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Arising from studying some multivalued von Neumann model, three set-valued inequality
systems are introduced, and two solvability questions are considered. By constructing some
auxiliary functions and studying their minimax and saddle-point properties, solvability criteria
composed of necessary and sufficient conditions regarding these inequality systems are obtained.

1. Introduction

Arising from considering some multivalued von Neumann model, this paper aims to study
three set-valued inequality systems and try to find their solvability criteria. Before starting
with this subject, we need to review some necessary backgrounds as follows.

We denote by RF = (R, ||-||) the k-dimensional Euclidean space, R** = R¥ its dual, and
(-,-) the duality pairing on (R¥*, RK); moreover, we denote that RK = {x € RF : x; > 0Vi} and
int R¥ is its interior. We also define > (or>) in RFby x >y © x-y € Rf (orbyx >y & x-y €
int R¥).

It is known that the generalized (linear or nonlinear) von Neumann model, which is
composed of an inequality system and a growth factor problem described by

(a) Ixe X =Bx-Ax>c,
respectively, (1.1)
(b) A>1 st.Ixe X = Bx>\Ax+c,

is one of the most important issues in the input-output analysis [1-3], where ¢ € R7*, X C R”
(m may not be equal to n), and B, A are two nonnegative or positive maps from X to R
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A series of researches on (1.1) have been made by the authors of [1-5] for the linear case
(i.e., B, A are m x n matrices) and by the authors of [6, 7] for the nonlinear case (i.e., B, A are
some types of nonlinear maps). Since (a) or (b) of (1.1) is precisely a special example of the
inequality A € [1,+00) s.t. 3x € X = S)x=(B - AA)x = Bx — MAx > c if we restrict A = 1 or
A > 1, it is enough for (1.1) to consider the inequality system. This idea can be extended to the
set-valued version. Indeed, if B and A are replaced by set-valued maps G and F, respectively,
then (1.1) yields a class of multivalued von Neumann model, and it solves a proper set-valued
inequality system to study. With this idea, by [8] (as a set-valued extension to [6, 7]) we have
considered the following multivalued inequality system:

ceRT st
(1.2)
xeX yeTx=>y2>c

and obtained several necessary and sufficient conditions for its solvability, where X C R
and T : X — 28" is a class of set-valued maps from X to R™. Along the way, three further
set-valued inequality systems that we will study in the sequel can be stated as follows.

Let X, T be as above, and let G, F : X — 2R be set-valued maps from X to RY, then
we try to find the solvability criteria (i.e., the necessary and sufficient conditions) that ¢ € R’
solves

dxe X, 3JyeTx,
(1.3)
dipe{1,2,....m} =>y>c, vyi=ci,

dx € X,

ye(G-Fx=y>c, (14)

IxeX, dye(G-F)x,
or (1.5)
Jipe{1,2,....m}=>y>c, vyi=ci.

When T and G, F are single-valued maps, then (1.3)—(1.5) return to the models of [6,
7]. When T and G, F are set-valued maps, there are three troubles if we try to obtain some
meaningful solvability criteria regarding (1.3)—(1.5) just like what we did in [8].

(1) For (1.2) and (1.3), it is possible that only (1.2) has solution for some ¢ € R
Indeed, if X is compact and T is continuous, compact valued with TX C int R”, then TX is
compact and there is ¢ € R} with ¢ < y for y € TX. Hence ¢ solves (1.2) but does not solve
(1.3).

(2) It seems that the solvability criteria (namely, necessary and sufficient results
concerning existence) to (1.4) can be obtained immediately by [8] with the replacement
T = G - F. However, this type of result is trivial because it depends only on the property
of G — F but not on the respective information of G and F. This opinion is also applicable to
(1.3) and (1.5).

(3) Clearly, (1.3) (or (1.5)) is more fine and more useful than (1.2) (or (1.4)). However,
the method used for (1.2) in [8] (or the possible idea for (1.4)) to obtain solvability criteria
fails to be applied to find the similar characteristic results for (1.3) (or (1.5)) because there are
some examples (see Examples 3.5 and 4.4) to show that, without any additional restrictions,
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no necessary and sufficient conditions concerning existence for them can be obtained. This is
also a main cause that the author did not consider (1.3) and (1.5) in [8].

So some new methods should be introduced if we want to search out the solvability
criteria to (1.3)—(1.5). In the sections below, we are devoted to study (1.3)—(1.5) by considering
two questions under two assumptions as follows:

Question 1. Whether there exist any criteria that c solves (1.3) in some proper way?

Question 2. Like Question 1, whether there exist any solvability criteria to (1.4) or (1.5) that
depend on the respective information of G and F?

Assumption 1. ¢ € R7 is a fixed point and X C R is a convex compact subset.

Assumption 2. Consider the following: T : X — 28" G: X — 28 and F: X — 2K are
upper semicontinuous and convex set-valued maps with nonempty convex compact values.

By constructing some functions and studying their minimax properties, some progress
concerning both questions has been made. The paper is arranged as follows. We review some
concepts and known results in Section 2 and prove three Theorems composed of necessary
and sufficient conditions regarding the solvability of (1.3)—(1.5) in Sections 3 and 4. Then we
present the conclusion in Section 5.

2. Terminology

Let PCR", XCR'andY; CR™ (i=1,2).Letf, fa: X = R (a€A),p=0¢({p,x):PxX —
R,and ¢ = ¢(p, (u,v)) : P x (Y1 x Y2) — Rbe functionsand T : X — 28" a set-valued map.
We need some concepts concerning f, fx (a € A) and ¢ and ¢ such as convex or concave and
upper or lower semicontinuous (in short, u.s.c. or l.s.c.) and continuous (i.e., both u.s.c. and
L.s.c.), whose definitions can be found in [9-11], therefore, the details are omitted here. We
also need some further concepts to T, ¢, and ¢ as follows.

