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We consider a degenerate parabolic equation with logistic periodic sources. First, we establish the
existence of nontrivial nonnegative periodic solutions by monotonicity method. Then by using
Moser iterative technique and the method of contradiction, we establish the boundedness estimate
of nonnegative periodic solutions, by which we show that the attraction of nontrivial nonnegative
periodic solutions, that is, all non-trivial nonnegative solutions of the initial boundary value
problem, will lie between a minimal and a maximal nonnegative nontrivial periodic solutions,
as time tends to infinity.

1. Introduction

In this paper, we consider the following periodic degenerate parabolic equation:

∂u

∂t
−Δum = u(a − bu), (x, t) ∈ Ω × R

+, (1.1)

u(x, t) = 0, (x, t) ∈ ∂Ω × R
+, (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

wherem > 1, Ω is a bounded domain inR
n with smooth boundary ∂Ω, u0(x) is a nonnegative

bounded smooth function, a = a(x, t) and b = b(x, t) are positive continuous functions and of
T -periodic (T > 0) with respect to t.

The problem (1.1)–(1.3) describes the evolution of the population density of a species
living in a habitat Ω and can be proposed for many problems in mathematical biology
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and fisheries management. The term Δum models a tendency to avoid crowding and the
reaction term u(a − bu) models the contribution of the population supply due to births and
deaths; see [1]. The homogeneous Dirichlet boundary conditions model the inhospitality of
the boundary. The time dependence of the coefficients reflects the fact that the time periodic
variations of the habitat are taken into account. Reaction diffusion equations with such
reaction term can be regarded as generalization of Fisher or Kolomogorv-Petrovsky-Piscunov
equations which are used to model the growth of population (see [2, 3]). Especially, when
m = 1, the (1.1) is the classical Logistic equation and some related problems have attracted
much attention of researchers (see [4–6], etc.).

In the recent years, there are a lot of work dedicated to the existence, uniqueness,
regularity, and some other qualitative properties, of weak solutions of this kind of degenerate
parabolic equations (see [7–9], etc.). But to our knowledge, there is few work that has been
accomplished in the literature for periodic degeneracy parabolic equation, and most of the
known results so far only concerned with the existence of periodic solutions but not consider
the attraction (see [10, 11], etc.). So our work is not a simple extension to the previous work.

The purpose of this paper is to investigate the asymptotic behavior of nontriv-
ial nonnegative solutions of the initial boundary value problem (1.1)–(1.3). Since the
equation has periodic sources, it is of no meaning to consider the steady state. So we
have to seek some new approaches. Our idea is to consider all nonnegative periodic
solutions. We first establish the existence of nontrivial nonnegative periodic solutions by
monotone iterative method. Then we establish the a priori upper bound R and a priori
lower bound r according to the maximum norm for all nontrivial nonnegative periodic
solutions. By which we obtain asymptotic behavior of nontrivial nonnegative solutions
of the problem (1.1)–(1.3). That is all nontrivial nonnegative solutions will lie between
a minimal and a maximal nonnegative nontrivial periodic solutions, as time tends to
infinity.

The paper is organized as follows. In Section 2, we introduce some necessary
preliminaries. In Section 3, we establish the existence of nontrivial nonnegative periodic
solutions by monotonicity method. In Section 4, we show the asymptotic behavior of
nontrivial nonnegative solutions of (1.1)–(1.3).

2. Preliminaries

In this section, we present the definitions of weak solutions and some useful principles.
Since (1.1) is degenerate at points where u = 0, problem (1.1)–(1.3) might not have

classical solutions in general. Therefore, we focus our main efforts on the discussion of weak
solutions in the sense of the following.

Definition 2.1. A nonnegative function u is called to be a weak solution of problem (1.1)–(1.3)
in QT = Ω × (0, T), if u ∈ L2(0, T ;H1

0(Ω)) ∩ CT (QT ) and u satisfies

∫∫
QT

(
−u∂ϕ

∂t
+∇um · ∇ϕ − u(a − bu)ϕ

)
dx dt =

∫
Ω
u0ϕ(x, 0)dx −

∫
Ω
u(x, T)ϕ(x, T)dx,

(2.1)

for any test functions ϕ ∈ C1(QT ) with ϕ|∂Ω×(0,T) = 0, where CT (QT ) denotes the set of
functions which are continuous in QT = Ω × (0, T) and of T -periodic with respect to t.
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A supersolution u (resp., a subsolution u) is defined in the same way except that the
“=” in (2.1) is replaced by “≥” (“≤”) and ϕ is taken to be nonnegative.

