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This paper introduces new dilated LMI conditions for continuous-time linear systems which
not only characterize stability and H2 performance specifications, but also, H∞ performance
specifications. These new conditions offer, in addition to new analysis tools, synthesis procedures
that have the advantages of keeping the controller parameters independent of the Lyapunov
matrix and offering supplementary degrees of freedom. The impact of such advantages is great
on the multiobjective full-order dynamic output feedback control problem as the obtained dilated
LMI conditions always encompass the standard ones. It follows that much less conservatism
is possible in comparison to the currently used standard LMI based synthesis procedures. A
numerical simulation, based on an empirically abridged search procedure, is presented and shows
the advantage of the proposed synthesis methods.

1. Introduction

The impact of linear matrix inequalities on the systems community has been so great that
it dramatically changed forever the usually utilized tools for analyzing and synthesizing
control systems. The standard LMI conditions benefited greatly from breakthrough advances
in convex optimization theory and offered new solutions to many analysis and synthesis
problems [1–3]. When necessary and sufficient LMI conditions are not possible, as it is
the case for the static output control [4, 5], the multi-objective control [6–8], or the robust
control [9–12] problems, sufficient conditions were provided, but were known to be overly
conservative. Some dilated versions of LMI conditions have first appeared in the literature
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in [13], wherein some robust dilated LMI conditions were proposed for some class of
matrices. Since then, a flurry of results has been proposed in both the continuous-time
[6, 7, 10, 14–17] and the discrete-time systems [5, 14, 18–20]. These conditions offer, though,
no particular advantages for monoobjective and precisely known systems, but were found
to greatly reduce conservatism in the multi-objective [6–8, 19] and the robust control
problems [9, 10, 14–16, 18, 19]. In this respect, an interesting extension for the utilization
of these dilated LMI conditions (as in, e.g., [21–23]) provided solutions to the problem
of robust root-clustering analysis in some nonconnected regions with respect to polytopic
and norm-bounded uncertainties. Generally, the main feature of these LMI conditions, in
their dilated versions, consists in the introduction of an instrumental variable giving a
suitable structure, from the synthesis viewpoint, in which the controller parameterization is
completely independent from the Lyapunov matrix. A particular difficulty though with these
proposed dilated versions in the continuous-time case is the absence of dilatedH∞ conditions
as it is visible in [6, 15].

This paper introduces new dilated LMIs conditions for the design of full-order
dynamic output feedback controllers in continuous-time linear systems, which not only
characterize stability and H2 performance specifications, but also, H∞ performance
specifications as well. Similarly to the existing dilated versions, these new dilated LMI
conditions carry the same properties wherein an instrumental variable is introduced giving
a suitable structure in which the controller parameterization is completely independent from
the Lyapunov matrix. In addition, scalar parameters are also introduced, within these dilated
LMI, to provide a supplementary degree of freedom whose impact is to further reduce, in
a significant way, the conservatism in sufficient standard LMI conditions. It is also shown,
in this paper, that the obtained dilated LMI conditions always encompass the standard
ones. As a result, the conservatism which results whenever the standard LMI conditions are
used is expected to considerably reduce in many cases. This paper focuses on the multi-
objective full-order dynamic output feedback controller design in continuous-time linear
systems for which the constraining necessity of using a single Lyapunov matrix to test all
the objectives and all the channels, which constitutes a major source of conservatism, is no
longer a necessity as a different Lyapunov matrix is separately searched for every objective
and for every channel. It is shown, in this paper, that despite constraining the instrumental
variable, the new dilated LMI conditions are, at worst, as good as the standard ones, and,
generally, much less conservative than the standard LMI conditions. The proposed solution
is quite interesting, despite an inevitable increase in the number of decision variables in
the involved LMIs and a multivariable search procedure that could be abridged through
empirical observations. A numerical simulation is presented and shows the advantage of
the proposed synthesis method.

2. Background

Consider the linear time-invariant continuous-time and input-free system

ẋ(t) = Ax(t) + Bw(t),

z(t) = Cx(t) +Dw(t),

(2.1)
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where the state vector x(t) ∈ Rn, the perturbation vector w(t) ∈ Rm, and the performance
vector z(t) ∈ Rp. All the matrices A, B, C, and D have appropriate dimensions. Let Hwz(s) =[
A B

C D

]
= C(sI −A)−1B + D be the system transfer matrix from input w to output z. The

following two lemmas are well known (see, e.g., [1, 3]) and provide necessary and sufficient
conditions for System (2.1) to be asymptotically stable under an H2 performance constraint
and a H∞ performance constraint, respectively. These standard results will be extensively
used in this paper.

Lemma 2.1. System (2.1) with D = 0 is asymptotically stable and ‖Hwz(s)‖22 < γH2 if and only if
there exist symmetric matrices XH2 ∈ Rn×n and W ∈ Rm×m such that

Trace(W) < γH2,[
XH2 B

∗ W

]
> 0,

[
Sym{AXH2} XH2C

T

∗ − I

]
< 0.

