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A logarithmically improved regularity criterion for the 3D nematic liquid crystal flows is
established.

1. Introduction

We consider the following hydrodynamical systems modeling the flow of nematic liquid
crystal materials ([1, 2]):

ut + u · ∇u +∇π − μΔu = −λ∇ · (∇d � ∇d +
(
Δd − f(d)

) ⊗ d
)
, (1.1)

dt + u · ∇d − d · ∇u = γ
(
Δd − f(d)

)
, (1.2)

divu = 0, (1.3)

(v, d)|t=0 = (v0, d0) in R
3. (1.4)

u(x, t) ∈ R
3 is the velocity field of the flow. d(x, t) ∈ R

3 is the (averaged) macroscopic/
continuum molecular orientations vector in R

3. π(x, t) is a scalar function representing the
pressure (including both the hydrostatic part and the induced elastic part from the orientation
field). μ is a positive viscosity constant. The constant λ represents the competition between
kinetic energy and potential energy. The constant γ is the microscopic elastic relaxation time
(Deborah number) for the molecular orientation field. f(d) = (1/ε2)(|d|2−1)d. For simplicity,



2 Journal of Inequalities and Applications

we will take μ = λ = γ = ε = 1. The 3 × 3 matrix is defined by (∇ � ∇d)ij = (∂id · ∂jd). ⊗ is the
usual Kronecker multiplication, for example, (a ⊗ b)ij = aibj for a, b ∈ R

3.
Very recently, results for the local existence of classical solutions for the problems (1.1)–

(1.4) were presented in [3]. The aim of this paper is to establish a regularity criterion for it.
We will prove the following.

Theorem 1.1. Let (u0, d0) ∈ H2 ×H3 with divu0 = 0 in R
3. Suppose that a local smooth solution

(u, d) satisfies

∫T

0

‖∇u(t)‖rLp

1 + ln(e + ‖∇u(t)‖Lp)
dt < ∞, with

2
r
+
3
p
= 2, 2 ≤ p ≤ 3. (1.5)

Then (u, d) can be extended beyond T .

Remark 1.2. Equation (1.5) can be regarded as a logarithmically improved regularity criterion
of the form ∇u ∈ Lr(0, T ;Lp(R3)) with (2/r) + (3/p) = 2. Condition (1.5) only involves the
velocity field u, which plays a dominant role in regularity theorem. Similar phenomenon
already appeared in the studies of MHD equations (see [4–6] for details).

Remark 1.3. When λ = 0 in (1.1), then (1.1) and (1.2) are the well-known Navier-Stokes
equations. Similar conditions to (1.5) have been established in [7–10]. But previous methods
can not be used here.

Remark 1.4. A natural region for p in (1.5) should be 3/2 ≤ p ≤ ∞, but we only can prove it
for 2 ≤ p ≤ 3 here. We are unable to establish any other regularity criterion in terms of u or π .

2. Proof of Theorem 1.1

Since we deal with the regularity conditions of the local smooth solutions, we only need to
establish the needed a priori estimates. We mainly will follow the method introduced in [9].

First, it has been proved in [3] that

1
2
d

dt

∫

R3

(
|u|2(x, t) + |∇d|2(x, t) + (|d|2 − 1)

2
(x, t)

)
dx

+
∫

R3

(
|∇u|2(x, t) + |Δd − f(d)|2(x, t)

)
dx = 0.

(2.1)

Hence

‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;H1) ≤ C. (2.2)
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Multiplying (1.3) by d, integration by parts yields

1
2
d

dt

∫

R3
|d|2(x, t)dx +

∫

R3

(
|∇d|2(x, t) + |d|4(x, t)

)
dx

=
∫

R3

(
|d|2(x, t) + (d · ∇)u · d(x, t)

)
dx

≤ 1
2

∫

R3
|d|4(x, t)dx +

∫

R3

(
|d|2(x, t) + 1

2
|∇u|2(x, t)

)
dx.

(2.3)

Thanks to (2.1), (2.2), and the Gronwall inequality, we get

‖d‖L∞(0,T ;H1) + ‖d‖L2(0,T ;H2) ≤ C. (2.4)

Let u = (u1, u2, u3)
T and d = (d1, d2, d3)

T , then the ith (i = 1, 2, 3) component of u satisfies

∂tui + u · ∇ui + ∂iπ −Δui = −
3∑

j=1

∂j

(
∑

k

∂idk∂jdk +
(
Δdi −

(
|d|2 − 1

)
di

)
dj

)

. (2.5)

Multiplying (2.5) by −Δui, after integration by parts, summing over i, and using (1.2), we
find that

1
2
d

dt

∫

R3
|∇u|2(x, t)dx +

∫

R3
|Δu|2(x, t)dx

= −
∑

i,j,k

∫

R3
∂kuj · ∂jui · ∂kuidx −

∑

i,k

∫

R3
Δdk · ∂i∇dk · ∇uidx

−
∑

i,k

∫

R3
∂idk · ∇Δdk · ∇uidx +

∑

i,j

∫

R3
∂j
(
djΔdi

) ·Δuidx

−
∑

i,j

∫

R3
∂j
((

|d|2 − 1
)
didj

)
·Δuidx

=: I1 + I2 + I3 + I4 + I5.