Definition 2.1. (1) T is said to be closed if its graph defined by graphT = {(u,v) € X x R™ :
u € X,v € Tx} is closed in R” x R™. Moreover, T is said to be upper semicontinuous (in short,
u.s.c.) if, for each x € X and each neighborhood V(Tx) of Tx, there exists a neighborhood
U (x) of x such that T(U(x) N X) C V(Tx).

(2) Assume that Y C R™ (Y #0), and define o*(Y,p) = supyey<p,y), o"(Y,p) =
inf ey (p,y) (p € R™). Then T is said to be upper hemicontinuous (in short, u.h.c.)
if x — 0" (Tx,p) is us.c. on X for any p € R".

(3) T is said to be convex if X C R" is convex and aTx® + (1 - a)Tx® C T[ax® + (1 -
a)x®] forany a € [0,1] and x® € X (i =1,2).

(4) (a) Ifinfpepsup, v @(p, x) = sup, yinfrep(p, x), then one claims that the minimax
equality of ¢ holds. Denoting by v(¢) the value of the preceding equality,
one also says that the minimax value v(p) of ¢ exists. If (p,x) € P x X
such that sup_ . ¢(p,x) = inf,cpp(p,X), then one calls (p,X) a saddle point
of ¢. Denote by S(¢) the set of all saddle points of ¢ (i.e.,, S(p) = {(p,x) €
P x X : sup, «¢(p,x) = infrepp(p,x)}), and define S(p)|x={x € X : dp €
P s.t. (p,x) € S(p)}, the restriction of S(¢p) to X if S(¢) is nonempty.
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(b) Replacing X by Y1 xY, and ¢(p, x) by ¢(p, (4, v)), with the similar method one
can also define v(y) (the minimax value of ¢), S(¢) (the saddle-point set of
@), and S(¢)|y,xy, (the restriction of S(¢) to Y7 x Y2).

(5) If Y is a convex set and A a subset of Y, one claims that A is an extremal subset of
Yifx,yeYandtx+ (1 -t)y € Aforsomet € (0,1) entails x,y € A. xg € Y isan
extremal point of Y if A = {xg} is an extremal subset of Y, and the set of all extremal
points of Y is denoted by ext Y.

Remark 2.2. (1) Since p € R" & -p € R™ and o*(Tx,-p) = —0’(Tx,p), we can see that
T:X CR" — 28" jsuh.c. if and only if x — o”(Tx, p) is L.s.c. on X for any p € R™.

(2) For the function ¢ = ¢(p, x) on PxX, v(¢) exists if and only if inf,cpsup, .y ¢ (p, x) <
sup, .xinf,epp(p, x), and (p,x) € S(p) if and only if sup, v¢(p,x) < infyepp(p,x) if and
only if ¢(p,x) < ¢(p,x) < ¢(p,x) for any (p,x) € P x X. If S(¢) #0, then v(p) exists, and
v(p) = p(p,x) = sup,x¢(p, x) = infep(p, X) for any (p,x) € S(¢p). The same properties are
also true for ¢ = ¢(p, (u,v)) on P x (Y7 x Y3). Moreover, we have

vxeS(p)l,  infe(p,x) =0(p),
Y@ D) € S, g (p, @,9) = (e &

We also need three known results as follows.
Lemma 2.3. (1) (see [9]) If T is u.s.c., then T is u.h.c.

(2) (see [9]) If T is u.s.c. with closed values, then T is closed.

(3) (see [9]) IF TX (the closure of TX) is compact and T is closed, then T is w.s.c.

(4) If X C R™is compact and T : X — 28" is w.s.c. with compact values, then TX is compact
in R™.

(5) If X is convex (or compact) and Ty, T» : X C R" — 28" are convex (or u.s.c. with compact
values), then aTy + T, are also convex (or u.s.c.) for all a, p € R.

Proof. We only need to prove (5).
(@) If T; (i=1,2) are convex, a,p€ R, x; (i=1,2) € X, and t € [0,1], then

(aT1 + ﬁTz) [tx1 + (1 - t)xz] =aly [tx1 + (1 — t)xz] + ﬂTz[txl + (1 - t)xz]
D) a[tT1x1 + (1 — t)T1X2] + ﬂ[thxl + (1 — t)TzXz] (22)
= t(aT1 + ﬂTz)xl + (]. - t) (aT1 + ﬁTz)Xz.

Hence aT; + T, is convex.

(b) Now we assume that X is compact.

Incase T : X — 2R" is us.c. with compact values and a € R, then by (2), (4), T is
closed and the range (aT)X of aT is compact. If a = 0, then (aT)x = 0 for any x € X; hence,
aT is u.s.c. If a#0, supposing that (x/,y/) € graph(aT) with (x/,y/) — (x%,y°) (j — ),
then (x/,y//a) € graphT such that (x/,y//a) — (x°,yo/a) as j — oo, which implies that
yo € aTx". Hence, aT is closed and also u.s.c. because of (3).
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IncaseT; (i=1,2):X — 2R are u.s.c. with compact values, if (x*, y*) € graph(T; +
T») with (xX, y*) — (x°,y°) (k — o0), then x* € X and there exist u* € T;x¥, v* € Trx* such
that y* = u* + v* for all k = 1,2,.... By (4), ;X and T>X are compact, S0 we can suppose
uk — 4% and v* — v’ask — oo. By (2), both T; (i = 1,2) are closed, this implies that
¥ =u’+9° € (T) + T»)x°, and thus Ty + T is closed. Hence by (3), Ty + T is u.s.c. because
(T +1)X = Uyex(T1 + T2)x CT1 X + T X and T1 X + T X is compact. O

Lemma 2.4 (see [8, Theorems 4.1 and 4.2]). Let X C R", P C R™ be convex compact with R, P =
R?, 3™ = {p € R : " p; = 1}, and ¢ € R™. Assume that T : X — 28" is convex and
1.s.c. with nonempty convex compact values, and define p(p, x) = ¢.(p,x) on P x X by ¢.(p, x) =
sup cr, (P, ¥ —c) for (p,x) € P x X. Then

(1) v(¢c) exists and S(p.) is a convex compact subset of P x X,
(2) ¢ solves (1.2) © v(¢.) >0 < ¢c(p,x) >0 for (p,x) € S(Pc).

