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We present several matrix Kantorovich-type inequalities, which improve the results obtained in
Liu and Neudecker (1996). Elementary methods suffice to prove the inequalities.

1. Introduction

Let A ∈ Mn be a positive (semi-)definite Hermite matrix with eigenvalues contained in the
interval [m,M], where 0 < m < M. Let V be n × r matrix, and let R(A) denotes the column
space of A.

A well-know matrix version of Kantorovich inequality asserts that (see[1–3])

V ∗A2V ≤ (m +M)2

4mM
(V ∗AV )2, (1.1)

for A > 0 and V ∗V = I,where V ∗ denotes the conjugate transpose of the matrix V .
Let B be anm-by-nmatrix; the Moore-Penrose inverse B+ of B is defined as the unique

n-by-mmatrix satisfying all of the following four criteria (see, e.g., [4]):

BB+B = B, B+BB+ = B+, (BB+)∗ = BB+, (B+B)∗ = B+B. (1.2)

It is not difficult to see that if V ∗V = I, then VV ∗ = VV + ≤ I; we can get V ∗AAV ≥
V ∗AVV ∗AV ; thus, V ∗A2V − (V ∗AV )2 ≥ 0, for A > 0.
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In paper [5], fromA2 ≤ (m+M)A−mMI (which is equivalent to (13) in [6]), Liu and
Neudecker presented the following so-called Kantorovich-type inequality:

V ∗A2V − (V ∗AV )2 ≤ (M −m)2

4
I (1.3)

for A > 0 and V ∗V = I, and the following inequality:

(V ∗A2V )
1/2 ≤ (m +M)

2
√
mM

(V ∗AV ) (1.4)

for A > 0 and V ∗V = I. Furthermore, in the same way, they obtained three more general
versions.

VV +A2VV + − (VV +AVV +)2 ≤ 1
4
(M −m)2VV +, (1.5)

V ∗A2V − V ∗AVV +AV ≤ 1
4
(M −m)2V ∗V, (1.6)

V +A2V +∗ − V +AVV +AV +∗ ≤ 1
4
(M −m)2VV + (1.7)

for A > 0 and V ∈ R(A).
In the next section, we shall present several similar matrix Kantorovich-type inequali-

ties, which improve some results above.

2. New Matrix Kantorovich-Type Inequalities

We first introduce two lemmas.

Lemma 2.1. 0 ≤ (MI − V ∗AV )(V ∗AV −mI) ≤ (1/4)(M −m)2I, for A > 0 and V ∗V = I.

Proof. It is easy to see that ifmI ≤ A ≤ MI, thenmI ≤ V ∗AV ≤ MI; thus, we have

0 ≤ (MI − V ∗AV )(V ∗AV −mI)

= (m +M)V ∗AV −mMI − (V ∗AV )2

=
1
4
(M −m)2I −

[
V ∗AV − 1

2
(m +M)I

]2
≤ 1

4
(M −m)2I,

(2.1)

for V ∗V = I.
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In [7], Dragomir defines a transform Cm,M(A) = (A−mI)(MI −A); for this transform,
we have the following lemma.

Lemma 2.2. Let C(A,V ) = V ∗(A −mI)(MI −A)V ; then

C(A,V ) =
1
4
(M −m)2I − V ∗

(
A − 1

2
(m +M)I

)2

V ; (2.2)

thus

0 ≤ C(A,V ) ≤ 1
4
(M −m)2I (2.3)

for A > 0 and V ∗V = I.

Proof.

C(A,V ) = V ∗(A −mI)(MI −A)V

= V ∗
(
M −m

2
I +

(
A − M +m

2
I

))(
M −m

2
I −

(
A − M +m

2
I

))
V

=
1
4
(M −m)2I − V ∗

(
A − 1

2
(m +M)I

)2

V

≤ 1
4
(M −m)2 I, for V ∗V = I.

(2.4)

From Lemma 2.2, we can easily get the inequality (1.4).

Corollary 2.3. (V ∗A2V )1/2 ≤ (m +M)/(2
√
mM)V ∗AV, for A > 0 and V ∗V = I.

Proof. From C(A,V ) ≥ 0, we have

(m +M)V ∗AV − V ∗A2V −mMI ≥ 0; (2.5)

then

(m +M)V ∗AV ≥ V ∗A2V +mMI ≥ 2
√
mM(V ∗A2V )

1/2
. (2.6)

The proof is completed.
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Theorem 2.4. V ∗A2V − (V ∗AV )2 ≤ (1/4)(M −m)2I − C(A,V ) for A > 0 and V ∗V = I.

Proof.

V ∗A2V − (V ∗AV )2

= V ∗A2V +mMI − (m +M)V ∗AV −
[
(V ∗AV )2 +mMI − (m +M)V ∗AV

]

= (MI − V ∗AV )(V ∗AV −mI) − V ∗(A −mI)(MI −A)V.

(2.7)

From Lemmas 2.1 and 2.2, we have

V ∗A2V − (V ∗AV )2 ≤ 1
4
(M −m)2I − C(A,V ). (2.8)

The proof of Theorem 2.4 is completed.

Remark 2.5. It is not difficult to see that if V ∗A2V − (V ∗AV )2 ≤ (1/4)(M −m)2I − C(A,V ) ≤
(1/4)(M −m)2I, then we conclude that Theorem 2.4 gives an improvement of the Kan-
torovich inequality (1.3).

Furthermore, in similar way we got Theorem 2.4, and we obtain three more general
versions, which also improve the inequalities (1.5), (1.6), (1.7), respectively.

Theorem 2.6.

VV +A2VV + − (VV +AVV +)2 ≤ 1
4
(M −m)2VV + − C(A,V, V +), (2.9)

V ∗A2V − V ∗AVV +AV ≤ 1
4
(M −m)2V ∗V − C(A,V ∗, V ), (2.10)

V +A2V +∗ − V +AVV +AV +∗ ≤ 1
4
(M −m)2VV +∗ − C(A,V, V +∗) (2.11)

for A > 0 and V ∈ R(A), where C(A,V,U) = VU(A −mI)(MI −A)VU,U ∈ Cr×n.

Proof. In fact, they are equivalent by noting V ∗ = V ∗VV + and V + = V +V +∗V ∗. For (2.9), pre-
and postmultiplying by V ∗ and V, respectively, we get the inequality (2.10); similarly, for
(2.10), pre- and postmultiplying by V +V +∗, respectively, we get the inequality (2.11). So, we
only prove the inequality (2.9).
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Similarly, with Lemma 2.2, we have

0 ≤ C(A,V, V +) =
1
4
(M −m)2VV + − VV +

(
A − 1

2
(m +M)I

)2

VV + ≤ 1
4
(M −m)2VV +,

VV +A2VV + − (VV +AVV +)2

= VV +A2VV + +mMVV + − (m +M)VV +AVV +

−
[
(VV +AVV +)2 +mMVV + − (m +M)VV +AVV +

]

= (MVV + − VV +AVV +)(VV +AVV + −mVV +) − VV +(A −mI)(MI −A)VV +,

≤ 1
4
(M −m)2 VV + − C(A,V, V +).

(2.12)

Remark 2.7. From the proof, it is easy to see that VV +A2VV + − (VV +AVV +)2 ≤ (1/
4)(M −m)2VV +−C(A,V, V +) ≤ (1/4)(M −m)2VV +; so, we conclude that the inequality (2.9)
gives an improvement of the inequality (1.5), meanwhile, the inequalities (2.10) and (2.11)
improve the inequalities (1.6) and (1.7), respectively.
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