(2.2)

Lemma 2.2. System (2.1) is asymptotically stable and ‖Hwz(s)‖2∞ < γH∞ if and only if there exists
a symmetric matrixXH∞ > 0 in Rn×n such that

⎡
⎢⎢⎣
Sym{AXH∞} XH∞CT B

∗ −I D

∗ ∗ −γH∞I

⎤
⎥⎥⎦ < 0. (2.3)

3. Multiobjective Control Synthesis

Consider the continuous-time time-invariant linear system with input

ẋ = Ax + Bww + Buu,

z = Czx +Dzww +Dzuu,

y = Cyx +Dyww,

(3.1)

where the state vector x(t) ∈ Rn, the perturbation vector (t) ∈ Rm, the input command vector
u(t) ∈ Rq, the performance vector z(t) ∈ Rp, and the controlled output vector y(t) ∈ Rr , and
all the matricesA, Bw, Bu, Cz,Dzw,Dzu, Cy, andDyw have the appropriate dimensions. In the
dynamic output feedback case, the control law is given by the state equations

η̇ = Λη + Γy,

u = Φη.
(3.2)
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As this controller is supposed to be of a full order n, Λ ∈ Rn×n, Γ ∈ Rn×r , and Φ ∈ Rq×n. The
closed-loop system is then described by the augmented state equations

[
ẋ

η̇

]
= ACl

[
x

η

]
+ BClw,

z = CCl

[
x

η

]
+DClw,

(3.3)

where

ACl =

[
A BuΦ

ΓCy Λ

]
∈ R2n×2n

, BCl =

[
Bw

ΓDyw

]
∈ R2n×m,

CCl =
[
Cz DzuΦ

] ∈ Rp×2n, DCl = Dzw ∈ Rp×m.

(3.4)

The closed loop system transfer matrix from input w to output z then becomes

Hwz(s) =

[
ACl BCl

CCl DCl

]
=

⎡
⎢⎢⎣

A BuΦ Bw

ΓCy Λ ΓDyw

Cz DzuΦ Dzw

⎤
⎥⎥⎦. (3.5)

It is supposed that this system is of a multichannel type meaning that the perturbation vector
w is partitioned into a given number (say I) of block components,

w(t) =
[
wT

1 (t) | · · · | wT
i (t) | · · · | wT

I (t)
]T ∈ Rm; wi(t) ∈ Rmi ;

I∑
i=1

mi = m, (3.6)

and the performance vector z is partitioned into a given number (say J) of block components,

z(t) =
[
zT1 (t) | · · · | zTj (t) | · · · | zTJ (t)

]T ∈ Rp; zj(t) ∈ Rpj ;
J∑
j=1

pj = p. (3.7)

It is supposed that some performance specifications are defined with respect to a particular
channel ij (a path relating input component wi to output component zj) or a combination
of channels. It is also supposed that, for a given control law strategy, these performance
specifications can always be expressed in terms of an H2 and/or a H∞ transfer matrix norm
of the corresponding channel, namely, Hwizj (s) = EjHwz(s)Fi, where the matrices Ej and
Fi are set to select the desired input/output channel from the system closed-loop transfer
matrix Hwz(s). In fact, Ej is a J-block row matrix of dimension pj × p such that only the jth
block is nonzero and is the identity matrix in Rpj . Similarly, Fi is an I-block column vector of
dimensionm×mi such that only the ith block is nonzero and is the identity matrix in Rmi . The
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problem of the multi-objective controller synthesis is to construct a controller that stabilizes
the closed loop system and, simultaneously, achieves all the prescribed specifications. It is
easy to see that, for each channel ij, the closed loop transfer matrix is given by

Hwizj (s) = Ej

⎡
⎢⎢⎣

A BuΦ Bw

ΓCy Λ ΓDyw

Cz DzuΦ Dzw

⎤
⎥⎥⎦Fi =

⎡
⎢⎢⎣

A BuΦ BwFi

ΓCy Λ ΓDywFi

EjCz EjDzuΦ EjDzwFi

⎤
⎥⎥⎦. (3.8)

On the channel basis, the closed-loop system is then described by

[
ẋ

η̇

]
= ACl,ij

[
x

η

]
+ BCl,ijwi,

zj = CCl,ij

[
x

η

]
+DCl,ijwi,

(3.9)

where

ACl,ij = ACl =

[
A BuΦ

ΓCy Λ

]
∈ R2n×2n, BCl,ij = BClFi =

[
BwFi

ΓDywFi

]
∈ R2n×m,

CCl,ij = EjCCl =
[
EjCz EjDzuΦ

] ∈ Rp×2n, DCl,ij = EjDClFi = EjDzwFi ∈ Rp×m.

(3.10)

The dynamic output feedback synthesis multi-objective problem consists of looking for a
dynamic controller that stabilizes the closed loop system and, in the same time, achieves the
desired H2 and/or H∞ performance specifications for every single system channel. More
specifically, the dynamic output feedback synthesis multi-objective problem aims at making
System (3.1) possess the following propriety.

Propriety P

System (3.1) is stabilizable by a dynamic output feedback law (3.2) such that, for every
channel ij, either or both of the following two conditions hold:

(i) ‖Hwizj‖22 < γH2,ij with EjDzwFi = 0;

(ii) ‖Hwizj‖2∞ < γH∞,ij .