(2.6)
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Applying Δ on (1.3), multiplying it by Δd, and using (1.2), we have

1
2
d

dt

∫

R3
|Δd|2(x, t)dx +

∫

R3

(
|∇Δd|2(x, t) + Δf(d) ·Δd(x, t)

)
dx

=
∑

i,k

∫

R3
∂idk · ∇Δdk · ∇uidx −

∑

i,j,k

∫

R3
∂i∂jdk · ∂j∇dk · ∇uidx

+
∑

i,j

∫

R3

(
djΔdi

) · ∂jΔuidx −
∑

i,j

∫

R3
ΔdjΔdi · ∂juidx

− 2
∑

i,j

∫

R3
∇dj · ∂jui · ∇Δdidx

=: I6 + I7 + I8 + I9 + I10.

(2.7)

Combining (2.6) and (2.7) together, noting that I3 + I6 = 0, I4 + I8 = 0, we deduce that

1
2
d

dt

∫

R3

(
|∇u|2(x, t) + |Δd|2(x, t)

)
dx +

∫

R3
|Δu|2(x, t)dx

+
∫

R3

(
|∇Δd|2(x, t) + Δf(d) ·Δd(x, t)

)
dx = I1 + I2 + I5 + I7 + I9 + I10.

(2.8)

We do estimates for Ii (i = 1, 2, 5, 7, 9, 10) as follows:

I1 ≤ C‖∇u‖Lp‖∇u‖2L2p/(p−1)

≤ C‖∇u‖Lp‖∇u‖2(1−(3/2p))
L2 ‖Δu‖3/p

L2

≤ ε‖Δu‖2L2 + C‖∇u‖2p/(2p−3)Lp ‖∇u‖2L2 , for any ε > 0.

(2.9)

Here we have used the following Gagliardo-Nirenberg inequality:

‖∇u‖L2p/(p−1) ≤ C‖∇u‖1−(3/2p)
L2 ‖Δu‖3/2p

L2 . (2.10)

Similarly, by using (2.10), we have

I2 + I7 + I9 ≤ C‖∇u‖Lp‖Δd‖2L2p/(p−1)

≤ C‖∇u‖Lp‖Δd‖2(1−(3/2p))
L2 ‖∇Δd‖3/p

L2

≤ ε‖∇Δd‖2L2 + C‖∇u‖2p/(2p−3)Lp ‖Δd‖2L2 , for any ε > 0.

(2.11)
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I5 is simply bounded as follows:

I5 ≤ C

∫

R3

(
|d| + |d|3

)
|∇d| · |Δu|dx

≤ C
(
‖d‖L6‖∇d‖L3 + ‖d‖3L6‖∇d‖L∞

)
‖Δu‖L2

≤ C(‖∇d‖L3 + ‖∇d‖L∞)‖Δu‖L2

≤ C
(
‖∇d‖1/2

L2 ‖Δd‖1/2
L2 + ‖∇d‖1/4

L2 ‖∇Δd‖3/4
L2

)
‖Δu‖L2

≤ ε‖Δu‖2L2 + C‖Δd‖L2 + C‖∇Δd‖3/2
L2

≤ ε‖Δu‖2L2 + C‖Δd‖2L2 + ε‖∇Δd‖2L2 + C,

(2.12)

for any ε > 0.
When p = 2 or 3, I10 can be estimated easily and hence omitted here. If 2 < p < 3, we

do estimates as follows:

I10 ≤ C‖∇u‖Lp‖∇d‖L2p/(p−2)‖∇Δd‖L2

≤ C‖∇u‖Lp · ‖Δd‖2−(3/p)
L2 · ‖∇Δd‖3/p

L2

≤ ε‖∇Δd‖2L2 + C‖∇u‖2p/(2p−3)Lp · ‖Δd‖2L2 ,

(2.13)

for any ε > 0. Here we have used the Gagliardo-Nirenberg inequality:

‖∇d‖L2p/(p−2) ≤ C‖Δd‖2−(3/p)
L2 ‖∇Δd‖(3/p)−1

L2 . (2.14)

Finally, we omit the trivial term

∫

R3
Δf(d) ·Δd dx = −

∑

i

∫

R3
∂if(d) · ∂iΔd dx. (2.15)

Now, putting the above estimates for Iis into (2.8) and taking ε small enough, we obtain

d

dt

∫

R3

(
|∇u|2 + |Δd|2

)
dx +

∫

R3

(
|Δu|2 + |∇Δd|2

)
dx

≤ C‖∇u‖2p/(2p−3)Lp

(
‖∇u‖2L2 + ‖Δd‖2L2

)
+ C‖Δd‖2L2 + C

≤ C
(
1 + ‖∇u‖2p/(2p−3)Lp

)(
1 + ‖∇u‖2L2 + ‖Δd‖2L2

)
.