In particular, both (1) and (2) are also true if P = ™1,

Lemma 2.5. (1) (see [10, 11]) If x — fa(x) is convex or Ls.c. (resp., concave or u.s.c.) on X for
a € A and sup ., fa(x) (resp., infaep fa(x)) is finite for x € X, then x + sup,., fa(x) (resp.,
x = infaen fa(x)) is also convex or l.s.c. (resp., concave or u.s.c.) on X.

(2) (see[11])If g: XxXY C R"xR™ — Risls.c. (oru.s.c.)and Y is compact, then h : U — R
defined by h(x) = inf,cyg(x,y) (or k : U — R defined by k(x) = supyeyg(x,y)) is also
Ls.c. (or u.s.c.).

(3) (see [9-11], Minimax Theorem) Let P C R™, X C R" be convex compact, and let ¢(p, x)
be defined on P x X. If, for each x € X, p — (p, x) is convex and L.s.c. and, for each p €
P, x — ¢(p, x) is concave and u.s.c., then infycpsup, . @ (p, x) = sup, yinf,epe(p, x)
and there exists (p,X) € P x X such that sup . ¢(p, x) = infpepp(p, X).

3. Solvability Theorem to (1.3)

Let ™! be introduced as in Lemma 2.4, and define the functions ¢.(p, x) on £ x X and
Pex(p,y) on =" x Tx (x € X) by

(@) ¢c (P,X) = g#(Tx - c,p) = sup(p,y - C> for (P, x) exmlx X,
v (3.1)

(b) ¢ex(p,y) =(p,y—c) for (p,y) €E"' xTx, x € X.

Remark 3.1. By both Assumptions in Section 1, Definition 2.1, and Lemmas 2.4 and 2.5, we
can see that

1) ¢c(p,x) = supyeTx(])C,x(p,y) forall (p,x) € Px X,
(2) v(¢c) and v(¢.x) exist, and S(¢p.) and S(¢ ) are nonempty,
(3) csolves (1.2) if and only if v(¢.) > 0 if and only if (p, x) € S(¢.) with ¢.(p,x) > 0.

Hence, S(¢c)|x and S(¢pcx)|7x (x € X) are nonempty. Moreover, we have the following.
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Theorem 3.2. For (1.3), the following three statements are equivalent to each other:

(1) v(¢c) =0,
(2) forall x € S(¢c)|x, forall y € S(¢pex)|rx, Jip € {1,2,...,. m} =y >¢, yio = Ciy,
(3) 3x € S(¢c)Ix, Fy € S(Ppex)lrz, Jio € {1,2,..., m} =y > ¢, y,; = ci,
Remark 3.3. Clearly, each of (2) and (3) implies that ¢ solves (1.3) because x € X and y € Tx.

So we conclude from Theorem 3.2 that ¢ solves (1.3) in the way of (2) or in the way of (3) if
and only if v(¢.) = 0.

Proof of Theorem 3.2. We only need to prove (1)=(2) and (3)=(1).
(1)=(2). Assume that (1) holds. By (3.1) and Remarks 2.2 and 3.1, it is easy to see that

VxeS(¢c)lx, inf sup(p,y—-c)= inf ¢.(p,x) =v(Pc) =0,
pEZm’l ]/Eﬁ peZ"H

(3.2)
Yy eS(pex)lrz, inf (p,y—c)=v(P.x) = inf sup(p,y-c).
pexm-1 pexm-1 yelx
Then for each x € S(¢.)|x and each iy € S(¢.x)|rz, we have
of (py—c)= o(Pex) = v(§c) =0. (3.3)

R N, B

By taking p' = ¢’ = (0,...,0,1,0,...,0) € > (i =1,2,...,m), it follows that Y, 2c(i=
1,2,...,m). Hence, ¥ > c. On the other hand, it is easy to verify that * = {p € Z"! :
(p,y — c) = 0} is a nonempty extremal subset of "!. The Crain-Milmann Theorem (see
[12]) shows that ext =* is nonempty with extZ* C extS"! = {el,e?,...,e™}. So there exists
ip € {1,2,...,m} such that p = e e ext>*. This implies by (3.3) that yl.o = ¢j,, and therefore
(2) follows.

(3)=(1). Let x € S(¢c)|x, V € S(¢cx)|rx, and let iy be presented in (3). Since ¢ solves
(1.3) and also solves (1.2), by (3.1) and Remarks 2.2 and 3.1, we obtain

0= (eioly_c> > inf <p/y_c>
pezm—l

=0($ex) = inf, ;gﬁcx(ny) (3.4)
= inf ¢c(p, %) =v(¢c) 20,
pexm-1
io
. —_———
where e = (0,...,0,1,0,...,0) € =™ Hence, v(¢.) = 0 and the theorem follows. O

Remark 3.4. From the Theorem, we know that v(¢.) = 0 implies that c solves (1.3). However,
without any additional restricting conditions, the inverse may not be true.
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Example 3.5. Let X = [0,1]?, ¢ = (s,8) (s € [0,1)), and let T : X — 2% be defined by
Tx = [1/2,1]* for x = (x1,x;) € X. Then T is an u.s.c. and convex set-valued map with convex
compact values, and for each p = (p!,p?) € =1, x = (x1,x) € X and ¢ = (s,5) (s € [0,1)),
$e(p,x) = 0" (Tx —¢,p) = (p1 + p2) — s(p1 + p2) = (1 — 5). Hence, v(¢.) =1 -sforall s € [0,1)
and therefore,

v(¢c) >0 and c solves (1.3) for s € [%,1),
: (3.5)
v(¢c) >0 and ¢ does not solve (1.3) for s € [O, §>

This implies that v(¢.) = 0 (or v(¢.) > 0) may not be the necessary (or the sufficient)
condition that ¢ solves (1.3).

