
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 589040, 14 pages
doi:10.1155/2010/589040

Research Article
Aλ3

r (λ1, λ2,Ω)-Weighted Inequalities with Lipschitz
and BMO Norms

Yuxia Tong,1 Juan Li,2 and Jiantao Gu1

1 College of Science, Hebei Polytechnic University, Tangshan 063009, China
2 Department of Mathematics, Ningbo University, Ningbo 315211, China

Correspondence should be addressed to Yuxia Tong, tongyuxia@126.com

Received 29 December 2009; Revised 25 March 2010; Accepted 31 March 2010

Academic Editor: Shusen Ding

Copyright q 2010 Yuxia Tong et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We first define a new kind of Aλ3
r (λ1, λ2,Ω) two-weight, then obtain some two-weight integral

inequalities with Lipschitz norm and BMO norm for Green’s operator applied to differential forms.

1. Introduction

Green’s operator G is often applied to study the solutions of various differential equations
and to define Poisson’s equation for differential forms. Green’s operator has been playing
an important role in the study of PDEs. In many situations, the process to study solutions
of PDEs involves estimating the various norms of the operators. Hence, we are motivated to
establish some Lipschitz norm inequalities and BMO norm inequalities for Green’s operator
in this paper.

In the meanwhile, there have been generally studied about Ar(Ω)-weighted [1, 2]
and Aλ

r (Ω)-weighted [3, 4] different inequalities and their properties. Results for more
applications of the weight are given in [5, 6]. The purpose of this paper is to derive the new
weighted inequalities with the Lipschitz norm and BMO norm for Green’s operator applied
to differential forms. We will introduce Aλ3

r (λ1, λ2,Ω)-weight, which can be considered as a
further extension of the Aλ

r (Ω)-weight.
We keep using the traditional notation.
Let Ω be a connected open subset of Rn, let e1, e2, . . . , en be the standard unit basis of

Rn, and let
∧l =

∧l(Rn) be the linear space of l-covectors, spanned by the exterior products
eI = ei1 ∧ ei2 ∧ · · · ∧ eil , corresponding to all ordered l-tuples I = (i1, i2, . . . , il), 1 ≤ i1 < i2 < · · · <
il ≤ n, l = 0, 1, . . . , n. We let R = R1. The Grassman algebra

∧
= ⊕∧l is a graded algebra with

respect to the exterior products. For α =
∑

αIeI ∈ ∧ and β =
∑

βIeI ∈ ∧, the inner product
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in
∧

is given by 〈α, β〉 =
∑

αIβI with summation over all l-tuples I = (i1, i2, . . . , il) and all
integers l = 0, 1, . . . , n.

We define the Hodge star operator � :
∧ → ∧

by the rule �1 = e1 ∧ e2 ∧ · · · ∧ en and
α ∧ �β = β ∧ �α = 〈α, β〉(�1) for all α, β ∈ ∧. The norm of α ∈ ∧ is given by the formula
|α|2 = 〈α, α〉 = �(α ∧ �α) ∈ ∧0 = R. The Hodge star is an isometric isomorphism on

∧
with

� :
∧l → ∧n−l and � � (−1)l(n−l) : ∧l → ∧l.

Balls are denoted by B and ρB is the ball with the same center as B and with
diam(ρB) = ρdiam(B). We do not distinguish balls from cubes throughout this paper.

The n-dimensional Lebesgue measure of a set E ⊆ Rn is denoted by |E|. We call w(x)
a weight if w ∈ L1

loc(R
n) and w > 0 a.e. For 0 < p < ∞ and a weight w(x), we denote the

weighted Lp-norm of a measurable function f over E by

∥
∥f
∥
∥
p,E,wα =

(∫

E

∣
∣f(x)

∣
∣pwαdx

)1/p

, (1.1)

where α is a real number.
Differential forms are important generalizations of real functions and distributions.