Definition 2.2. A function u is called to be a T -periodic solution of problem (1.1)-(1.2) if it
is a solution such that u ∈ CT (QT ). A function u is called to be a T -periodic subsolution if
it is a subsolution such that u(·, 0) ≤ u(·, T) in Ω. A function u is called to be a T -periodic
supersolution if it is a supersolution such that u(·, 0) ≥ u(·, T) in Ω. A pair of T -periodic
supersolution u and subsolution u is called to be ordered if u ≥ u in QT .

Several properties of solutions of problem (1.1)–(1.3) are needed in this paper. We first
show the comparison principle.

Lemma 2.3 (comparison). Assume u0(x) ≤ u0(x), if u(x, t) is a subsolution of (1.1)–(1.3)
corresponding to the initial datum u0(x), and u(x, t) is a supersolution of (1.1)–(1.3) corresponding
to the initial datum u0(x), then u(x, t) ≤ u(x, t).

Proof. Without loss of generality, we might assume that u(x, t), u(x, t) are bounded. From
Definition 2.1, we have

∫ t

0

∫
Ω
− u

∂ϕ

∂t
+∇um∇ϕdx dt +

∫
Ω
u(x, t)ϕ(x, t)dx −

∫
Ω
u0(x)ϕ(x, 0)dx ≥

∫ t

0

∫
Ω
u(a − bu)ϕdx dt,

∫ t

0

∫
Ω
− u

∂ϕ

∂t
+∇um∇ϕdx dt +

∫
Ω
u(x, t)ϕ(x, t)dx −

∫
Ω
u0(x)ϕ(x, 0)dx ≤

∫ t

0

∫
Ω
u
(
a − bu

)
ϕdx dt,

(2.2)

with nonnegative test function ϕ and 0 < t ≤ T . Subtracting the above inequalities, we get

∫
Ω

(
u(x, t) − u(x, t)

)
ϕ(x, t)dx ≤

∫
Ω

(
u(x, 0) − u(x, 0)

)
ϕ(x, 0)dx

+
∫ t

0

∫
Ω

(
u(x, s) − u(x, s)

)(
ϕs + Φ(x, s)Δϕ

)
dx ds

+
∫ t

0

∫
Ω
a
(
u(x, s) − u(x, s)

)
ϕdx ds

−
∫ t

0

∫
Ω
b
(
u(x, s) − u(x, s)

)
ϕdx ds,

(2.3)

where

Φ(x, s) ≡
∫1

0
m
(
θu + (1 − θ)u

)m−1
dθ. (2.4)
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Since u, u and a(x, t) are bounded on Qt, it follows from m > 1 that Φ(x, s) is a bounded
nonnegative function. Thus, by choosing appropriate test function ϕ exactly as [12, Pages
118–123], we obtain

∫
Ω

[
u(x, t) − u(x, t)

]
+dx ≤ ∥∥ϕ∥∥∞

∫
Ω

[
u(x, 0) − u(x, 0)

]
+dx + C

∫ t

0

∫
Ω

[
u(x, t) − u(x, t)

]
+dx ds,

(2.5)

where s+ = max{s, 0} and C > 0 is a bounded constant. Since u(x, 0) ≤ u(x, 0), combining
with the Gronwall’s lemma, we see that u(x, t) ≤ u(x, t) a.e. in Ω for any 0 < t ≤ T . The proof
is completed.

Lemma 2.4 (global existence). For any nonnegative bounded initial value u0(x), problem (1.1)–
(1.3) admits a global nonnegative solution.

Proof. Local existence can be proved as [13]. Global existence and nonnegativity follow from
Lemma 2.3 by standard arguments.

Lemma 2.5 (regularity [7]). Let u(x, t) be a weak solution of problem (1.1)–(1.3), then there exist
positive constants K and β ∈ (0, 1), such that

|u(x1, t1) − u(x2, t2)| ≤ K
(
|x1 − x2|β + |t1 − t2|β/2

)
, (2.6)

for every pair of points (x1, t1), (x2, t2) ∈ QT .