4. Solvability Theorems to (1.4) and (1.5)

Taking T' = G—F, then from both Assumptions, Lemma 2.4, and Theorem 3.2, we immediately
obtain the necessary and sufficient conditions to the solvability of (1.4) and (1.5). However,
just as indicated in Section 1, this type of result is only concerned with G — F. To get some
further solvability criteria to (1.4) and (1.5) depending on the respective information of G and
F, we define the functions H,(p, x) on ="' x X and H,,(p, (4,v)) on =" ! x (Gxx Fx) (x € X)
by

o"(Gx,p) - (p,c)
o’ (Fx,p)

(b) Hex(p, (u,v)) = m for (p, (u,v)) € "' x (Gx x Fx), x € X.

(p,v)

(a) He(p,x) = for (p,x) € sl g X,

(4.1)

By both Assumptions, we know that o*(Gx,p) = sup,..,(p,u) and o"(Fx,p) =
infyery (p,v) are finite with o*(Gx,p) > 0 and (p,v) > o"(Fx,p) >0 (v € Fx) forx € X
and p € "7}, so the functions H.(p, x) and H..(p, (1,v)) (x € X) defined by (4.1) are well
defined.

In view of Definition 2.1, we denote by v(H.) (or v(H.x)) the minimax value of
p(p,x) = He(p,x) (or ¢s(p, (u,v)) = Hex(p, (u,v))) if it exists, S(H,) (or S(H,x)) the saddle
point set if it is nonempty, and S(H,.)|x (or S(H¢x)|cxxrx (x € X)) the restriction of S(H,) to
X (or S(H,x) to Gx x Fx). Then we have the solvability result to (1.4) and (1.5) as follows.

Theorem 4.1. (i) v(H,) exists if and only if S(H.) # 0.

(ii) (1) ¢ solves (1.4) if and only if v(H,) exists with v(H.;) > 1 if and only if S(H.) #0
with H.(p,x) > 1 for (p,x) € S(H,).
(2) In particular, if v(H,) exists with v(H.) > 1, then for each x € S(H.)|x, there exists
y € (G- F)x such that y > c.
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Theorem 4.2. For (1.5), the following three statements are equivalent to each other:
(1) v(He) =1,
(2) S(H) #0, S(Ho)#0 (X € S(HOIx), and for all ¥ € S(H)|x, for all (#,7) €
S(Hc,§)|cyxpy, Ello S {1,. . .,m} =SUuU-0 >, ﬁio —51'0 = Ciy,
(3) S(He) #0, S(Hex) #0 (x € S(He)|x), and Ix € S(H.)|x, 3(,0) € S(Heg)lcexrs,
Jipe{l,...,m}| =>u-0>c, i, — Ui, = Ciy-

That is, c solves (1.5) in the way of (2) or in the way of (3) if and only if v(H,) = 1.

Remark 4.3. 1t is also needed to point out that v(H,.) = 1 is not the necessary condition of ¢
making (1.5) solvable without any other restricting conditions.

Example 4.4. Let X = [0,1]*, ¢ = (s,s) € R (s € (5/12,3/4)),and G, F : X — 2&" be defined
by Gx = [3/4,1]?, Fx = [1/4,1/3]” for x = (x',x?) € X. Then both G and F are u.s.c. convex
set-valued maps with convex compact values, and for any p = (p!,p?) € =1, x = (x!,x?) € X,
and ¢ = (s,s) € R2, we have (G - F)x = Gx — Fx = [3/4,1]* - [1/4,1/3]* = [5/12,3/4]%,
0*(Gx,p) =1, 0" (Fx,p) = 1/4,and (p,c) = s. Therefore,

o*(Gx,p) - (p,c)

H:(p,x) = =4(1-s) forpeX!, xeX,
o’ (Fx,p) 5 5 (4.2)
v(H,) exists with v(H,) =4(1-s)>1 for o <s< T

This implies that, for each ¢ = (s, s) (s € (5/12,3/4)), c solves (1.5) but v(H,) > 1.

The proof of both Theorems 4.1 and 4.2 can be divided into eight lemmas.
Lett € R,, T; = G - tF, and c € R}'. Consider the auxiliary inequality system

dx € X,
(4.3)
JyeTix=Gx—-tFx=y>c.

Then t € R, solves (4.3) if and only if ¢ solves (1.2) for T = T;, and in particular, t = 1 solves
(4.3) if and only if c solves (1.4). Define ¢(p, x) = Ki(p, x) on "1 x X by

Ki(p,x) = 0" (Tix - ¢,p) = o#(Gx,p) - tob(Fx,p) -(p.c), (px)e sl g X (4.4)
denote by v(K;) the minimax value of ¢ = K} if it exists, and denote by S(K;) the saddle point
set if it is nonempty. Then we have the following.

Lemma 4.5. (1) For each t € R, = [0,+0), v(K;) exists and S(K}) is nonempty. Moreover, t € R,
solves (4.3) if and only if v(Ky) > 0 if and only if K¢(p,x) > 0 for (p, x) € S(Ky).

(2) The function t — v(K;) is continuous and strictly decreasing on R, with v(K.s) =
lim; 1, 0(K}) = —o0.