Theorem 3.1 (the standard sufficient conditions). If there exist symmetric matrices X1 ∈ Rn×n

and X−1 ∈ Rn×n, general matrices Λ1 ∈ Rn×n, Γ1 ∈ Rn×r , and Φ1 ∈ Rq×n and, for every channel ij,
there exists a symmetric matrix Wij ∈ Rm×m such that either or both of the following two conditions
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are satisfied:

(i) [StdH2]

Trace
(
Wij

)
< γH2,ij ,⎡

⎢⎢⎣
X−1 I X−1BwFi + Γ1DywFi

∗ X1 BwFi

∗ ∗ Wij

⎤
⎥⎥⎦ > 0,

⎡
⎢⎢⎣
Sym

{
X−1A + Γ1Cy

}
AT + Λ1 CT

zE
T
j

∗ Sym{AX1 + BuΦ1} X1C
T
zE

T
j + ΦT

1D
T
zuE

T
j

∗ ∗ −I

⎤
⎥⎥⎦ < 0;

(3.11)

(ii) [StdH∞]

[
X−1 I

I X1

]
> 0,

⎡
⎢⎢⎢⎢⎢⎣

Sym
{
X−1A + Γ1Cy

}
AT + Λ1 CT

zE
T
j X−1BwFi + Γ1DywFi

∗ Sym{AX1 + BuΦ1} X1C
T
zE

T
j + ΦT

1D
T
zuE

T
j BwFi

∗ ∗ −I EjDzwFi

∗ ∗ ∗ −γH∞,ij I

⎤
⎥⎥⎥⎥⎥⎦ < 0,

(3.12)

then, Propriety P holds, and furthermore, a set of the controller parameters defined in
(3.2) is given by

Λ = −X−1
−2X−1AX1X

−T
2 − ΓCyX1X

−T
2 −X−1

−2X−1BuΦ +X−1
−2Λ1X

−T
2 ,

Γ = X−1
−2Γ1,

Φ = Φ1X
−T
2 ,

(3.13)

where the nonsingular matrices X2 and X−2 are obtained via the equation

X1X−1 +X2X
T
−2 = I. (3.14)

Proof. If either or both of conditions [StdH2] and [StdH∞] are satisfied, letX =
[

X1 X2

XT
2 −XT

2 X−1X−T
−2

]

and let T =
[
X−1 I

XT
−2 0

]
be a nonsingular transformation matrix, with X2 and X−2 selected from
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(3.14) (among infinitelymany possibilities) via the singular value decomposition of I−X1X−1.
In view of (3.13) and (3.14), the following useful identities are easily derived:

TTXT =

[
X−1 I

I X1

]
,

TTAClXT =

[
X−1A + Γ1Cy Λ1

A AX1 + BuΦ1

]
,

TTBCl,ij = TTBClFi =

[
X−1BwFi + Γ1DywFi

BwFi

]
,

CCl,ijXT = EjCClXT =
[
EjCz EjCzX1 + EjDzuΦ1

]
.

(3.15)

As either or both of conditions [StdH2] and [StdH∞] are satisfied, by the congruence
lemma applied to each LMI and in view of the identities listed just above, either or both of
the following conditions are also satisfied, respectively,

(i)

[
T−T 0

0 I

]⎡⎢⎢⎣
X−1 I X−1BwFi + Γ1DywFi

I X1 BwFi

∗ Wij

⎤
⎥⎥⎦
[
T−1 0

0 I

]

=

[
T−T 0

0 I

][
TTXT TTBCl,ij

∗ Wij

][
T−1 0

0 I

]
=

[
X BCl,ij

∗ Wij

]
> 0,

[
T−T 0

0 I

]⎡⎢⎢⎣
Sym

{
X−1A + Γ1Cy

}
AT + Λ1 CT

zE
T
j

∗ Sym{AX1 + BuΦ1} X1C
T
zE

T
j + ΦT

1D
T
zuE

T
j

∗ −I

⎤
⎥⎥⎦
[
T−1 0

0 I

]

=

[
T−T 0

0 I

][
Sym

{
TTAClXT

}
TTXCT

Cl,ij

∗ −I

][
T−1 0

0 I

]
=

[
Sym{AClX} XCT

Cl,ij

∗ −I

]
< 0;

(3.16)
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(ii)

T−T
[
X−1 I

I X1

]
T−1 = X > 0; (3.17)

⎡
⎢⎣
T−T 0 0

0 I 0

0 0 I

⎤
⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

Sym
{
X−1A + Γ1Cy

}
AT + Λ1 CT

zE
T
j X−1BwFi + Γ1DywFi

∗ Sym{AX1 + BuΦ1} X1C
T
zE

T
j + ΦT

1D
T
zuE

T
j BwFi

∗ −I EjDzwFi

∗ ∗ −γH∞,ij I

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣
T−1 0 0

0 I 0

0 0 I

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
T−T 0 0

0 I 0

0 0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣
Sym

{
TTAClXT

}
TTXCT

Cl,ij TTBCl,ij

∗ −I DCl,ij

∗ ∗ −γH∞,ij I

⎤
⎥⎥⎦
⎡
⎢⎢⎣
T−1 0 0

0 I 0

0 0 I

⎤
⎥⎥⎦

=

⎡
⎢⎣
Sym{AClX} XCT

Cl,ij BCl,ij

∗ −I DCl,ij

∗ ∗ −γH∞,ij I

⎤
⎥⎦ < 0.