3. Existence of Periodic Solutions

In this section, we show the existence of nontrivial nonnegative periodic solutions of the
problem (1.1)-(1.2) by monotonicity method. First, we introduce the following remark.

Remark 3.1 (see [14]). According to Lemmas 2.3–2.5, the semiflow associated with the
solution u ≡ u(x, t;u0) of problem (1.1)–(1.3), namely, the map

Pt : L∞(Ω) −→ L∞(Ω),

Pt(u0) := u(·, t;u0) (t > 0)
(3.1)

has the following properties:

(i) Pt is well defined for any t > 0 (Lemma 2.3);

(ii) Pt is order preserving (Lemma 2.4);

(iii) Pt is compact. In fact, the family {Pru0 | ‖u0‖∞ ≤ M}r∈[0,t] (M > 0) is uniformly
bounded in L∞(Ω) by Lemma 2.3. Then by Lemma 2.5, the set {Pru0 | ‖u0‖∞ ≤
M} consists of equicontinuous functions, thus the conclusion follows from Ascoli-
Arzelà’s theorem.
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Theorem 3.2. If problem (1.1)-(1.2) admits a pair of ordered nontrivial nonnegative T -periodic
subsolution u(x, t) and T -periodic supersolution u(x, t), then problem (1.1)-(1.2) admits a nontrivial
nonnegative periodic solutions.

Proof. From Remark 3.1, we just need to construct a pair of ordered T -periodic subsolution
and T -periodic supersolution. The existence of nontrivial nonnegative periodic solutions of
problem (1.1)-(1.2)will come from the similar iteration procedure as that in [15].

Let λ1, ϕ1 be the first eigenvalue and its corresponding eigenfunction to the Laplacian
operator −Δ on the domainΩ, μ1, φ1 the first eigenvalue and its corresponding eigenfunction
to the Laplacian operator −Δ on some domainΩ′ ⊃ Ω, with respect to homogeneous Dirichlet
data, respectively. It is clear that φ1(x) > 0 for all x ∈ Ω. Denote

am = min
QT

a(x, t), aM = max
QT

a(x, t), bM = max
QT

b(x, t), (3.2)

and define

u =
(
rϕ1
)1/m

, u =
(
Rφ1
)1/m

, (3.3)

where

r = min

{
1

maxΩ ϕ1

(
am

2λ1

)m/(m−1)
,
(am/2bM)m

maxΩϕ1

}
, R =

(
aM/μ1

)m/(m−1)

minΩ φ1
. (3.4)

Clearly, u and u are the T -periodic subsolution and supersolution of (1.1) subject to the
condition (1.2), respectively. Further, we may assume u ≤ u, else we may change Ω′ and
then r, R appropriately. Thus we complete the proof.

4. Asymptotic Behavior

In this section, we show the asymptotic behavior of nontrivial nonnegative solutions of the
initial boundary value problem. First, we employ Moser’s technique to obtain the upper
bound of L∞ norm for a nonnegative periodic solution u.

Lemma 4.1. Let u be a nontrivial nonnegative periodic solution of (1.1)-(1.2), then there exists a
positive constant R which is independent of u, such that

‖u(t)‖L∞(QT ) < R, (4.1)

where u(t) = u(·, t).

Proof. Let u be a nontrivial nonnegative periodic solution of (1.1)-(1.2), multiply the (1.1) by
up+1 (p ≥ 0) and integrate the resulting relation over Ω, we have

1
p + 2

d

dt
‖u(t)‖p+2p+2 +

4m
(
p + 1

)
(
p +m + 1

)2
∥∥∥∇u(m+p+1)/2(t)

∥∥∥2
2
≤ M‖u(t)‖p+2p+2, (4.2)
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where M = sup(x,t)∈QT
a(x, t). Hence

d

dt
‖u(t)‖p+2p+2 + C

∥∥∥∇u(m+p+1)/2(t)
∥∥∥2
2
≤ C
(
p + 1

)‖u(t)‖p+2p+2, (4.3)

where C denotes various positive constants independent of p and u. Set

pk = 2k +m − 3, αk =
2
(
pk + 2

)
pk +m + 1

, uk = u(pk+m+1)/2(t), k = 1, 2, . . . , (4.4)

from (4.3)we have

d

dt
‖uk(t)‖αk

αk
+ C‖∇uk(t)‖22 ≤ C

(
pk + 1

)‖uk(t)‖αk
αk
. (4.5)