Proof. (1) By both Assumptions and Lemmas 2.3(4) and 2.3(5), Ty = G—tF is convex and u.s.c.
with nonempty convex compact values for each f € R,. Since K;(p, x) = supyecx_tFx@, y-c)
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for (p, x) € ="' x X, applying Lemma 2.4 to T = T; and substituting K;(p, x) for ¢.(p, x), we
know that (1) is true.

(2) We prove (2) in three steps as follows.

(a) By Lemma 2.3(1), G and F are u.h.c., which implies by Definition 2.1(2) and
Remark 2.2(1) that for each p € =™, (t,x) — Ki(p,x) = o*(Gx,p) -
to”(Fx,p) - (p,c) is u.s.c. on R, x X. Then from Lemma 2.5(1)(2), we know
that both functions

(t,x) — inf Ki(p,x) on R, xX,
peX

ey m-1

(4.5)
and t— sup inf K;(p,x) on R, are us.c.
xex pezm!

Since GX and FX are compact by both Assumptions and Lemma 2.3(4), Ccx =
sup,,.cxllull and Crx = sup,p||v]| are finite. Then for any x € X, p, po € >m-l
and t,ty € R,, we have

o*(Gx,p) = sup ((po, u) + (p — po,u)) < o*(Gx,po) + llp - pollCcx,

ueGx (4 6)
Ub(Fer) = J&&((POW) +(p —POIU)) 2 Ub(Fx/Po) = llp = pollCrx.
This implies that, for each x € X,
o*(Gx,p) - 0" (Gx,po) | < llp - poll Cax,
|o*(Gx, p) - 0*(Gx,po) | < llp - p w7

|o"(Fx,p) — 0" (Fx,po)| < llp - poll Crx.

Hence for each x € X, (t,p) — Ki(p,x) = o*(Gx,p) — to”(Fx,p) - (p,c) is
continuous on R, x X1, Also from Lemmas 2.5(1) and 2.5(2), it follows that
both functions

(t,p) — SugKt (p,x) on R, x sm-l
xXe

(4.8)

and t+— inf supK;(p,x) on R, are Ls.c.
pexml yex

So we conclude from (4.5), (4.8), and Statement (1) that t — v(K;) is
continuous on R,.

(b) Assume that t, > t; > 0. Since FX C int R7" is compact, it is easy to see that
g = inf{{p,v) : (p,v) € T" ! x FX} > 0. Thus for any (p,x) € =" x X, we
have

Ky, (p,x) = 0" (Gx,p) - tzob(Fx,p) —(p,c) + (t2 - tl)ob(Fx,p)

> Ky, (p,x) + (t2 — t)eo,

(4.9)
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which implies that v(K},) > v(Ky,), and hence t — v(K;) is strict decreasing
on R,.

(c) Letey = sup{(p,u) : p € ™ ',u € GX} and &, = inf{(p,c) : p € ="!}. By both
Assumptions, €1 and ¢; are finite. Thus for any ¢t > 0 and (p, x) € sm-ly X we
have

Ki(p,x) = 0" (Gx,p) - to’(Fx,p) - (p,c)

< g1 —tegyg — &

(4.10)

This implies that v(K;) < e1—teg—er. Therefore, v(K.o) = lim; 4, v(K}) = —o0.
This completes the proof. O

Lemma 4.6. (1) p— H.(p,x) (x € X) and p — sup, . H.(p, x) are Ls.c. on sm-1,

(2) x— He(p,x) (p € =™1) and x — inf,epHe(p, x) are u.s.c. on X.
(3) v(H,) exists if and only if S(H.) is nonempty.

Proof. (1) Since, for each x € X and (u,v) € Gx x Fx, the function p — (p,u —c)/(p,v) is
continuous on ™1, from Lemma 2.5(1), we can see that p — H,(p, x) = sup (1,0)€Goxx (P, u—
c)/{p,v)) (x € X) and p — sup, . Hc(p, x) are Ls.c., hence (1) is true.

(2) Assume that {(p¥, x¥)} c ="1 x X is a sequence with (p*, x*) — (p°,x%) (k — o0),
then for each k, there exist u* € Gx* and v* € Fx* such that o*(Gx¥, p¥) = (p*, u¥),
o’ (Fxk,p*) = (p*,v¥). Since GX, FX are compact and Gx* ¢ GX, Fx* ¢ FX (k > 1),
we may choose {u%} ¢ {u¥} and {v%} C {v¥} such that

uhi — 40, of— 0 (k — o0),

. Kk k . ki ki .. k _k . ki ki (411)

limsup(p*,u”*) = lim (pY,u"), hlgnmf(p ,v°) = lim (p",v").
J— — 0 j— o

k— oo

By Lemma 2.3(2), both G and F are closed. Hence, (x%,u%) — (x% u°) € graph G
and (x,v%) — (x°,v°) € graph F, which in turn imply that u° € Gx°, v° € Fx°
and

lim sup 0#(ka,pk> = lim (phi,u%) = (p°,u°) < 0'#<Gx0,p0>,
ko oo j—oo

(4.12)
1iminf0"<1—"xk,pk> = lim (p",0"%) = (p°,2°) > O'b<Fx0/PO>-
j—oo

Combining this with ¢”(Fx,p) > 0 for (p, x) € ™! x X, it follows that
s C(GE ) = (Pe) _limsup . [04(Gxt ) — (0] _ "G p) — (1))

koo ot (Fxk, pk) - liminfy _, 0" (Fxk, p¥) - o’ (Fx%,p?)
(4.13)
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Hence by (4.1), (p,x) — Hc(p, x) is us.c. on 2! x X, s0 is x + infyezn1 He(p, X)
on X thanks to Lemma 2.5(1).