(3.18)

According to Lemmas 2.1 and 2.2, these are precisely the sufficient standard LMI conditions,
expressed on a channel basis, for Propriety P to hold.

Theorem 3.1 provides sufficient conditions for the existence of a single multi-objective
dynamic output controller in terms of LMI conditions in which common Lyapunov matrices
are enforced for convexity. This is known to produce, in general, overly conservative results.
The following theorem attempts at reducing the effect of this limitation.

Theorem 3.2 (the dilated sufficient conditions). If there exist general matrices M ∈ Rn×n, G1 ∈
Rn×n,G−1 ∈ Rn×n,Λ2, Γ2, andΦ2 and for every channel ij, for some scalars αH2,ij > 0 and αH∞,ij > 0,
there exist symmetric matrices Vij ∈ Rmi×mi , N1,H2,ij ∈ Rn×n, Y1,H2,ij ∈ Rn×n, N1,H∞,ij ∈ Rn×n,
Y1,H∞,ij ∈ Rn×n, general matrices N2,H2,ij ∈ Rn×n and N2,H∞,ij ∈ Rn×n such that either or both of the
following two conditions are satisfied:

(i) [DilH2]

Trace
(
Vij

)
< γH2,ij ,⎡

⎢⎣
N1,H2,ij N2,H2,ij GT

−1BwFi + Γ2DywFi

∗ Y1,H2,ij BwFi

∗ ∗ Vij

⎤
⎥⎦ > 0,
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αH2,ijSym
{
GT

−1A + Γ2Cy

}
αH2,ij

(
Λ2 +AT

)
αH2,ijC

T
zE

T
j

∗ αH2,ijSym{AG1 + BuΦ2} αH2,ij

(
GT

1C
T
zE

T
j + ΦT

2D
T
zuE

T
j

)
∗ ∗ −I
∗ ∗ ∗
∗ ∗ ∗

N1,H2,ij +GT
−1A + Γ2Cy − αH2,ijG−1 N2,H2,ij + Λ2 − αH2,ij I

NT
2,H2,ij +A − αH2,ij MT Y1,H2,ij +AG1 + BuΦ2 − αH2,ijG

T
1

EjCz EjCzG1 + EjDzuΦ2

−Sym{G−1} −I −M

∗ −Sym{G1}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0;

(3.19)

(ii) [DilH∞]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αH∞,ijSym
{
GT

−1A + Γ2Cy

}
αH∞,ij

(
Λ2 +AT

)
αH∞,ijC

T
zE

T
j

∗ αH∞,ijSym{AG1 + BuΦ2} αH∞,ij

(
GT

1C
T
zE

T
j + ΦT

2D
T
zuE

T
j

)
∗ ∗ −I
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

GT
−1BwFi + Γ2DywFi N1,H∞,ij +GT

−1A N2,H∞,ij + Λ2 − αH∞,ij I

+Γ2Cy − αH∞,ijG−1 Y1,H∞,ij +AG1

BwFi NT
2,H∞,ij +A − αH∞,ijM

T +BuΦ2 − αH∞,ijG
T
1

EjDzwFi EjCz EjCzG1 + EjDzuΦ2

−γH∞,ij I 0 0

∗ −Sym{G−1} −I −M

∗ ∗ −Sym{G1}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

(3.20)
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Then, Propriety P holds, and furthermore, a set of the controller parameters defined in (3.2)
is given by

Λ = −G−T
−3G

T
−1AG1G

−1
3 −G−T

−3G
T
−1BuΦ − ΓCyG1G

−1
3 +G−T

−3Λ2G
−1
3 ,

Γ = G−T
−3Γ2,

Φ = Φ2G
−1
3 ,

(3.21)

where the nonsingular matrices G3 and G−3 are obtained via the equation

M = GT
−1G1 +GT

−3G3. (3.22)

Proof. If either or both of conditions [DilH2] and [DilH∞] are satisfied, let G =[
G1 (I−G1G−1)G−1

−3

G3 −G3G−1G−1
−3

]
and let T =

[
G−1 I

G−3 0

]
be a nonsingular transformation matrix with G3

and G−3 selected from (3.22) (among infinitely many possibilities) via the singular value
decomposition of M − GT

−1G1. In view of (3.21) and (3.22), the following useful identities
are easily derived:

TTGT =

[
GT

−1 M

I G1

]
,

TTAClGT =

[
GT

−1A + Γ2Cy Λ2

A AG1 + BuΦ2

]
,

TTBCl,ij = TTBClFi =

[
GT

−1A + Γ2Cy Λ2

A AG1 + BuΦ2

]
,

CCl,ijGT = EjCClGT =
[
EjCz EjCzX1 + EjDzuΦ2

]
.