Specially, a differential l-form ω on Ω is a de Rham current [7, Chapter III] on Ω with values
in
∧l(Rn); note that a 0-form is the usual function in Rn. A differential l-form ω on Ω is a

Schwartz distribution on ωwith values in
∧l(Rn). We useD′(Ω,

∧l) to denote the space of all
differential l-formsω(x) =

∑
I ωI(x)dxI =

∑
ωi1i2···il(x)dxi1∧dxi2∧· · ·∧dxil . Wewrite Lp(Ω,

∧l)
for the l-forms with ωI ∈ Lp(Ω,R) for all ordered l-tuples I. Thus Lp(Ω,

∧l) is a Banach space
with norm

‖ω‖p,Ω =
(∫

Ω
|ω(x)|pdx

)1/p

=
(∫

Ω

(∑
|ωI(x)|2

)p/2
dx

)1/p

. (1.2)

For ω ∈ D′(Ω,
∧l) the vector-valued differential form

∇ω =
(
∂ω

∂x1
, . . . ,

∂ω

∂xn

)

(1.3)

consists of differential forms

∂ω

∂xi
∈ D′

(

Ω,
l∧
)

, (1.4)

where the partial differentiations are applied to the coefficients of ω.
As usual, W1,p(Ω,

∧l) is used to denote the Sobolev space of l-forms, which equals
Lp(Ω,

∧l) ∩ L
p

1(Ω,
∧l)with norm

‖ω‖W1,p(Ω,
∧l) = ‖ω‖W1,p(Ω,

∧l) = diam (Ω)−1‖ω‖p,Ω + ‖∇ω‖p,Ω. (1.5)
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The notations W1,p
loc (Ω,R) and W

1,p
loc (Ω,

∧l) are self-explanatory. For 0 < p < ∞ and a weight
w(x), the weighted norm of ω ∈ W1,p(Ω,

∧l) over Ω is denoted by

‖ω‖W1,p(Ω,
∧l),wα = ‖ω‖W1,p(Ω,

∧l),wα = diam (Ω)−1‖ω‖p,Ω,wα + ‖∇ω‖p,Ω,wα , (1.6)

where α is a real number.
We denote the exterior derivative by d : D′(Ω,

∧l) → D′(Ω,
∧l+1) for l = 0, 1, . . . , n.

Its formal adjoint operator d� : D′(Ω,
∧l+1) → D′(Ω,

∧l) is given by d� = (−1)nl+1 � d� on
D′(Ω,

∧l+1), l = 0, 1, . . . , n. Let
∧lΩ be the lth exterior power of the cotangent bundle and

let C∞(
∧lΩ) be the space of smooth l-forms on Ω. We set W(

∧lΩ) = {u ∈ L1
loc(
∧lΩ) :

u has generalized gradient}. The harmonic l-fields are defined by H(
∧lΩ) = {u ∈ W(

∧lΩ) :
du = d�u = 0, u ∈ Lp for some 1 < p < ∞}. The orthogonal complement of H in L1 is
defined by H⊥ = {u ∈ L1 : 〈u, h〉 = 0 for all h ∈ H}. Then, Green’s operator G is defined as
G : C∞(

∧lΩ) → H⊥ ∩C∞(
∧lΩ) by assigningG(u) to be the unique element ofH⊥ ∩C∞(

∧lΩ)
satisfying Poisson’s equationΔG(u) = u−H(u), whereH is the harmonic projection operator
that mapsC∞(

∧lΩ) ontoH, so thatH(u) is the harmonic part of u. See [8] for more properties
of Green’s operator.

The nonlinear elliptic partial differential equation d�A(x, du) = 0 is called the
homogeneous A-harmonic equation or the A-harmonic equation, and the differential
equation

d�A(x, du) = B(x, du) (1.7)

is called the nonhomogeneous A-harmonic equation for differential forms, where A : Ω ×
∧l(Rn) → ∧l(Rn) and B : Ω ×∧l(Rn) → ∧l−1(Rn) satisfy the following conditions:

|A(x, ξ)| ≤ a|ξ|p−1, 〈A(x, ξ), ξ〉 ≥ |ξ|p, |B(x, ξ)| ≤ b|ξ|p−1 (1.8)

for almost every x ∈ Ω and all ξ ∈ ∧l(Rn). Here a, b > 0 are constants and 1 < p < ∞ is a
fixed exponent associated with (1.7). A solution to (1.7) is an element of the Sobolev space
W

1,p
loc (Ω,

∧l−1) such that

∫

Ω
A(x, du) · dϕ + B(x, du) · ϕ = 0 (1.9)

for all ϕ ∈ W
1,p
loc (Ω,

∧l−1)with compact support.
Let A : Ω × ∧l(Rn) → ∧l(Rn) be defined by A(x, ξ) = ξ|ξ|p−2 with p > 1. Then, A

satisfies the required conditions and d�A(x, du) = 0 becomes the p-harmonic equation

d�
(
du|du|p−2

)
= 0 (1.10)

for differential forms. If u is a function (a 0-form), (1.10) reduces to the usual p-harmonic
equation div(∇u|∇u|p−2) = 0 for functions. We should notice that if the operator B equals 0 in
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(1.7), then (1.7) reduces to the homogeneous A-harmonic equation. Some results have been
obtained in recent years about different versions of the A-harmonic equation; see [9–11].

