, v)
)

((u, v) ∈ Gx × Fx),
p �−→ sup

(u,v)∈Gx×Fx
Hc,x

(

p, (u, v)
)

are l.s.c. on Σm−1.

(4.29)

(1) By (4.29) and with the same method as in proving Lemma 4.6(3), we can show
that (1) is true. (Indeed, we only need to prove the necessary part. If v(Hc,x)
exists, then by (4.29), there exists (p, (u, v)) ∈ Σm−1 × (Gx × Fx) such that
sup(u,v)∈Gx×FxHc,x(p, (u, v)) = v(Hc,x) = infp∈Σm−1Hc,x(p, (u, v)). Hence S(Hc,x) is
nonempty.)

(2) If t = 1 solves (4.25) for c ∈ Rm
+ and x ∈ X, then from Lemma 4.9 we know that

v(L1,c,x) exists with v(L1,c,x) ≥ 0, and there is a unique ˜t0 ≥ 1 such that v(L
˜t0,c,x

) = 0.
In particular, ˜t0 is the biggest number that makes (4.25) solvable for c and x.
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Applying the same method as in proving Lemma 4.7(1), we can show that v(Hc,x)
exists with v(Hc,x) = ˜t0 ≥ 1. (In fact, let

ṽ∗ = sup
(u,v)∈Gx×Fx

inf
p∈Σm−1

Hc,x

(

p, (u, v)
)

, ṽ∗ = inf
p∈Σm−1

sup
(u,v)∈Gx×Fx

Hc,x

(

p, (u, v)
)

. (4.30)

Then ṽ∗ ≤ ṽ∗. We need to show that ṽ∗ ≥ ˜t0 ≥ ṽ∗.
Since ˜t0 solves (4.25) for c and x, there exist ux ∈ Gx and vx ∈ Fx such that

ux − ˜t0vx ≥ c. It follows that Hc,x(p, (ux, vx)) = 〈p, ux − c〉/〈p, vx〉 ≥ ˜t0 for any p ∈
Σm−1, hence ṽ∗ ≥ infp∈Σm−1Hc,x(p, (ux, vx)) ≥ ˜t0. On the other hand, by the definition
of ṽ∗, we have sup(u,v)∈Gx×FxHc,x(p, (u, v)) ≥ ṽ∗ for any p ∈ Σm−1. By (4.29)(a) and
(4.1)(b), there exists (up, vp) ∈ Gx × Fx such that 〈p, up − c〉/〈p, vp〉 = Hc,x(p, (up, vp)) =
sup(u,v)∈Gx×FxHc,x(p, (u, v)) ≥ ṽ∗, which implies by (4.26) that sup(u,v)∈Gx×FxLṽ∗,c,x(p, (u, v)) ≥
〈p, up − ṽ∗vp − c〉 ≥ 0 for any p ∈ Σm−1. Hence from Lemma 4.9, v(Lṽ∗,c,x) ≥ 0, t = ṽ∗ solves
(4.25), and ˜t0 ≥ ṽ∗. Therefore, v(Hc,x) exist with v(Hc,x) = ˜t0 ≥ 1.) So we conclude from (1)
and Remark 2.2 that (2) is true. This completes the proof.

Lemma 4.11. If v(Hc) = 1, then Theorem 4.2(2) is true.

Proof. (i) If v(Hc) = 1, then by Lemma 4.6(3) and Remark 2.2, S(Hc)/= ∅ and

∀(p, x) ∈ S(Hc),
σ#(Gx, p

) − 〈p, c〉
σ�
(

Fx, p
) ≤ 1 ≤ σ#(Gx, p

) − 〈p, c〉
σ�
(

Fx, p
) for

(

p, x
) ∈ Σm−1 ×X.

(4.31)

By the same proof of (4.21)we can show that

∀(p, x) ∈ S(Hc), sup
x∈X

K1
(

p, x
)

= 0 = inf
p∈Σm−1

K1
(

p, x
)

. (4.32)

Combining this with Lemma 4.5(1) and using Remark 2.2(2), we have

S(Hc)|X ⊆ S(K1)|X, ∀x ∈ S(Hc)|X, inf
p∈Σm−1

K1
(

p, x
)

= v(K1) = 0. (4.33)

As K1(p, x) = supy∈(G−F)x−c〈p, y〉 by (4.4), applying Lemma 2.5(3) to the function
(p, y) �→ 〈p, y〉 on Σm−1 × ((G − F)x − c), we obtain that, for each x ∈ S(Hc)|X ,

sup
y∈(G−F)x−c

inf
p∈Σm−1

〈p, y〉 = inf
p∈Σm−1

sup
y∈(G−F)x−c

〈p, y〉 = inf
p∈Σm−1

K1
(

p, x
)