(3.23)

On the other hand, let us introduce

YH2,ij = T−T
[
N1,H2,ij N2,H2,ij

∗ Y1,H2,ij

]
T−1, YH∞,ij = T−T

[
N1,H∞,ij N2,H∞,ij

∗ Y1,H∞,ij

]
T−1. (3.24)

As either or both of conditions [DilH2] and [DilH∞] are satisfied, by the congruence
Lemma applied to each LMI and in view of the identities listed just above, either or both of
the following conditions are also satisfied, respectively.
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(i)

[
T−T 0

0 I

]⎡⎢⎢⎣
N1,H2,ij N2,H2,ij GT

−1BwFi + Γ2DywFi

∗ Y1,H2,ij BwFi

∗ Vij

⎤
⎥⎥⎦
[
T−1 0

0 I

]

=

[
T−T 0

0 I

][
TTYH2,ijT TTBCl,ij

∗ Vij

][
T−1 0

0 I

]
=

[
YH2,ij BCl,ij

∗ Vij

]
> 0,

⎡
⎢⎢⎣
T−T 0 0

0 I 0

0 0 T−T

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αH2,ijSym
{
GT

−1A + Γ2Cy

}
αH2,ij

(
Λ2 +AT

)
αH2,ijC

T
zE

T
j

∗ αH2,ijSym{AG1 + BuΦ2} αH2,ij

(
GT

1C
T
zE

T
j + ΦT

2D
T
zuE

T
j

)
∗ ∗ −I
∗ ∗ ∗
∗ ∗ ∗

N1,H2,ij +GT
−1A + Γ2Cy − αH2,ijG−1 N2,H2,ij + Λ2 − αH2,ij I

NT
2,H2,ij +A − αH2,ijM

T Y1,H2,ij +AG1 + BuΦ2 − αH2,ijG
T
1

EjCz EjCzG1 + EjDzuΦ2

−Sym{G−1} −I −M

∗ −Sym{G1}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣
T−1 0 0

0 I 0

0 0 T−1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
T−T 0 0

0 I 0

0 0 T−T

⎤
⎥⎥⎦
⎡
⎢⎢⎣
αH2,ijSym

{
TTAClGT

}
αH2,ijT

TGTCT
Cl,ij TT

(
YH2,ij +AClG − αH2,ijG

T
)
T

0 −I CCl,ijGT

0 0 −TTSym{G}T

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣
T−1 0 0

0 I 0

0 0 T−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
αH2,ijSym{AClG} αH2,ijG

TCT
Cl,ij

(
YH2,ij +AClG − αH2,ijG

T
)

0 −I CCl,ijG

0 0 −Sym{G}

⎤
⎥⎥⎦ < 0;

(3.25)
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(ii)

⎡
⎢⎢⎢⎢⎣
T−T 0 0 0

0 I 0 0

0 0 I 0

0 0 0 T−T

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αH∞,ijSym
{
GT

−1A + Γ2Cy

}
αH∞,ij

(
Λ2 +AT

)
αH∞,ijC

T
zE

T
j

∗ αH∞,ijSym{AG1 + BuΦ2} αH∞,ij

(
GT

1C
T
zE

T
j + ΦT

2D
T
zuE

T
j

)
∗ ∗ −I
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

GT
−1BwFi+Γ2DywFi N1,H∞,ij+GT

−1A+Γ2Cy − αH∞,ijG−1 N2,H∞,ij+Λ2 − αH∞,ij I

BwFi

NT
2,H∞,ij+A − αH∞,ij MT Y1,H∞,ij+AG1 + BuΦ2−αH∞,ijG

T
1

EjDzwFi EjCz EjCzG1+EjDzuΦ2

−γH∞,ij I 0 0

∗ −Sym{G−1} −I−M

∗ ∗ −Sym{G1}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣
T−1 0 0 0
0 I 0 0
0 0 I 0

0 0 0 T−1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
T−T 0 0 0
0 I 0 0

0 0 I 0
0 0 0 T−T

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

αH∞,ijT
TSym{AClG}T αH∞,ijT

TGTCT
Cl,ij TTBCl,ij TT

(
YH∞,ij +AClG − αH∞,ijG

T
)
T

∗ −I DCl,ij CCl,ijGT

∗ ∗ −γH∞,ij I 0

∗ ∗ ∗ −TTSym{G}T

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣
T−1 0 0 0
0 I 0 0
0 0 I 0

0 0 0 T−1

⎤
⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎣

αH∞,ijSym{AClG} αH∞,ijG
TCT

Cl,ij BCl,ij YH∞,ij +AClG − αH∞,ijG
T

ef22∗ −I DCl,ij CCl,ijG

∗ ∗ −γH∞,ij I 0

∗ ∗ ∗ −Sym{G}

⎤
⎥⎥⎥⎥⎥⎦<0.

(3.26)

To summarize, we have proven that if either or both conditions [DilH2] and [DilH∞]
are satisfied, then either or both of the following conditions are also satisfied:

(i)

Trace
(
Vij

)
< γH2,ij ,

[
YH2,ij BCl,ij

∗ Vij

]
> 0,

⎡
⎢⎢⎣
αH2,ijSym{AClG} αH2,ijG

TCT
Cl,ij

(
YH2,ij +AClG − αH2,ijG

T
)

0 −I CCl,ijG

0 0 −Sym{G}

⎤
⎥⎥⎦ < 0;

(3.27)

(ii)

⎡
⎢⎢⎢⎢⎢⎣

αH∞,ijSym{AClG} αH∞,ijG
TCT

Cl,ij BCl,ij YH∞,ij +AClG − αH∞,ijG
T

∗ −I DCl,ij CCl,ijG

∗ ∗ −γH∞,ij I 0

∗ ∗ ∗ −Sym{G}

⎤
⎥⎥⎥⎥⎥⎦ < 0. (3.28)