Let u ∈ L1
loc(Ω,

∧l), l = 0, 1, . . . , n. We write u ∈ loc Lipk(Ω,
∧l), 0 ≤ k ≤ 1, if

‖u‖loc Lipk,Ω
= sup

σQ⊂Ω
|Q|−(n+k)/n∥∥u − uQ

∥
∥
1,Q < ∞ (1.11)

for some σ ≥ 1. Further, we write Lipk(Ω,
∧l) for those forms whose coefficients are in the

usual Lipschitz space with exponent k and write ‖u‖Lipk,Ω
for this norm. Similarly, for u ∈

L1
loc(Ω,

∧l), l = 0, 1, . . . , n, we write u ∈ BMO(Ω,
∧l) if

‖u‖�,Ω = sup
σQ⊂Ω

|Q|−1∥∥u − uQ

∥
∥
1,Q < ∞ (1.12)

for some σ ≥ 1. When u is a 0-form, (1.12) reduces to the classical definition of BMO(Ω).
Based on the above results, we discuss the weighted Lipschitz and BMO norms. For

u ∈ L1
loc(Ω,

∧l, wα), l = 0, 1, . . . , n, we write u ∈ loc Lipk(Ω,
∧l, wα), 0 ≤ k ≤ 1, if

‖u‖loc Lipk,Ω,wα = sup
σQ⊂Ω

(
μ(Q)

)−(n+k)/n∥∥u − uQ

∥
∥
1,Q,wα < ∞ (1.13)

for some σ > 1, where Ω is a bounded domain, the Radon measure μ is defined by dμ =
w(x)αdx,w is a weight and, α is a real number. For convenience, we shall write the following
simple notation loc Lipk(Ω,

∧l) for loc Lipk(Ω,
∧l, wα). Similarly, for u ∈ L1

loc(Ω,
∧l, wα), l =

0, 1, . . . , n, we write u ∈ BMO(Ω,
∧l, wα) if

‖u‖�,Ω,wα = sup
σQ⊂Ω

(
μ(Q)

)−1∥∥u − uQ

∥
∥
1,Q,wα < ∞ (1.14)

for some σ > 1, where the Radon measure μ is defined by dμ = w(x)αdx,w is a weight and α
is a real number. Again, we use BMO(Ω,

∧l) to replace BMO(Ω,
∧l, wα) whenever it is clear

that the integral is weighted.

2. Preliminary Knowledge and Lemmas

Definition 2.1. We say that the weight (w1(x), w2(x)) satisfies the A
λ3
r (λ1, λ2,Ω) condition for

some r > 1 and 0 < λ1, λ2, λ3 < ∞; let (w1, w2) ∈ Aλ3
r (λ1, λ2,Ω), if w1(x) > 0, w2(x) > 0 a.e.

and

sup
B

(
1
|B|
∫

B

wλ1
1 dx

)(
1
|B|
∫

B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
< ∞ (2.1)

for any ball B ⊂ Ω.
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If we choose w1 = w2 = w and λ1 = λ2 = λ3 = 1 in Definition 2.1, we will obtain the
usual Ar(Ω)-weight. If we choose w1 = w2 = w, λ1 = λ2 = 1 and λ3 = λ in Definition 2.1,
we will obtain the Aλ

r (Ω)-weight [3]. If we choose w1 = w2 = w, λ1 = λ and λ2 = λ3 = 1 in
Definition 2.1, we will obtain the Ar(λ,Ω)-weight [12].

Lemma 2.2 (see [1]). Ifw ∈ Ar(Ω), then there exist constants β > 1 and C, independent ofw, such
that

‖w‖β,B ≤ C|B|(1−β)/β‖w‖1,B (2.2)

for all balls B ⊂ Rn.

We need the following generalized Hölder inequality.

Lemma 2.3. Let 0 < α < ∞, 0 < β < ∞ and s−1 = α−1 + β−1. If f and g are measurable functions on
Rn, then

∥
∥fg

∥
∥
s,E ≤ ∥∥f∥∥α,E · ∥∥g∥∥β,E (2.3)

for any E ⊂ Rn.

The following version of weak reverse Hölder inequality appeared in [13].