(2.16)
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Due to the integrability of (1.5), we conclude that for any small constant ε > 0, there exists a
time T∗ < T such that

∫T

T∗

1 + ‖∇u(t)‖2p/(2p−3)Lp

1 + ln(e + ‖∇u(t)‖Lp)
dt ≤ ε. (2.17)

Easily, from (2.16) and (2.17) it follows that

d

dt

(
1 + ‖∇u‖2L2 + ‖Δd‖2L2

)

≤ C
1 + ‖∇u‖2p/(2p−3)Lp

1 + ln(e + ‖∇u‖Lp)
ln(e + ‖Δu‖L2 + ‖∇Δd‖L2)

(
1 + ‖∇u‖2L2 + ‖Δd‖2L2

)
,

(2.18)

which implies that for t ∈ [T∗, T),

‖∇u(t)‖2L2 + ‖Δd(t)‖2L2 ≤ C

(

1 + sup
[T∗,t]

‖Δu(·)‖L2 + sup
[T∗,t]

‖∇Δd(·)‖L2

)Cε

. (2.19)

We are going to do the estimate for Δu and ∇Δd. To this end, we introduce the following
commutator estimates due to the work of Kato and Ponce [11]:

∥∥Λα(fg
) − fΛαg

∥∥
Lp ≤ C

(∥∥∥Λα−1g
∥∥∥
Lq1

∥∥∇f
∥∥
Lp1 +

∥∥Λαf
∥∥
Lp2

∥∥g
∥∥
Lq2

)
, (2.20)

∥∥Λα(fg)
∥∥
Lp ≤ C

(‖f‖Lp1 ‖Λαg‖Lq1 + ‖Λαf‖Lp2 ‖g‖Lq2

)
, (2.21)

where Λα = (−Δ)α/2, for α > 1, and 1/p = (1/p1) + (1/q1) = (1/p2) + (1/q2).
ApplyingΔ to (2.5) andmultiplying it byΔui, after integration by parts, and summing

over i yield

1
2
d

dt

∫

R3
|Δu|2(x, t)dx +

∫

R3
|∇Δu|2(x, t)dx

≤
∣∣∣∣

∫

R3
(Δ(u · ∇u) − (u · ∇) ·Δu) ·Δudx

∣∣∣∣ +
∑

i,j

∣∣∣∣

∫

R3
∂jΔ

(
∂id · ∂jd

) ·Δuidx

∣∣∣∣

+
∑

i,j

∣∣∣∣

∫

R3
∂jΔ

((
|d|2 − 1

)
didj

)
·Δuidx

∣∣∣∣ +
∑

i,j

∫

R3
djΔ2di · ∂jΔuidx

+
∑

i,j

∣∣∣∣

∫

R3
Δdi ·Δdj · ∂jΔuidx

∣∣∣∣ + 2
∑

i,j

∫

R3

∣∣∇dj · ∇Δdi

∣∣ · ∣∣∂jΔui

∣∣dx

=: J1 + J2 + J3 + J4 + J5 + J6.

(2.22)
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Applying Λ3 to (1.3), multiplying it by Λ3d, we deduce that

1
2
d

dt

∫

R3
|Λ3d|2(x, t)dx +

∫

R3
|Λ4d|2(x, t)dx

≤
∣
∣
∣
∣

∫

R3

(
Λ3(u · ∇d) − u · ∇Λ3d

)
·Λ3d dx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

R3
Λ3f(d) ·Λ3d dx

∣
∣
∣
∣ −

∑

i,j

∫

R3
djΔ2di · ∂jΔuidx

−
∑

i,j

∫

R3
∂juiΔdj ·Δ2didx − 2

∑

i,j

∫

R3
∇dj · ∇∂jui ·Δ2didx

=: J7 + J8 + J9 + J10 + J11.

(2.23)

Summing up (2.22) and (2.23), using J4 + J9 = 0, we have

1
2
d

dt

∫

R3

(
|Δu|2(x, t) + |Λ3d|2(x, t)

)
dx +

∫

R3

(
|∇Δu|2(x, t) + |Λ4d|2(x, t)

)
dx

≤ J1 + J2 + J3 + J5 + J6 + J7 + J8 + J10 + J11.