(3) Assume that v(H,) exists. By (1) and (2), there exist p € £"! and X € X such that

supH.(p,x) = inf supH.(p,x) = v(H,) = sup inf Hc(p,x) = inf H. (p,X). (4.14)
eX xeX PEX pex

i
xeX pexmt

By Remark 2.2(2), (p,x) € S(H,). Hence S(H.) is nonempty. The inverse is obvious. This
completes the proof. O

Lemma 4.7. (1) If ¢ solves(1.4), then v(H,) exists with v(H.) > 1.
(2) If v(H,) exists with v(H,.) > 1, then S(H.) #® and H.(p,x) > 1 for (p,x) € S(H,).

Proof. (1) If ¢ solves (1.4), then t = 1 solves (4.3). From Lemma 4.5, we know that v(K;) >0,
and there is a unique ¢y > 1 such that v(K},) = 0. Moreover, also from Lemma 4.5, £, is the
biggest number that makes (4.3) solvable, and thus ¢ € R, solves (4.3) if and only if t € [0, to].
We will prove that v(H,) exists with v(H,) = t;. Let

x = i f H 7 7 = f H 7 ’
v BEHGB), e e 1)

then v, < v*. Itis needed to show that v* <ty < v,.

Since ty solves (4.3), there exist x € X, u’ € Gx%, and v" € Fx? such that u° — tyv° > c.
Hence for each p € "1, 6*(Gx?, p)—too” (Fx°, p)—(p, c) > (p, u’~tev’~c) > 0. As o”(Fx,p) >
0 for p € ™1, it follows from (4.1) that H.(p, x°) = (6*(Gx°,p) — (p,c))/c"(Fx°,p) >ty (p €

>™1) and thus

. 0
Uy > pelgf_ch (p,x > > to. (4.16)

On the other hand, by (4.15), for each p € ™! we have sup,.xHc(p, x) > v*. By (4.1)
and Lemma 4.6(2), there exists x, € X such that

o’ (Gxp,p) = (p,c)
o’ (Fxp, p)

= Hc(p, xp) = supH,(p, x) > v". (4.17)
xeX

It deduces from (4.4) that for each p € ="}

supKer (p,x) 2 Ko (p, %p) = 0% (Gxp, p) = 0"0" (Fxp,p) = (p,c) 2 0. (4.18)
X€E

Hence by Lemma 4.5(1), v(K+) = inf,csm1sup, .y Ko (p, x) > 0, and t = v* solves (4.3). Since
tg is the biggest number that makes (4.3) solvable, we have v* < t;. Combining this with
(4.16), we obtain v* = v, = ty. Therefore, v(H,) exists and v(H,) =ty > 1.

(2) follows immediately from Lemma 4.6(3) and Remark 2.2(2). The third lemma
follows. O
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Lemma 4.8. If S(H.) #0 with H.(p,x) > 1 for (p,x) € S(H.), then ¢ solves (1.4). Moreover, for
each x € S(H,)|x, there exists y € (G — F)x such that y > c.

Proof. By (4.1) and Remark 2.2(2), we know that, for each (p,x) € S(H,),

o"(Gx,p) - (p,c)
o (Fx,p)

= He(p,x) < v(Ho) < He(p, )
(4.19)
_ o*(Gx,p) - (p,c)

i 3 sl X,
R G

Combining this with the definition of Ky#,)(p, x) (i.e., (4.4) for t = v(H,)), it follows that, for
each (p,x) € S(H,) and each (p,x) € ™! x X,
Kutri (B, ) = 0" (Gx,B) ~ o(Hoo" (Fx,B) ~ (B,c)
<0< 0"(Gx,p) - v(H.)o"(FX,p) - (p,c) (4.20)

= v(H,) (p’ E) :
Hence by Definition 2.1(4) and Remark 2.2(2),

V(p,x) € S(H.), supKo,) (px)=0= inf Ko (p, %)- (4.21)
XE

It follows that (p, x) € S(H,) implies that (p, x) € S(Kyn,)) with v(Kym,)) = Ko, (p, %) =0,
and so

S(H.)|x € S(Ko(m,))x,

_ 4.22
VX ES(H)lx, inf Kogry (p, %) = v(Kogry) = 0. (4.22)
pex"

Applying Lemma 4.5(1) to Tym,) = G —v(H.)F, we then conclude that t = v(H,) solves (4.3).
So there exist x € X, u € Gx, and v € Fx such that u — v(H;)v > c. Hence c¢ solves (1.4)
because Gx C R”, Fx CintR? (x € X), and v(H,.) > 1.

For each x € S(H,)|x. Since Ko, (p, X) = SUP, ¢ (G_p(11,)p)z (P, Y — €) by (44), applying
Lemma 2.5(3) to the function (p, y) — (p,y—c) on ™! x (G-v(H,)F)x and associating with
(4.22), we obtain

sup inf (p,y—-c)= inf sup (py-c)
ye(G-v(H,)F)x PEE"! PEX" e(G-v(H,)F)%

— inf Ko (p, X
inf Koo (r ) (4.23)

= 0(Ko(n,))
- 0.
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Since y — infyexn1(p,y — ¢) isu.s.c. on (G - v(H,) F)x, from (4.23) there exist u € Gx, v € Fx
such that ¥ = u —v(H.)v € (G - v(H,)F)x satisfies

inf (p,y—c)= su inf (p,y—c)=0.
pexm PrY e G_v(gc)m pezm PrY (4.24)

By takingp' =e' € ™! (i=1,2,...,m), wegety =u—v(H.)0 > ¢, and therefore y =u -7 €
(G — F)x satisfies iy > ¢ because v(H.) > 1. This completes the proof.