Lemma 2.4. Suppose that u is a solution to the nonhomogeneous A-harmonic equation (1.7) in Ω,
σ > 1 and q > 0. There exists a constant C, depending only on σ, n, p, a, b and q, such that

‖du‖p,Q ≤ C|Q|(q−p)/pq‖du‖q,σQ (2.4)

for all Q with σQ ⊂ Ω.

Lemma 2.5 (see [14]). Let du ∈ Ls(Ω,
∧l) be a smooth form and let G be Green’s operator, l =

1, . . . , n, and 1 < s < ∞. Then, there exists a constant C, independent of u, such that

‖G(u) − (G(u))B‖s,B ≤ C|B|diam(B)‖du‖s,B (2.5)

for all balls B ⊂ Ω.

We need the following Lemma 2.6 (Caccioppoli inequality) that was proved in [8].

Lemma 2.6 (see [8]). Let u ∈ D′(Ω,
∧l) be a solution to the nonhomogeneous A-harmonic equation

(1.7) in Ω and let σ > 1 be a constant. Then, there exists a constant C, independent of u, such that

‖du‖p,B ≤ Cdiam (B)−1‖u − c‖p,σB (2.6)

for all balls or cubes B with σB ⊂ Ω and all closed forms c. Here 1 < p < ∞.
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Lemma 2.7 (see [14]). Let du ∈ Ls(Ω,
∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a smooth form in a domain

Ω. Then, there exists a constant C, independent of u, such that

‖G(u)‖loc Lipk,Ω
≤ C‖du‖s,Ω, (2.7)

where k is a constant with 0 ≤ k ≤ 1.

Lemma 2.8 (see [14]). Let du ∈ Ls(Ω,
∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a smooth form in a

bounded domain Ω and let G be Green’s operator. Then, there exists a constant C, independent of u,
such that

‖G(u)‖�,Ω ≤ C‖du‖s,Ω. (2.8)

3. Main Results and Proofs

Theorem 3.1. Let du ∈ Ls(Ω,
∧l, υ), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the nonhomogeneous

A-harmonic equation (1.7) in a bounded domain Ω and let G be Green’s operator, where the Radon
measures μ and υ are defined by dμ = wαλ1

1 (x), dυ = wαλ2λ3
2 (x). Assume that (w1(x), w2(x)) ∈

Aλ3
r (λ1, λ2,Ω) for some r > 1, 0 < λ1, λ2, λ3 < ∞. Then, there exists a constant C, independent of u,

such that

‖G(u) − (G(u))B‖1,B,wαλ1
1

≤ C|B|diam(B)‖du‖
s,σB,w

αλ2λ3
2

, (3.1)

where k is a constant with 0 ≤ k ≤ 1, and α is a constant with 0 < α < 1.

Proof. Choose t = s/(1 − α) where 0 < α < 1; then 1 < s < t and αt/(t − s) = 1. Since
1/s = 1/t + (t − s)/st, by Lemmas 2.3 and 2.5, we have

‖G(u) − (G(u))B‖s,B,wαλ1
1

=
(∫

B

|G(u) − (G(u))B|swαλ1
1 dx

)1/s

≤
(∫

B

|G(u) − (G(u))B|tdx
)1/t(∫

B

(
wαλ1/s

1

)st/(t−s)
dx

)(t−s)/st

= ‖G(u) − (G(u))B‖t,B
∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,B

≤ C1|B|diam(B)‖du‖t,B
∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,B

(3.2)

for all ball B ⊂ Ω. Choosing m = s/(αλ3(r − 1) + 1), then m < s. From Lemma 2.4, we have

‖du‖t,B ≤ C2|B|(m−t)/mt‖du‖m,σB, (3.3)
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where σ > 1 and σB ⊂ Ω. Using Hölder inequality with 1/m = 1/s + αλ3(r − 1)/s, we have

‖du‖m,σB =
(∫

σB

(
|du|wαλ2λ3/s

2 w−αλ2λ3/s
2

)m
dx

)1/m

≤
(∫

σB

|du|swαλ2λ3
2 dx

)1/s
(∫

σB

(
1
w2

)λ2/(r−1)
dx

)αλ3(r−1)/s

= ‖du‖
s,σB,w

αλ2λ3
2

∥
∥
∥
∥
∥

(
1
w2

)λ2
∥
∥
∥
∥
∥

αλ3/s

1/(r−1),σB
.