The third LMI of the first item condition is equivalent to

⎡
⎢⎢⎣
0 0 YH2,ij

∗ − I 0

∗ ∗ 0

⎤
⎥⎥⎦ + Sym

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

ACl

CCl,ij

−I

⎤
⎥⎥⎦G[

αH2,ij I 0 I
]
⎫⎪⎪⎬
⎪⎪⎭ < 0 (3.29)
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which, according to the elimination lemma [3], leads to

[
I 0 ACl

0 I CCl,ij

]⎡⎢⎢⎣
0 0 YH2,ij

∗ − I 0

∗ ∗ 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

I 0

0 I

AT
Cl CT

Cl,ij

⎤
⎥⎥⎦ < 0,

[
I 0 −αH2,ij I

0 I 0

]⎡⎢⎢⎣
0 0 YH2,ij

∗ − I 0

∗ ∗ 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

I 0

0 I

−αH2,ij I 0

⎤
⎥⎥⎦ < 0.

(3.30)

The two previous LMIs are equivalent to
[
Sym{AClYH2,ij} YH2,ijC

T
Cl,ij

∗ − I

]
< 0 and[ −2αH2,ijYH2,ij 0

∗ − I

]
< 0, that is, for any αH2,ij > 0, YH2,ij > 0.

Similarly, the LMI of the second item condition is equivalent to

⎡
⎢⎢⎢⎢⎢⎣

0 0 BCl,ij YH∞,ij

∗ −I DCl,ij 0

∗ ∗ −γH∞,ij I 0

∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎦ + Sym

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

ACl

CCl,ij

0

−I

⎤
⎥⎥⎥⎥⎥⎦G

[
αH∞,ij I 0 0 I

]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

< 0. (3.31)

According to the Elimination lemma, this leads to

⎡
⎢⎢⎣
I 0 0 ACl

0 I 0 CCl,ij

0 0 I 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 0 BCl,ij YH∞,ij

∗ −I DCl,ij 0

∗ ∗ −γH∞,ij I 0

∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

I 0 0

0 I 0

0 0 I

AT
Cl CT

Cl,ij 0

⎤
⎥⎥⎥⎥⎥⎦ < 0,

⎡
⎢⎢⎣
I 0 0 −αH∞,ij I

0 I 0 0

0 0 I 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 0 BCl,ij YH∞,ij

∗ −I DCl,ij 0

∗ ∗ −γH∞,ij I 0

∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

I 0 0

0 I 0

0 0 I

−αH∞,ij I 0 0

⎤
⎥⎥⎥⎥⎥⎦ < 0.

(3.32)

The previous two matrix inequalities are equivalent to

⎡
⎢⎢⎣
Sym

{
AClYH∞,ij

}
YH∞,ijC

T
Cl,ij BCl,ij

∗ −I DCl,ij

∗ ∗ −γH∞,ij I

⎤
⎥⎥⎦ < 0,

⎡
⎢⎢⎣
−2αH∞,ij YH∞,ij 0 BCl,ij

∗ −I DCl,ij

∗ ∗ −γH∞,ij I

⎤
⎥⎥⎦ < 0.

(3.33)
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Table 1: Simulation results, withGC(s) representing the LMI produced full-order dynamic output feedback
controller.

Problem
Synthesis method

Standard/controller Dilated/controller

H2 and H∞

(γH2 ,γH∞)=(292.27,194.67)

GC(s)=
−16.4s2 − 96.7s − 67.1

s3 + 12.3s2 + 50.7s + 73.1

Two-dimensional search procedure
(γH2, γH∞) = (171.7, 149.9) with
αH∞ = 6 and αH2 = 11

GC(s) =
−15.4s2 − 80.2s − 6.2

s3 + 11.2s2 + 40s + 46.8

One-dimensional search procedure
(γH2, γH∞) = (199.71, 147.56)
with α = αH∞ = αH2 = 4

GC(s) =
−17s2 − 91.5s − 23.1
s3 + 11.8s2 + 44s + 51

Decision variable number = 30 Decision variable number = 87

Via the Schur lemma, the latter inequality is equivalent to YH∞,ij > 0 and

[−I DCl,ij

∗ −γH∞,ij I

]
+
α−1
H∞,ij

2
×
⎡
⎣ 0

BT
Cl,ij

⎤
⎦Y−1

H∞,ij

[
0 BCl,ij

]
< 0. (3.34)

Clearly, as
[ −I DCl,ij

∗ −γH∞,ij I

]
< 0, there always exists a sufficiently large αH∞,ij > 0 which

satisfies this LMI. According to Lemmas 2.1 and 2.2, these are precisely the sufficient standard
LMI conditions, expressed on a channel basis, for Propriety P to hold.

Theorem 3.2 also provides sufficient conditions for the existence of a single multi-
objective dynamic output controller in terms of LMI conditions in which the constraint of a
common Lyapunov matrix is no longer needed. Convexity is rather insured by constraining
the instrumental variables G to be common. This is known to produce, in general, less
conservative results than those obtained with the standard conditions of Theorem 3.1.
Reducing further this conservatism is also possible through the positive scalar parameters
αH2,ij and αH∞,ij . A simple multidimensional search procedure can be carried out in the
space of these parameters in order to obtain the values of these parameters for which
LMI (3.19) and/or LMI (3.20) are feasible and produce the best multi-objective dynamic
output controller with optimal performance levels. This multidimensional search procedure
can, however, be overly expensive if the number of channel gets larger. A solution to this
rather annoying limitation will be proposed in the next section. Yet, the important results of
Theorem 3.2 constitute a significant contribution to the multi-objective control problem.