(2.24)

Now we estimate each term Ji as follows.
By using (2.20), we estimate J1 as

J1 ≤ C‖∇u‖L3‖Δu‖2L3 ≤ C‖∇u‖3/4
L2 ‖∇Δu‖1/4 · ‖∇u‖1/2

L2 ‖∇Δu‖3/2
L2

≤ ε‖∇Δu‖2L2 + C‖∇u‖10L2 , for any ε > 0;
(2.25)

here we used the following Gagliardo-Nirenberg inequalities:

‖∇u‖L3 ≤ C‖∇u‖3/4
L2 ‖∇Δu‖1/4

L2 , ‖Δu‖L3 ≤ C‖∇u‖1/4
L2 ‖∇Δu‖3/4

L2 . (2.26)

Using (2.21), we estimate J2 as

J2 ≤ C‖∇d‖L∞‖Λ4d‖L2‖Δu‖L2

≤ C‖Δd‖3/4
L2 ‖Λ4d‖5/4L2 · ‖∇u‖1/2

L2 ‖∇Δu‖1/2
L2

≤ ε‖∇Δu‖2L2 + ε‖Λ4d‖2L2 + C‖∇u‖4L2‖Δd‖6L2 ,

(2.27)

for any ε > 0. Here we have used the following Gagliardo-Nirenberg inequalities:

‖∇d‖L∞ ≤ C‖Δd‖3/4
L2 ‖Λ4d‖1/4L2 , ‖Δu‖L2 ≤ C‖∇u‖1/2

L2 ‖∇Δu‖1/2
L2 . (2.28)
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J3 only involves lower derivatives of d and is easy to handle, so we omit it here:

J5 ≤ C‖Δd‖2L4‖∇Δu‖L2

≤ C‖Δd‖5/4
L2 ‖Λ4d‖3/4L2 ‖∇Δu‖L2

≤ ε‖∇Δu‖2L2 + ε‖Λ4d‖2L2 + C‖Δd‖10L2 ,

(2.29)

for any ε > 0. Here we have used

‖Δd‖L4 ≤ C‖Δd‖5/8
L2 ‖Λ4d‖3/8L2 ,

J6 ≤ C‖∇d‖L6‖∇Δd‖L3‖∇Δu‖L2

≤ C‖Δd‖L2 · ‖Δd‖1/4
L2 ‖Λ4d‖3/4L2 ‖∇Δu‖L2

≤ ε‖∇Δu‖2L2 + ε‖Λ4d‖2L2 + C‖Δd‖10L2 ,

(2.30)

for any ε > 0. Where we have used the following inequality

‖∇Δd‖L3 ≤ C‖Δd‖1/4
L2 ‖Λ4d‖3/4L2 . (2.31)

By using (2.20), we estimate J7 as follows:

J7 ≤ C‖∇u‖L2‖Λ3d‖2L4 + C‖Λ3u‖L2‖∇d‖L4‖Λ3d‖L4

≤ C‖∇u‖L2‖Δd‖1/4
L2 ‖Λ4d‖7/4L2 + C‖Λ3u‖L2‖∇d‖L4‖Δd‖1/8

L2 ‖Λ4d‖7/8L2

≤ ε‖Λ3u‖2L2 + ε‖Λ4d‖2L2 + C‖Δd‖2L2‖∇u‖8L2 + C‖Δd‖2L2‖∇d‖16L4 ,

(2.32)

for any ε > 0. Here we have used

‖Λ3d‖L4 ≤ C‖Δd‖1/8
L2 ‖Λ4d‖7/8L2 . (2.33)

The term J8 is trivial, and we omit it here:

J10 ≤ C‖Δd‖L∞‖∇u‖L2‖Λ4d‖L2

≤ C‖∇u‖L2 · ‖Δd‖1/4
L2 · ‖Λ4d‖7/4L2

≤ ε‖Λ4d‖2L2 + C‖∇u‖8L2‖Δd‖2L2 ,

(2.34)

for any ε > 0. Where we have used the following inequality:

‖Δd‖L∞ ≤ C‖Δd‖1/4
L2 ‖Λ4d‖3/4L2 . (2.35)
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Finally, using (2.26), J11 can be bounded as follows:

J11 ≤ C‖∇d‖L6‖Δu‖L3‖Λ4d‖L2

≤ C‖Δd‖L2 · ‖∇u‖1/4
L2 · ‖Λ3u‖3/4L2 ‖Λ4d‖L2

≤ ε‖Λ3u‖2L2 + ε‖Λ4d‖2L2 + C‖∇u‖2L2‖Δd‖8L2 ,

(2.36)

for any ε > 0. Now, inserting the above estimates for Jis into (2.24), using (2.19), and taking ε
be small enough, we get

‖u‖L∞(0,T ;H2) + ‖u‖L2(0,T ;H3) ≤ C,

‖d‖L∞(0,T ;H3) + ‖d‖L2(0,T ;H4) ≤ C.
(2.37)

This completes the proof.
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