Here we appeal to the Gagliardo-Nirenberg inequality

‖uk(t)‖αk
≤ C‖∇uk(t)‖θk2 ‖uk(t)‖1−θk1 , (4.6)

with

θk =
(
1 − 1

αk

)(
1
N

− 1
2
+ 1
)−1

=

(
pk −m + 3

)
N(

pk + 2
)
(N + 2)

∈ (0, 1), (4.7)

where C denotes a positive constant independent of k and p. From (4.5), (4.6), and the fact
that ‖uk(t)‖1 = ‖uk−1(t)‖αk−1

αk−1 , we have

d

dt
‖uk(t)‖αk

αk
≤ ‖uk(t)‖αk

αk

{
−C‖uk(t)‖2/θk−αk

αk
χ
2αk−1(1−1/θk)
k−1 + C

(
pk + 1

)}
, (4.8)

with χk = max{1, supt‖uk(t)‖αk
}. Taking the periodicity of ‖uk(t)‖αk

into account, we can
obtain

‖uk(t)‖αk
≤
{
C
(
pk + 1

)
χ
2αk−1(1/θk−1)
k−1

}1/ck
, (4.9)

where ck = 2/θk − αk. From the boundedness of αk and ck, we can see that

‖uk(t)‖αk
≤ C2kβχ2αk−1(1−θk)/(2−θkαk)

k−1 , (4.10)
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where β is a positive constant independent of k. Noticing that αk < 2 implies

2(1 − θk)αk−1
2 − θkαk

<
2(1 − θk)αk−1

2 − 2θk
< 2, (4.11)

with χk−1 ≥ 1, we get

‖uk(t)‖αk
≤ Cλkχ2

k−1, (4.12)

where λ = 2β > 1. That is

ln ‖uk(t)‖αk
≤ lnχk ≤ lnC + k lnλ + 2 lnχk−1, (4.13)

and thus

ln ‖uk(t)‖αk
≤ lnC

k−2∑
i=0

2i + 2k−1 lnχ1 +
k−2∑
j=0

((
k − j

)
2j
)
lnλ

≤
(
2k−1 − 1

)
lnC + 2k−1 lnχ1 + f(k) lnλ,

(4.14)

or

‖u(t)‖pk+2 ≤
{
C2k−1χ2k−1

1 λf(k)
}2/(pk+2)

, (4.15)

where

f(k) = 2k+1 − 2k−1 − k − 2. (4.16)

Letting k → ∞, we get

‖u(t)‖∞ ≤ Cχ1 ≤ C

(
max

{
1, sup

t

‖u(t)‖mm+1

})
. (4.17)

Now we estimate ‖u(t)‖m+1. Set p = m − 1 in (4.3), we get

d

dt
‖u(t)‖m+1

m+1 + C‖∇um(t)‖22 ≤ C‖u(t)‖m+1
m+1. (4.18)

By Hölder’s inequality and Sobolev’s theorem, we have

‖u(t)‖2mm+1 ≤ |Ω|(m−1)/(m+1)‖u(t)‖2m2m ≤ C‖∇um(t)‖22. (4.19)
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From (4.18), (4.19) we can obtain

d

dt
‖u(t)‖m+1

m+1 + C‖u(t)‖2mm+1 ≤ C‖u(t)‖m+1
m+1. (4.20)

By Young’s inequality, we get

d

dt
‖u(t)‖m+1

m+1 + C‖u(t)‖2mm+1 ≤ C, (4.21)

where C denotes different positive constants independent of u. By (4.21) and the periodicity
of u(t), we have

‖u(t)‖mm+1 ≤ C. (4.22)

Together with (4.17), we complete the proof of this lemma.