(3.4)

Since (w1, w2) ∈ Aλ3
r (λ1, λ2,Ω), then

∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,B
·
∥
∥
∥
∥
∥

(
1
w2

)λ2
∥
∥
∥
∥
∥

αλ3/s

1/(r−1),σB

≤
⎡

⎣
(∫

σB

wλ1
1 dx

)(∫

σB

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
⎤

⎦

α/s

=

⎡

⎣|σB|λ3(r−1)+1
(

1
|σB|

∫

σB

wλ1
1 dx

)(
1

|σB|
∫

σB

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
⎤

⎦

α/s

≤ C3|σB|αλ3(r−1)/s+α/s

≤ C4|B|αλ3(r−1)/s+α/s.

(3.5)

Since (m− t)/mt+(αλ3(r −1)+α)/s = 0, combining with (3.2), (3.3), (3.4), and (3.5), we have

‖G(u) − (G(u))B‖s,B,wαλ1
1

≤ C1|B|diam(B)C2|B|(m−t)/mt‖du‖
s,σB,w

αλ2λ3
2

C4|B|αλ3(r−1)/s+α/s

= C5|B|diam(B)‖du‖
s,σB,w

αλ2λ3
2

.
(3.6)

Notice that |Ω| < ∞, 1−1/s > 0; from (3.6) and the Hölder inequality with 1 = 1/s+(s−1)/s,
we find that

‖G(u) − (G(u))B‖1,B,wαλ1
1

=
∫

B

|G(u) − (G(u))B|wαλ1
1 dx

≤
(∫

B

|G(u) − (G(u))B|swαλ1
1 dx

)1/s(∫

B

1s/(s−1)wαλ1
1 dx

)(s−1)/s

=
(
μ(B)

)(s−1)/s‖G(u) − (G(u))B‖s,B,wαλ1
1

≤ |Ω|1−1/sC5|B|diam(B)‖du‖
s,σB,w

αλ2λ3
2

≤ C6|B|diam(B)‖du‖
s,σB,w

αλ2λ3
2

.

(3.7)

We have completed the proof of Theorem 3.1.
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Remark. Specially, choosing λ2λ3 = λ1 and w1 = w2 in Theorem 3.1, we have

‖G(u) − (G(u))B‖1,B,wαλ1
1

≤ C6|B|diam(B)‖du‖
s,σB,w

αλ1
1
. (3.8)

Next, we will establish the following weighted norm comparison theorem between the
Lipschitz and the BMO norms.

Theorem 3.2. Let u ∈ Ls(Ω,
∧l, υ), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the nonhomogeneous

A-harmonic equation (1.7) in a bounded domain Ω and let G be Green’s operator, where the Radon
measures μ and υ are defined by dμ = wαλ1

1 (x), dυ = wαλ2λ3/s
2 (x). Assume that (w1(x), w2(x)) ∈

Aλ3
r (λ1, λ2,Ω) for some r > 1, 0 < λ1, λ2, λ3 < ∞ with w1(x) ≥ ε > 0 for any x ∈ Ω. Then, there

exists a constant C, independent of u, such that

‖G(u)‖loc Lipk,Ω,w
αλ1
1

≤ C‖u‖
�,Ω,w

αλ2λ3/s
2

, (3.9)

where k is a constant with 0 ≤ k ≤ 1, and α is a constant with 0 < α < 1.

Proof. Choose t = s/(1 − α) where 0 < α < 1; then 1 < s < t and αt/(t − s) = 1. Since
1/s = 1/t + (t − s)/st, by Lemma 2.3, we have

‖du‖
s,σ1B,w

αλ1
1

=

(∫

σ1B

|du|swαλ1
1 dx

)1/s

≤
(∫

σ1B

|du|tdx
)1/t(∫

σ1B

(
wαλ1/s

1

)st/(t−s)
dx

)(t−s)/st

= ‖du‖t,σ1B

∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,σ1B

(3.10)

for any ball B and some constant σ1 > 1 with σ1B ⊂ Ω. Choosing c = uB in Lemma 2.6, we
find that

‖du‖t,σ1B
≤ C1 diam (B)−1‖u − uB‖t,σ2B

, (3.11)

where σ2 > σ1 is a constant and σ2B ⊂ Ω. Combining (3.8), (3.10), and (3.11), it follows that

‖G(u) − (G(u))B‖1,B,wαλ1
1

≤ C2|B|diam(B)‖du‖
s,σ1B,w

αλ1
1

≤ C2|B|diam(B)
∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,σ1B
C1 diam (B)−1‖u − uB‖t,σ2B

= C3|B|‖u − uB‖t,σ2B

∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,σ1B
.