Next, the important question onwhether or not the standard conditions could possibly
be recovered by the dilated conditions will be addressed in the following section.
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4. Recovery Condition

In the following theorem, it will be shown that our proposed dilated LMI conditions for
the design of multiobjective full-order dynamic output feedback controllers do indeed
encompass the standard conditions. This situation will be of great importance, as it will
guarantee that conservatism will be almost always reduced. Similar results do exist in the
literature in both the discrete-time [19] and the continuous-time case [6, 7]. The continuous-
time results were, however, strictly concerned with the multi-channel H2 synthesis problem
and only in [7] that the recovery of the standard approach is proven. In view of this, the
following theorem extends the discrete-time results to the continuous-time case. This point
constitutes the major contribution of this paper.

Theorem 4.1. For, the multi-objective dynamic output feedback synthesis problem, if the standard
LMI conditions of Theorem 3.1 are satisfied and achieve, with a given controller, the upper bounds
γSH2,ij and γ

S
H∞,ij , then the dilated inequality conditions of Theorem 3.2 are also satisfied with the same

controller and with the upper bounds γDH2,ij ≤ γSH2,ij and γDH∞,ij ≤ γSH∞,ij .

Proof. If the standard LMI conditions of Theorem 3.1 are satisfied for a given controller and
achieve, for every channel, the upper bounds γSH2,ij and γSH∞,ij , then there exist symmetric
matrices X and Wij such that

Trace
(
Wij

)
< γSH2,ij ,

[
X BCl,ij

∗ Wij

]
> 0,

[
Sym{AClX} XCT

Cl,ij

∗ − I

]
< 0

(4.1)

and/or

X > 0,

⎡
⎢⎢⎣
Sym{AClX} XCT

Cl,ij BCl,ij

∗ −I DCl,ij

∗ ∗ −γSH∞,ij I

⎤
⎥⎥⎦ < 0.

(4.2)

Let us prove that these standard LMI conditions imply that the dilated inequality conditions
of Theorem 3.2 are also satisfied with the same controller. When expressed in terms of



Journal of Inequalities and Applications 17

the system closed-loop parameters, the right-hand sides of the dilated LMI conditions of
Theorem 3.2 take the following form:

Trace
(
Vij

)
,[

YH2,ij BCl,ij

∗ Vij

]
,

⎡
⎢⎢⎣
αH2,ijSym{AClG} αH2,ijG

TCT
Cl,ij YH2,ij +AClG − αH2,ijG

T

∗ − I CCl,ijG

∗ ∗ −Sym{G}

⎤
⎥⎥⎦

(4.3)

and/or

⎡
⎢⎢⎢⎢⎢⎣

αH∞,ijSym{AClG} αH∞,ijG
TCT

Cl,ij BCl,ij YH∞,ij +AClG − αH∞,ijG
T

∗ −I DCl,ij CCl,ijG

∗ ∗ −γH∞,ij I 0

∗ ∗ ∗ −Sym{G}

⎤
⎥⎥⎥⎥⎥⎦. (4.4)

Let, in these matrices, YH2,ij = YH∞,ij = X, Vij = Wij , αH2,ij = αH∞,ij = α, γDH2,ij = γSH2,ij ,

γDH∞,ij = γSH∞,ij and G = α−1X, these right-hand sides become

Trace
(
Wij

)
,[

X BCl,ij

∗ Wij

]
,

⎡
⎢⎢⎣
Sym{AClX} XCT

Cl,ij α−1AClX

∗ − I α−1CCl,ijX

∗ ∗ −2α−1X

⎤
⎥⎥⎦.

(4.5)

and/or

⎡
⎢⎢⎢⎢⎢⎣

Sym{AClX} XCT
Cl,ij BCl,ij α−1AClX

∗ −I DCl,ij α−1CCl,ijX

∗ ∗ −γSH∞,ij I 0

∗ ∗ ∗ −2α−1X

⎤
⎥⎥⎥⎥⎥⎦. (4.6)
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Let us prove, for these four matrices above, that the second matrix is positive definite
while the third and/or the fourth matrices are both negative definite. Clearly, the standard
conditions imply that

Trace
(
Wij

)
< γSH2,ij ,

[
X BClFi

∗ Wij

]
> 0. (4.7)

By virtue of the Schur complement lemma, the third matrix and/or the fourth matrix
will be negative definite if and only if X > 0,

[
Sym{AClX} XCT

ClE
T
j

∗ − I

]
+
α−1

2
×
[

ACl

EjCCl

]
X

[
ACl

EjCCl

]T

< 0, (4.8)

and/or

⎡
⎢⎢⎣
Sym{AClX} XCT

ClE
T
j BClFi

∗ −I EjDClFi

∗ ∗ −γSH∞,ij I

⎤
⎥⎥⎦ +

α−1

2
×

⎡
⎢⎢⎣

ACl

EjCCl

0

⎤
⎥⎥⎦X

⎡
⎢⎢⎣

ACl

EjCCl

0

⎤
⎥⎥⎦

T

< 0. (4.9)