Lemma 4.2. There exists a constant r with 0 < r < R, such that no nontrivial nonnegative periodic
solutions u of problem (1.1)-(1.2) satisfies

0 < ‖u‖L∞(QT ) ≤ r. (4.23)

Proof. To arrive at a contradiction, we assume that problem (1.1)-(1.2) admits a nontrivial
nonnegative periodic solution u satisfying 0 < ‖u‖L∞(QT ) ≤ r. For any given φ(x) ∈ C∞

0 (Ω),
we can choose φ2/u as a test function. Multiplying (1.1) by φ2/u and integrating overQT , we
obtain

∫∫
QT

φ2

u

∂u

∂t
dt dx +

∫∫
QT

mum−1∇u∇
(

φ2

u

)
dt dx =

∫∫
QT

φ2(a − bu)dt dx. (4.24)

By the periodicity of u, the first term of the left-hand side in (4.24) satisfies

∫∫
QT

φ2

u

∂u

∂t
dt dx =

∫
Ω
φ2
∫T

0

∂(lnu)
∂t

dt dx = 0. (4.25)
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The second term of the left-hand side in (4.24) can be rewritten as

∫∫
QT

mum−1∇u∇
(

φ2

u

)
dt dx

=
∫∫

QT

mum−1∇u∇
(
φ · φ

u

)
dt dx

=
∫∫

QT

mum−1∇u

(
φ

u
∇φ + φ∇

(
φ

u

))
dt dx

=
∫∫

QT

mum−1
(∇φ

u

)
φ∇udt dx +

∫∫
QT

mum−1φ∇u∇
(
φ

u

)
dt dx

=
∫∫

QT

mum−1
(∇φ

u

)(
u∇φ − u2∇

(
φ

u

))
dt dx +

∫∫
QT

mum−1φ∇u∇
(
φ

u

)
dt dx

=
∫∫

QT

mum−1∣∣∇φ
∣∣2dt dx −

∫∫
QT

mum−1(u∇φ − φ∇u
)∇
(
φ

u

)
dt dx

=
∫∫

QT

mum−1∣∣∇φ
∣∣2dt dx −

∫∫
QT

mum−1u2
∣∣∣∣∇
(
φ

u

)∣∣∣∣
2

dt dx.

(4.26)

Thus

∫∫
QT

mum−1∇u∇
(

φ2

u

)
dt dx ≤

∫∫
QT

mum−1∣∣∇φ
∣∣2dt dx. (4.27)

Combining (4.24) with (4.25) and (4.27), we obtain

∫∫
QT

φ2(a − bu)dt dx ≤
∫∫

QT

mum−1∣∣∇φ
∣∣2dt dx. (4.28)

By an approximating process, we can choose φ = φ1 with μ1 is the first eigenvalue and φ1 is
its corresponding eigenfunction to the eigenvalue problem

−Δu = μu, x ∈ Ω′ ⊃ Ω,

u = 0, x ∈ ∂Ω′.
(4.29)
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Then μ1 > 0 and φ1(x) is strictly positive in Ω. From (4.28) we have

0 ≤
∫∫

QT

(
mum−1∣∣∇φ1

∣∣2 − φ2
1(a − bu)

)
dt dx

≤
∫∫

QT

(
−mrm−1φ1Δφ1 − φ2

1(a − bu)
)
dt dx

=
∫∫

QT

φ2
1

(
μ1mrm−1 − (a − bu)

)
dt dx

=
∫
Ω
φ2
1

∫T

0

(
μ1mrm−1 − a + bu

)
dt dx.

(4.30)

Thus there exists y0 ∈ Ω such that g(y0) =
∫T
0 (μ1mrm−1 − a(y0, t) + b(y0, t)u(y0, t))dt ≥ 0, then

1
T

∫T

0
a
(
y0, t
)
dt ≤ μ1mrm−1 + b

(
y0, t
)
r. (4.31)

Obviously, we can choose suitable small r0 < R, such that for any r < r0, the above inequality
does not hold. It is a contradiction. The proof is completed.

In the following, we will make use of the a priori boundedness of all nontrivial
nonnegative periodic solutions to show the asymptotic behavior of nontrivial nonnegative
solutions of the initial boundary value problem (1.1)–(1.3).