(3.12)
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Choosingm = s/(αλ3(r−1)+s), thenm < s < t. Applying the weak reverse Hölder inequality
for the solutions of the nonhomogeneous A-harmonic equation, we obtain

‖u − uB‖t,σ2B
≤ C4|B|(m−t)/mt‖u − uB‖m,σ3B

, (3.13)

where σ3 > σ2 is a constant and σ3B ⊂ Ω. Substituting (3.13) into (3.12), we have

‖G(u) − (G(u))B‖1,B,wαλ1
1

≤ C3|B|C4|B|(m−t)/mt‖u − uB‖m,σ3B

∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,σ1B

= C5|B|1+(m−t)/mt‖u − uB‖m,σ3B

∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,σ1B
.

(3.14)

Using Hölder inequality with 1/m = 1/1 + αλ3(r − 1)/s, we have

‖u − uB‖m,σ3B
=

(∫

σ3B

(
|u − uB|wαλ2λ3/s

2 w−αλ2λ3/s
2

)m
dx

)1/m

≤
(∫

σ3B

|u − uB|wαλ2λ3/s
2 dx

)(∫

σ3B

(
1
w2

)λ2/(r−1)
dx

)αλ3(r−1)/s

= ‖u − uB‖1,σ3B,w
αλ2λ3/s
2

∥
∥
∥
∥
∥

(
1
w2

)λ2
∥
∥
∥
∥
∥

αλ3/s

1/(r−1),σ3B

.

(3.15)

Since (w1, w2) ∈ Aλ3
r (λ1, λ2,Ω), then

∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,σ1B
·
∥
∥
∥
∥
∥

(
1
w2

)λ2
∥
∥
∥
∥
∥

αλ3/s

1/(r−1),σ3B

≤
⎡

⎣

(∫

σ3B

wλ1
1 dx

)(∫

σ3B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
⎤

⎦

α/s

=

⎡

⎣|σ3B|λ3(r−1)+1
(

1
|σ3B|

∫

σ3B

wλ1
1 dx

)(
1

|σ3B|
∫

σ3B

(
1
w2

)λ2/(r−1)
dx

)λ3(r−1)
⎤

⎦

α/s

≤ C6|σ3B|αλ3(r−1)/s+α/s

≤ C7|B|αλ3(r−1)/s+α/s.

(3.16)
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Since (m − t)/mt + (αλ3(r − 1) + α)/s + 1 = 1/s, combining with (3.14), (3.15), and (3.16), we
have

‖G(u) − (G(u))B‖1,B,wαλ1
1

≤ C5|B|1+(m−t)/mtC7|B|αλ3(r−1)/s+α/s‖u − uB‖1,σ3B,w
αλ2λ3/s
2

= C8|B|1/s‖u − uB‖1,σ3B,w
αλ2λ3/s
2

.
(3.17)

Since μ(B) =
∫

B w
αλ1
1 dx ≥ ∫B εαλ1dx = C9|B|, we have

1
μ(B)

≤ C10

|B| (3.18)

for all ball B. Notice that 1 − k/n > 0 and |Ω| < ∞; from (3.17), we have

‖G(u)‖loc Lipk,Ω,w
αλ1
1

= sup
σ4B⊂Ω

(
μ(B)

)−(n+k)/n‖G(u) − (G(u))B‖1,B,wαλ1
1

≤ C8 sup
σ4B⊂Ω

(
μ(B)

)−1/s−k/n|B|1/s‖u − uB‖1,σ3B,w
αλ2λ3/s
2

≤ C11 sup
σ4B⊂Ω

|B|−1/s−k/n|B|1+1/s|B|−1‖u − uB‖1,σ3B,w
αλ2λ3/s
2

≤ C11 sup
σ4B⊂Ω

|Ω|1−k/n|B|−1‖u − uB‖1,σ3B,w
αλ2λ3/s
2

≤ C12 sup
σ4B⊂Ω

|B|−1‖u − uB‖1,σ3B,w
αλ2λ3/s
2

= C12‖u‖�,Ω,w
αλ2λ3/s
2

,

(3.19)

where σ4 > σ3 is a constant and σ4B ⊂ Ω. We have completed the proof of Theorem 3.2.

Now, we will prove the following weighted inequality between the BMO norm and
the Lipschitz norm for Green’s operator.