= 0. (4.34)

Since y �→ infp∈Σm−1〈p, y〉 is u.s.c. on (G−F)x−c, from (4.34) there exists y ∈ (G−F)x−c
such that

inf
p∈Σm−1

〈p, y〉 = sup
y∈(G−F)x−c

inf
p∈Σm−1

〈p, y〉 = 0. (4.35)
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Hence, y ≥ 0. This implies that t = 1 solves (4.25) for c and any x ∈ S(Hc)|X . So we conclude
from Lemma 4.10 and Remark 2.2(2) that

∀x ∈ S(Hc)|X, v(Hc,x) exists and S(Hc,x) is nonempty,
∀(u, v) ∈ S(Hc,x)|Gx×Fx, inf

p∈Σm−1
Hc,x

(

p, (u, v)
)

= v(Hc,x) ≥ 1. (4.36)

On the other hand, by (4.1), Hc(p, x) = sup(u,v)∈Gx×FxHc,x(p, (u, v)). Combining this
with (4.36), it follows that, for each x ∈ S(Hc)|X and each (u, v) ∈ S(Hc,x)|Gx×Fx,

1 ≤ inf
p∈Σm−1

Hc,x

(

p, (u, v)
)

= v(Hc,x)

= inf
p∈Σm−1

sup
(u,v)∈Gx×Fx

Hc,x

(

p, (u, v)
)

= inf
p∈Σm−1

Hc

(

p, x
)

= v(Hc) = 1.

(4.37)

Hence, also by (4.1), infp∈Σm−1(〈p, u−c〉/〈p, v〉) = infp∈Σm−1Hc,x(p, (u, v)) = 1. This implies that,
for each p ∈ Σm−1, 〈p, u−c〉/〈p, v〉 ≥ 1 and there exists p̃ ∈ Σm−1 such that 〈p̃, u−c〉/〈p̃, v〉 = 1.
So we obtain

∀x ∈ S(Hc)|X, ∀(u, v) ∈ S(Hc,x)|Gx×Fx, inf
p∈Σm−1

〈p, u − v − c〉 = 0. (4.38)

By using the same method as in proving (1)⇒(2) of Theorem 3.2, we conclude that u − v ≥ c
and there exists i0 ∈ {1, 2, . . . , m} such that ui0 − vi0 = ci0 . Hence Theorem 4.2(2) is true.

Lemma 4.12. If Theorem 4.2(3) holds,then v(Hc) = 1.

Proof. If Theorem 4.2(3) holds, then c solves both (1.4) and (1.5), and by Lemma 4.7(1), v(Hc)
exists with v(Hc) ≥ 1.

Now we let x̂ ∈ S(Hc)|X , (û, v̂) ∈ S(Hc,x̂)|Gx̂×Fx̂, and i0 ∈ {1, 2, . . . , m} satisfy û − v̂ ≥ c
and ûi0 − v̂i0 = ci0 , then we have 〈p, û − v̂ − c〉 ≥ 0 for p ∈ Σm−1 and 〈ei0 , û − v̂ − c〉 = 0 (where

ei0 = (

i0
︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0) ∈ Σm−1). This implies by (4.1) that

inf
p∈Σm−1

Hc,x̂

(

p, (û, v̂)
)

= inf
p∈Σm−1

〈p, û − c〉
〈p, v̂〉 = 1. (4.39)

Combining this with the fact that v(Hc) ≥ 1 and using Remark 2.2 and (4.1), we obtain that

1 = inf
p∈Σm−1

Hc,x̂

(

p, (û, v̂)
)

= v(Hc,x̂)

= inf
p∈Σm−1

sup
(u,v)∈Gx̂×Fx̂

Hc,x̂

(

p, (u, v)
)

= inf
p∈Σm−1

Hc

(

p, x̂
)

= v(Hc) ≥ 1.

(4.40)

Hence, v(Hc) = 1.
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Proof of Theorem 4.2. Since (2)⇒(3) of is clear, Theorem 4.2 follows immediately from Lemmas
4.11 and 4.12.

5. Conclusion

Based on the generalized and multivalued input-output inequality models, in this paper we
have considered three types of set-valued inequality systems (namely, (1.3)–(1.5)) and two
corresponding solvability questions. By constructing some auxiliary functions and studying
their minimax and saddle point properties with the nonlinear analysis approaches, three
solvability theorems (i.e., Theorems 3.2, 4.1, and 4.2) composed of necessary and sufficient
conditions regarding these inequality systems have been obtained.
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