Theorem 4.3. Problem (1.1)-(1.2) admits a minimal and a maximal nonnegative nontrivial periodic
solutions u∗(x, t) and u∗(x, t). Moreover, if u(x, t) is the solution of the initial boundary value problem
(1.1)–(1.3) with initial value u0(x) > 0, then for any ε > 0, there exists t0 depending on u0(x) and ε,
such that

u∗(x, t) − ε ≤ u(x, t) ≤ u∗(x, t) + ε, for x ∈ Ω, t ≥ t0. (4.32)

Proof. First, we show the existence of themaximal periodic solution u∗(x, t). Define a Poincaré
map

PT : C
(
Ω
)
−→ C

(
Ω
)
, with PT (u0(x)) = u(x, T), (4.33)

where u(x, t) is the solution of (1.1)–(1.3)with initial value u0(x). By Remark 3.1, the map PT

is well defined. Let un(x, t) be the solution of (1.1)–(1.3)with initial value u0(x) = Pn−1
T (u(x)),

where u(x) = Kφ1/m
1 (x) and K is a positive constant satisfying

Km−1μ1min
x∈Ω

φ
(m−1)/m
1 (x) ≥ ‖a(x, t)‖C(QT ), (4.34)

where μ1, φ1 are chosen as those in Theorem 3.2. It is observed that un(x, T) = Pn
T (u(x)),

n = 1, 2, . . ., and un+1(x, t) ≤ un(x, t) ≤ u(x) by the comparison principle. By a rather standard
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argument, we conclude that there exist a function u∗(x) ∈ C(Ω) and a subsequence of
{Pn

T (u(x))}, denoted by itself for simplicity, such that

u∗(x) = lim
n→∞

Pn
T (u(x)). (4.35)

Similar to the proof of Theorem 4.1 in [4], we can prove that u∗(x, t), which is the even
extension of the solution of the initial boundary value problem (1.1)–(1.3) with initial value
u∗(x), is a periodic solution of the problem (1.1)-(1.2). Moreover, Lemma 4.1 shows that any
nonnegative periodic solution u(x, t) of (1.1)-(1.2) must satisfy u(x, t) ≤ R for (x, t) ∈ QT .
Therefore, if we take K is larger than R/minx∈Ωφ

1/m
1 (x), by the comparison principle we

have u∗(x) ≥ u(x, 0) and thus u∗(x, t) ≥ u(x, t), which means that u∗(x, t) is the maximal
periodic solution of problem (1.1)-(1.2). The existence of the minimal periodic solution can
be obtained with the same method.

Let u(x, t) be the solution of the initial boundary value problem (1.1)–(1.3) with any
given nonnegative initial value u0(x), and let v(x, t) be the solution of (1.1)–(1.3) with initial
value v(x, 0) = Kφ1/m

1 (x), where K is a positive constant satisfying

K ≥ max

⎧⎨
⎩

‖u0‖L∞(Ω)

minx∈Ω φ1/m
1 (x)

,
1

minx∈Ω φ1/m
1 (x)

(‖a(x, t)‖C(QT )

μ1

)1/(m−1)⎫⎬
⎭, (4.36)

then for any (x, t) ∈ QT , we have

u(x, t + kT) ≤ v(x, t + kT), k = 0, 1, 2, . . . . (4.37)

A similar argument as [4] shows that v∗(x, t) = limk→∞v(x, t+kT), and v∗(x, t) is a nontrivial
nonnegative periodic solution of (1.1)-(1.2). Therefore, there exists k0 such that

u(x, t + kT) ≤ v∗(x, t) ≤ u∗(x, t), (4.38)

for any k ≥ k0 and (x, t) ∈ QT . Provided that the periods of v∗(x, t) and u∗(x, t) are taken into
account, for any ε > 0, there exists t0 depending on u0(x) and ε such that

u(x, t) ≤ u∗(x, t) + ε, for x ∈ Ω, t ≥ t0. (4.39)

By the similar way and Lemma 4.2, we can obtain

u∗(x, t) − ε ≤ u(x, t), for x ∈ Ω, t ≥ t0. (4.40)

Thus we complete the proof.
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Papers in Honor of Erich H. Röthe), pp. 1–29, Academic Press, New York, NY, USA, 1978.
[5] P. Hess, “On the asymptotically periodic Fisher equation,” in Progress in Partial Differential Equations:
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