Theorem 3.3. Let u ∈ Ls(Ω,
∧l, υ), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the nonhomogeneous

A-harmonic equation (1.7) in a bounded domain Ω and let G be Green’s operator, where the Radon
measures μ and υ are defined by dμ = wαλ1

1 (x), dυ = wαλ2λ3/s
2 (x). Assume that wλ1

1 (x) ∈ Ar(Ω)
and (w1(x), w2(x)) ∈ Aλ3

r (λ1, λ2,Ω) for some r > 1, 0 < λ1, λ2, λ3 < ∞ with w1(x) ≥ ε > 0 for any
x ∈ Ω. Then, there exists a constant C, independent of u, such that

‖G(u)‖
�,Ω,w

αλ1
1

≤ C‖u‖loc Lipk,Ω,w
αλ2λ3/s
2 ,

(3.20)

where α is a constant with 0 < α < 1.
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Proof. Since wλ1
1 ∈ Ar(Ω), using Lemma 2.2, there exist constants β > 1 and C1 > 0, such that

∥
∥
∥w

λ1
1

∥
∥
∥
β,B

≤ C1|B|(1−β)/β
∥
∥
∥w

λ1
1

∥
∥
∥
1,B

(3.21)

for any ball B ⊂ Rn.
Since 1 = 1/s + (s − 1)/s, by Lemma 2.3, we have

‖G(u) −G(u)B‖1,B,wαλ1
1

=
∫

B

|G(u) −G(u)B|wαλ1
1 dx

≤
(∫

B

|G(u) −G(u)B|swαλ1
1 dx

)1/s(∫

B

wαλ1
1 dx

)(s−1)/s

= μ(B)(s−1)/s‖G(u) −G(u)B‖s,B,wαλ1
1
.

(3.22)

Choose t = s/(1 − α/β) where 0 < α < 1, β > 1; then 1 < s < t and αt/(t − s) = β. Since
1/s = 1/t + (t − s)/st, by Lemma 2.3 and (3.21), we have

‖G(u) −G(u)B‖s,B,wαλ1
1

=
(∫

B

(
|G(u) −G(u)B|wαλ1/s

1

)s
dx

)1/s

≤
(∫

B

|G(u) −G(u)B|tdx
)1/t(∫

B

w
λ1β

1 dx

)α/(βs)

= ‖G(u) −G(u)B‖t,B ·
∥
∥
∥w

λ1
1

∥
∥
∥
α/s

β,B

≤ ‖G(u) −G(u)B‖t,B · C2|B|(1−β)α/(βs)
∥
∥
∥w

λ1
1

∥
∥
∥
α/s

1,B
.

(3.23)

From Lemmas 2.5 and 2.6 with c = uB, we have

‖G(u) − (G(u))B‖t,B ≤ C3|B|diam(B)‖du‖t,B
≤ C3|B|diam(B)C4 diam (B)−1‖u − uB‖t,σ1B

= C5|B|‖u − uB‖t,σ1B
,

(3.24)

where σ1 > 1 is a constant and σ1B ⊂ Ω. Applying the weak reverse Hölder inequality for the
solutions of the nonhomogeneous A-harmonic equation, we obtain

‖u − uB‖t,σ1B
≤ C6|B|(m−t)/mt‖u − uB‖m,σ2B

, (3.25)
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where σ2 > σ1 is a constant and σ2B ⊂ Ω. Choosing m = s/(αλ3(r − 1) + s), then m < 1 < s.
Using Hölder inequality with 1/m = 1/1 + αλ3(r − 1)/s, we have

‖u − uB‖m,σ2B
=

(∫

σ2B

(
|u − uB|wαλ2λ3/s

2 w−αλ2λ3/s
2

)m
dx

)1/m

≤
(∫

σ2B

|u − uB|wαλ2λ3/s
2 dx

)(∫

σ2B

(
1
w2

)λ2/(r−1)
dx

)αλ3(r−1)/s

= ‖u − uB‖1,σ2B,w
αλ2λ3/s
2

∥
∥
∥
∥
∥

(
1
w2

)λ2
∥
∥
∥
∥
∥

αλ3/s

1/(r−1),σ2B

.