O

Proof of Theorem 4.1. By Lemmas 4.6(3), 4.7, and 4.8, we know that Theorem 4.1 is true. ]

To prove Theorem 4.2, besides using Lemmas 4.5-4.8, for ¢ € R} and x € X, we also
need to study the condition that t € R, solves

Jue Gx, FJveFx

(4.25)
= u-tv>c.
Define ¢ (p, (4,0)) = Licx(p, (u,v)) on P x (Y1 x Y2) = "1 x (Gx x Fx) by
Licx(p, (u,v)) =(pu—tv—c) for (p,(u,v)) € "' x (Gx x Fx). (4.26)

We denote by v(L; ) the minimax values of L; . if it exists, S(L; ) the saddle point set if it
is nonempty, and S(L; x)|GxxFx its restriction to Gx x Fx.

Lemma 4.9. Let ¢ € R} and x € X be fixed. Then one has the following.

(1) Foreacht € Ry, v(Licx) exists and S(Ly ) is nonempty.

(2) t € R. solves (4.25) if and only if v(Ly ) > 0 if and only if (p, (1,0)) € S(Lycx) implies
i’h{li’ Lt,c,x (ﬁr (ﬁ/ 6)) 2 0.

(3) t = v(Lyx) is continuous and strict decreasing on R, with v(Liccx) = —00.

Proof. Define T, from Gx x Fx C R¥" to R™ by

Tix(w,v)=u—-tv, (u,v)eGxxFx. (4.27)

Then T;, is a single-valued continuous map with the convex condition defined by
Definition 2.1(3) because T ,[a(u!,v') + (1 — a)(u?,v?)] = aT; (u',0') + (1 — a) Ty, (u?,v%)
forall a € [0,1] and (1}, v') € Gx x Fx (i =1,2).
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Since Gx x Fx is convex and compact in R2", replacing x € X(C R?) by (u,v) € Gx x
Fx(c R-zi-m)r Tx by Tix(u,v), and ¢C (pr x) = supyerx<19, y—C) by Licyx (pr (u,0)) = <pr Tix(u,v)—
c), from Lemma 2.4, we know that both (1) and (2) are true. Moreover, with the same method
as in proving Lemma 4.5(2), we can show that (3) is also true. (In fact, since (t,p, (u,v)) —
(p,u—tv - c) is continuous on R, x ™! x (Gx x Fx) and Gx x Fx and £™"! are compact, by
(4.26) and Lemmas 2.5(1) and 2.5(2), we can see that

t—  sup inf L;.x(p, (u,0)) is us.c.,
(u,0)€GxxFx pexm-t
(4.28)
t— inf  sup Licx(p, (u,0)) is Ls.c
pexmt (u,0)€GxxFx

Hence by (1), t — (L) is continuous on R..

Let g, €1, and &; be defined as in the proof of Lemma 4.5(2).

If t, > t; > 0, also by (4.26), we can see that Ly, . x(p, (4,0)) > Ly, o x(p, (1, 0)) + (b2 —t1) €0
for (p, (u,v)) € Z™ 1 x (Gx x Fx). It follows that v(Ly, cx) > v(Li,cx) + (2 — t1)€o and thus
t — v(Ly ) is strict decreasing on R,.

Ift >0, then Ly +(p, (u,v)) = (p,u—tv—c) < e —teg — & for (p, (u,v)) € ™ x (Gx x
Fx). This implies that v(L;x) < €1 — teg — €2 with v(Licx) = —o0.) Hence the fifth lemma
follows. ]

Lemma 4.10. (1) v(H, ) exists if and only if S(H, ») is nonempty, where H » is defined by (4.1)(b).

(2) If t = 1 solves (4.25) for ¢ € R and x € X, then v(H.y) exists with v(Hy) >
1, S(Hcx) is nonempty with H..(p,(u,0)) > 1 for (p,(w,v)) € S(Hcx), and
inf,esm1 Hex(p, (,0)) = v(Hcx) for (u,0) € S(He,x)|GaxFax-

Proof. Since (p, (u,v)) — Hex(p, (u,v)) = (p,u—c)/{p,v) is continuous on =" x (Gx x Fx),
by Lemma 2.5(1), it is easy to see that

(u,v) — Hex (P, (u, 'U)) (p € Zm_l),
(a) (u,v) — igf H..(p, (u,v)) are us.c. on Gx x Fx,
PE m-1
(4.29)
p— Hc,x (Pl (ur U)) ((ur U) € Gx x Fx)/
(b) pr—  sup H.(p, (u,v)) are Ls.c. on "1

(u,v)eGxxFx

(1) By (4.29) and with the same method as in proving Lemma 4.6(3), we can show
that (1) is true. (Indeed, we only need to prove the necessary part. If v(H,x)
exists, then by (4.29), there exists (p,(#,0)) € X™! x (Gx x Fx) such that
SUP , yecanrxHex (P, (,0)) = v(Hex) = infpesma Hex(p, (1,0)). Hence S(Hx) is
nonempty:.)

(2) If t = 1 solves (4.25) for ¢ € R and x € X, then from Lemma 4.9 we know that
U(L1,cx) exists with v(Ly ) > 0, and there is a unique ¢y > 1 such that o(L;, . ,) = 0.
In particular, ; is the biggest number that makes (4.25) solvable for ¢ and x.
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Applying the same method as in proving Lemma 4.7(1), we can show that v(H.,x)
exists with v(H, ) = fp > 1. (In fact, let

U,= sup inf He.(p, (1,v)), 7= inf  sup H.(p, (n,0)). (4.30)

(1,0)€GxxFx PEX™ PEE™ (1, v)eGxxFx

Since f, solves (4.25) for ¢ and x, there exist u, € Gx and v, € Fx such that
uy — too, > c. It follows that Hex(p, (x,vx)) = (p,ux — C)/(p,0x) > fo for any p €
>m-1 hence 7, > infyesm1 Hex(p, (Ux, 0x)) 2 fo. On the other hand, by the definition
of v*, we have Sup(u,‘u)erxeHCrx(p’ (u,v)) > o* for any p € I™ L By (4.29)(a) and
(4.1)(b), there exists (u,,vp) € Gx x Fx such that (p,u, — c)/(p,vp) = Hex(p, (4p,vp)) =

SUP (4, o) eGaxFxlex (p, (u,v)) > v*, which implies by (4.26) that SUP (1, 5)eGoxx Lot ex(p, (,0)) 2

Then 7, < 7*. We need to show that 7, > £, > *.