As, from the standard H2 and H∞ conditions,

[
Sym{AClX} XCT

ClE
T
j

∗ − I

]
< 0,

⎡
⎢⎢⎣
Sym{AClX} XCT

ClE
T
j BClFi

∗ −I EjDClFi

∗ ∗ −γSH∞,ij I

⎤
⎥⎥⎦ < 0, (4.10)

there always exists an α > 0 which achieves, simultaneously, these two conditions. As a result,
the dilated inequality conditions of Theorem 3.2 are also satisfied. This proves that the dilated
LMI multi-objective conditions always encompass the standard ones. Clearly, this means that
the dilated-based approach yields upper bounds that are always γDH2,ij ≤ γSH2,ij and γDH∞,ij ≤
γSH∞,ij .

Theorem 4.1 has proven that the dilated LMI conditions of Theorem 3.2 do indeed
encompass the standard ones of Theorem 3.1. Themultidimensional search procedure carried
out in the space of the scalars �αH2,ij , αH∞,ij� being exhaustive, up to a given discretization
step that could be made as small as needed, does indeed cover every region, and in particular,
the region where the standard conditions are recovered and which is defined by α = αH2,ij =
αH∞,ij , where α is greater than a minimum value αmin defined by the two LMIs just in the
proof above. In practice, the value of αmin can be easily computed through a simple one
dimensional line search procedure over these two LMIs.

On the other hand, at the light of the results of Theorem 3.2, a controller which achieves
the best global performance level can be obtained through the minimization of the global
objective function

∑
i,j γH∞,ij + γH2,ij . Under this setting, it appears that optimality is always

achieved very close to where all the αH2,ij and all the αH∞,ij coincide. This purely empirical
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rule, observed with many examples we have tried, fits nicely to where the recovery of the
standard conditions can be proved. In order to achieve optimality, it is then reasonable to
abridge the costly multi-dimensional search procedure to a much cheaper one-dimensional
search in the line αH2,ij = αH∞,ij = α for all channels. In this way, this proposed simple
line search procedure not only provides a near optimal solution, but achieves the recovery
condition which guarantees that this solution is, at least, as good as the one provided by the
standard conditions.

5. An Example

Consider the LTI unstable third-order plant

⎡
⎢⎢⎣
ẋ1

ẋ2

ẋ3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 10 2

−1 1 0

0 2 −5

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
1

0

1

⎤
⎥⎥⎦w +

⎡
⎢⎢⎣
0

1

0

⎤
⎥⎥⎦u,

[
z1

z2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

u

x2

x3

u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
u,

y =
[
0 1 0

]
⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ + 2w.

(5.1)

The system is supposed to be consisting of two channels. Channel 1 connects the perturbation
vectorw to the performance component z1, while Channel 2 connects the perturbation vector
w to the performance component z2. The objective here is to find a stabilizing full-order
(i.e., a third order) dynamic output feedback controller which achieves simultaneously and
optimally the performance specifications ‖Hwz2‖22 < γH2 and ‖Hwz1‖2∞ < γH∞, relatively to
Channel 2 and Channel 1, respectively. Optimality is here defined as the minimization of
γH2+γH∞, giving equal importance to the two channels. The use of the dilated LMI conditions
can be carried out through a search procedure in the plane �αH2, αH∞�. Figure 1 is a three-
dimensional plot which depicts the waveform of γH2 + γH∞ in that plane. This figure clearly
shows that optimality is achieved close to the direction where αH2 = αH∞ = α. In this
example, it is found that the minimum value of α which guarantees recovery is αmin = 680.
The abridged search procedure along the line αH2 = αH∞ = α produced a near optimal global
performance of γH2 = 199.71 and γH∞ = 147.56 when α = αH2 = αH∞ = 4. Clearly, in this
example, improvement is being made in the region below αmin = 680 where recovery is not
necessarily there. Table 1 lists the simulation results obtainedwith the sufficient standard LMI
conditions of Theorem 3.1 and with the sufficient dilated LMI conditions of Theorem 3.2.

The advantage of using the dilated rather than the standard LMI conditions is quite
visible with this example. Indeed, around a 30% improvement onH2 and a 25% improvement
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Figure 1: 3D-plot of the waveform γH2 + γH∞ in the plane �αH2, αH∞�.

on H∞ performance levels were possible. However, this improvement comes at the expense
of almost tripling the number of decision variables involved in the proposed dilated LMI
conditions (see Table 1).

6. Conclusion

This paper has presented new dilated LMI conditions for the design of multiobjective full-
order dynamic output controllers in continuous-time systems that are able to cope not only
with stability analysis and H2 performance specifications, but also, with H∞ performance
specifications as well. The paper developed new controller synthesis procedures which offer
no particular advantage for precisely knownmonoobjective systems, but significantly reduce
conservatism in the multi-objective control problem, as the main property of these new
dilated LMI conditions, besides the fact thatthey allow a complete independence between
the standard Lyapunov matrix and the controller parametersis that they always encompass
the standard ones. A numerical simulation is presented which supports these claims. The
extension of these results to other control issues such as the robust controller, model
predictive controller, and filter design problems is rather straightforward and yet very useful.
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