(3.26)

Since (w1, w2) ∈ Aλ3
r (λ1, λ2,Ω) and (m−t)/mt+αλ3(r−1)/s+α/s+(s−1)/s+(1−β)α/(βs) = 0,

combining with (3.22), (3.23), (3.24), and (3.25), we have

‖G(u) −G(u)B‖1,B,wαλ1
1

≤ μ(B)(s−1)/sC5|B|C6|B|(m−t)/mtC2|B|(1−β)α/(βs)C7|B|αλ3(r−1)/s+α/s‖u − uB‖1,σ2B,w
αλ2λ3/s
2

≤ C8|B||B|(1−β)α/(βs)|B|(m−t)/mt+αλ3(r−1)/s+α/s+(s−1)/s‖u − uB‖1,σ2B,w
αλ2λ3/s
2

= C8|B|‖u − uB‖1,σ2B,w
αλ2λ3/s
2

(3.27)

From the definitions of the Lipschitz and BMO norms, we obtain

‖G(u)‖
�,Ω,w

αλ1
1

= sup
σ3B⊂Ω

|B|−1‖G(u) −G(u)B‖1,B,wαλ1
1

= sup
σ3B⊂Ω

|B|k/n|B|−(n+k)/n‖G(u) −G(u)B‖1,B,wαλ1
1

≤ sup
σ3B⊂Ω

|M|k/n|B|−(n+k)/n‖G(u) −G(u)B‖1,B,wαλ1
1

≤ C9 sup
σ3B⊂Ω

|B|−(n+k)/n‖G(u) −G(u)B‖1,B,wαλ1
1
.

(3.28)

for all balls B with σ3 > σ2 and σ3B ⊂ Ω. Substituting (3.27) into (3.28), we have

‖G(u)‖
�,Ω,w

αλ1
1

≤ C9 sup
σ3B⊂Ω

|B|−(n+k)/n‖G(u) −G(u)B‖1,B,wαλ1
1

≤ C9 sup
σ3B⊂Ω

|B|−(n+k)/nC8|B|‖u − uB‖1,σ2B,w
αλ2λ3/s
2

≤ C10 sup
σ3B⊂Ω

|B|−(n+k)/n‖u − uB‖1,σ2B,w
αλ2λ3/s
2

= C10‖u‖loc Lipk,Ω,w
αλ2λ3/s
2

.

(3.29)

We have completed the proof of Theorem 3.3.



Journal of Inequalities and Applications 13

Using the same methods, and by Lemmas 2.7 and 2.8, we can estimate Lipschitz norm
‖ · ‖loc Lipk,Ω,wα and BMO norm ‖ · ‖�,Ω,wα of Green’s operator in terms of Ls norm.

Theorem 3.4. Let du ∈ Ls(Ω,
∧l, μ), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the nonhomogeneous

A-harmonic equation (1.7) in a bounded domain Ω and let G be Green’s operator, where the Radon
measures μ and υ are defined by dμ = wαλ1

1 (x), dυ = wαλ2λ3/s
2 (x). Assume that wλ1

1 (x) ∈ Ar(Ω)
and (w1(x), w2(x)) ∈ Aλ3

r (λ1, λ2,Ω) for some r > 1, 0 < λ1, λ2, λ3 < ∞ with w1(x) ≥ ε > 0 for any
x ∈ Ω. Then, there exists a constant C, independent of u, such that

‖G(u)‖loc Lipk,Ω,w
αλ1
1

≤ C‖du‖
s,Ω,w

αλ2λ3/s
2

, (3.30)

where k is a constant with 0 ≤ k ≤ 1, and α is a constant with 0 < α < 1.

Theorem 3.5. Let du ∈ Ls(Ω,
∧l, μ), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the nonhomogeneous

A-harmonic equation (1.7) in a bounded domain Ω and let G be Green’s operator, where the Radon
measures μ and υ are defined by dμ = wαλ1

1 (x), dυ = wαλ2λ3/s
2 (x). Assume that wλ1

1 (x) ∈ Ar(Ω)
and (w1(x), w2(x)) ∈ Aλ3

r (λ1, λ2,Ω) for some r > 1, 0 < λ1, λ2, λ3 < ∞ with w1(x) ≥ ε > 0 for any
x ∈ Ω. Then, there exists a constant C, independent of u, such that

‖G(u)‖
�,Ω,w

αλ1
1

≤ C‖du‖
s,Ω,w

αλ2λ3/s
2

, (3.31)

where α is a constant with 0 < α < 1.

Remark. Note that the differentiable functions are special differential forms (0-forms). Hence,
the usual p-harmonic equation div(∇u|∇u|p−2) = 0 for functions is the special case of the
A-harmonic equation for differential forms. Therefore, all results that we have proved for
solutions of the A-harmonic equation in this paper are still true for p-harmonic functions.
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