(p,up, — *v, — ) > 0 for any p € ™ '. Hence from Lemma 4.9, v(Lgcx) > 0, t = D* solves
(4.25), and t; > ¥*. Therefore, v(H. ) exist with v(H.,,) = ty > 1.) So we conclude from (1)
and Remark 2.2 that (2) is true. This completes the proof. O

Lemma 4.11. If v(H,) = 1, then Theorem 4.2(2) is true.

Proof. (i) If v(H,) = 1, then by Lemma 4.6(3) and Remark 2.2, S(H,) #@ and

o*(Gx,p) - (p,c) o*(Gx,p) - (p,c)

V(p,x) € S(H,), <1< f ,x) € XM x X,
(p,x) € S(H,) o (Fx,p) <1< & (F%,p) or (p,x) x
(4.31)
By the same proof of (4.21) we can show that
V(p,x) € S(H.), supKi(p,x)=0= inf Ki(p,X). (4.32)
xeX pezm!
Combining this with Lemma 4.5(1) and using Remark 2.2(2), we have
S(He)lx € S(Ky)lx, VYxeS(Ho)lx, inf Ky (p.x) = v(Ky) =0. (4.33)
p m-1

As Ki(p,x) = sup,._pz(p,y) by (44), applying Lemma 2.5(3) to the function
(p,y) — (p,y) on 2" x ((G - F)X — ¢), we obtain that, for each x € S(H.)|x,

su inf (p,y)= inf su (p,y) = inf Ki(p,x)=0.
ye(G—f)EchEZ’"'1 Py pexmt ye(G—IE;?—c Py pezm-1 1(p:%) (4.34)

Since y + inf,esm1(p, y) isu.s.c. on (G-F)x—c, from (4.34) there exists y € (G-F)x~-c
such that

inf (p,y)= su inf (p,y) =0.
peZm(P ) ye(GiFr;HpeszP 2 (4.35)
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Hence, y > 0. This implies that f = 1 solves (4.25) for c and any x € S(H,)|x. So we conclude
from Lemma 4.10 and Remark 2.2(2) that

Vx e S(He)|x, v(Hx) exists and S(H.x) is nonempty,
¥(%,) € S(Hez)lowar,  inf Hez(p, (8,9)) = v(Hez) 2 1. (4.36)
pezm-

On the other hand, by (4.1), H.(p, x) = SUP (, p)eGrxFx e (p, (u,v)). Combining this
with (4.36), it follows that, for each x € S(H,)|x and each (1,7) € S(H %) |cxxFx,

1< inf HC,Y(PI (ﬂla)) =v(Hcx)
pezm—l

= inf sup Hz(p, (u,0)
PEE™ (4 1)eGRxFX ( ) 4.37)

= inf H.(p,Xx) =v(H,) = 1.
pEZm—l

Hence, also by (4.1), infpesn1 ((p, u—c)/(p,?)) = inf,esn1 Hez(p, (1,0)) = 1. This implies that,
foreachp € ™1, (p,u—c)/(p,7) > 1 and there exists p € ™! such that (p,u-c)/(p,v) = 1.
So we obtain

Vx € S(HC)|X, V(ﬁ,i) € S(Hcly)lc,yxpy, pggf_](P,ﬁ -v- C> =0. (438)

By using the same method as in proving (1)=(2) of Theorem 3.2, we conclude thatu —v > ¢
and there exists ip € {1,2,...,m} such that u;, — v;, = ¢;,. Hence Theorem 4.2(2) is true. O

Lemma 4.12. If Theorem 4.2(3) holds,then v(H.) = 1.

Proof. 1f Theorem 4.2(3) holds, then ¢ solves both (1.4) and (1.5), and by Lemma 4.7(1), v(H.)
exists with v(H,) > 1.

Now we let X € S(H,)|x, (i1,7) € S(Hz)|cexrs, and ip € {1,2,...,m} satisfy i —0 > ¢
and @, — Uj, = cj,, then we have (p,i—v-c) >0forp € >m-1and (e, i — o - c) = 0 (where

. ———
e =(0,...,0,1,0,...,0) € ™1, This implies by (4.1) that

. ~ o~ . <p/ﬁ_c>
cx\Fr\H4, = f—/\ =1. 4.
B Hes(p 2 = 070 5) 43

p
Combining this with the fact that v(H,) > 1 and using Remark 2.2 and (4.1), we obtain that
1= inf Hex(p, (,0)) = v(Hz)
pexm-1

= inf sup Hgx(p, (1,v)) (4.40)

PEE™ (4 0)eGRXFR

= inf H.(p,X) =v(H.) > 1.
pexm-l

Hence, v(H,) = 1. O



Journal of Inequalities and Applications 17

Proof of Theorem 4.2. Since (2)=(3) of is clear, Theorem 4.2 follows immediately from Lemmas
411 and 4.12. O

5. Conclusion

Based on the generalized and multivalued input-output inequality models, in this paper we
have considered three types of set-valued inequality systems (namely, (1.3)-(1.5)) and two
corresponding solvability questions. By constructing some auxiliary functions and studying
their minimax and saddle point properties with the nonlinear analysis approaches, three
solvability theorems (i.e., Theorems 3.2, 4.1, and 4.2) composed of necessary and sufficient
conditions regarding these inequality systems have been obtained.
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