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A number of problems in Economics, Finance, Information Theory, Insurance, and generally in
decision making under uncertainty rely on estimates of the covariance between (transformed)
random variables, which can, for example, be losses, risks, incomes, financial returns, and so forth.
Several avenues relying on inequalities for analyzing the covariance are available in the literature,
bearing the names of Chebyshev, Grüss, Hoeffding, Kantorovich, and others. In the present paper
we sharpen the upper bound of a Grüss-type covariance inequality by incorporating a notion of
quadrant dependence between random variables and also utilizing the idea of constraining the
means of the random variables.

1. Introduction

Analyzing and estimating covariances between random variables is an important and
interesting problem with manifold applications to Economics, Finance, Actuarial Science,
Engineering, Statistics, and other areas (see, e.g., Egozcue et al. [1], Furman and Zitikis
[2–5], Zitikis [6], and references therein). Well-known covariance inequalities include those
of Chebyshev and Grüss (see, e.g., Dragomir [7] and references therein). There are many
interesting applications of Grüss’s inequality in areas such as Computer Science, Engineering,
and Information Theory. In particular, the inequality has been actively investigated in the
context of Guessing Theory, and we refer to Dragomir and Agarwal [8], Dragomir and
Diamond [9], Izumino and Pečarić [10], Izumino et al. [11], and references therein.
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Motivated by an open problem posed by Zitikis [6] concerning Grüss’s bound in the
context of dependent random variables, in the present paper we offer a tighter Grüss-type
bound for the covariance of two transformed random variables by incorporating a notion of
quadrant dependence and also utilizing the idea of constraining the means of the random
variables. To see how this problem arises in the context of insurance and financial pricing, we
next present an illustrative example. For further details and references on the topic, we refer
to Furman and Zitikis [2–5].

Let X be an insurance or financial risk, which from the mathematical point of view
is just a random variable. In this context, the expectation E[X] is called the net premium.
The insurer, wishing to remain solvent, naturally charges a premium larger than E[X]. As
demonstrated by Furman and Zitikis [2, 4], many insurance premiums can be written in the
form

πw[X] =
E[Xw(X)]
E[w(X)]

, (1.1)

where w is a nonnegative function, called the weight function, and so πw[X] is called the
weighted premium. It is well known (Lehmann [12]) that if the weight function w is non-
decreasing, then the inequality πw[X] ≥ E[X] holds, which is called the nonnegative loading
property in insurance. (Note that when w(x) ≡ 1, then πw[X] = E[X].) The weighted
premium πw[X] can be written as follows:

πw[X] = E[X] +
Cov[X,w(X)]

E[w(X)]
, (1.2)

with the ratio on the right-hand side known as the loading. The loading is a nonnegative
quantity because the weight function w is non-decreasing. We want to know the magnitude
of the loading, given what we might know or guess about the weight function w and
the random variable X. Solving this problem naturally leads to bounding the covariance
Cov[X,w(X)].

More generally, as noted by Furman and Zitikis [2, 4], we may wish to work with the
(doubly) weighted premium

πv,w[X] =
E[v(X)w(X)]

E[w(X)]
. (1.3)

The latter premium leads to the covariance Cov[v(X), w(X)]. Finally, in the more general
context of capital allocations, the weighted premiums are extended into weighted capital
allocations (Furman and Zitikis [3–5]), which are

πv,w[X,Y ] =
E[v(X)w(Y )]

E[w(Y )]

= E[v(X)] +
Cov[v(X), w(Y )]

E[w(Y )]
,

(1.4)

where the random variable Y can be viewed, for example, as the return on an entire portfolio
and X as the return on an asset in the portfolio. In Economics, E[v(X)] is known as the



Journal of Inequalities and Applications 3

expected utility, or the expected valuation, depending on a context. The ‘loading’ ratio on
the right-hand side of (1.4) can be negative, zero, or positive, depending on the dependence
structure between the random variables X and Y , and also depending on the monotonicity
of functions v and w. Our research in this paper is devoted to understanding the covariance
Cov[v(X), w(Y )] and especially its magnitude, depending on the information that might be
available to the researcher and/or decision maker.

The rest of the paper is organized as follows. In Section 2 we discuss a number of
known results, which we call propositions throughout the section. Those propositions lead
naturally to our main result, which is formulated in Section 3 as Theorem 3.1. In Section 4
we give an illustrative example that demonstrates the sharpness of the newly established
Grüss-type bound.

2. A Discussion of Known Results

Grüss [13] proved that if two functions v and w satisfy bounds a ≤ v(x) ≤ A and b ≤ w(x) ≤
B for all x ∈ [x1, x2], then

∣
∣
∣
∣
∣

1
x2 − x1

∫x2

x1

v(x)w(x)dx − 1

(x2 − x1)2

∫x2

x1

v(x)dx
∫x2

x1

w(x)dx

∣
∣
∣
∣
∣
≤ 1

4
(A − a)(B − b). (2.1)

This is known in the literature as the Grüss bound. If X denotes a uniformly distributed
random variable with the support [x1, x2], then statement (2.1) can be rewritten as

|Cov[v(X), w(X)]| ≤ 1
4
(A − a)(B − b). (2.2)

This is a covariance bound. If we replace v(X) andw(X) by two general random variables X
and Y with supports [a,A] and [b, B], respectively, then from (2.2) we obtain the following
covariance bound (Dragomir [14, 15]; also Zitikis [6]):

|Cov[X,Y ]| ≤ 1
4
(A − a)(B − b). (2.3)

We emphasize that the random variables X and Y in (2.3) are not necessary uniformly
distributed. They are general random variables, except that we assume X ∈ [a,A] and
Y ∈ [b, B], and no dependence structure between X and Y is assumed.

There are many results sharpening Grüss’s bound under various bits of additional
information (see, e.g., Dragomir [14, 15], and references therein). For example, Anastassiou
and Papanicolaou [16] have established the following bound.

Proposition 2.1. Let X ∈ [a,A] and Y ∈ [b, B] be two random variables with joint density function
h, assuming that it exists, and denote the (marginal) densities of X and Y by f and g, respectively.
Then

|Cov[X,Y ]| ≤
∫B

b

∫A

a

∣
∣h
(

x, y
) − f(x)g

(

y
)∣
∣dx dy

4
(A − a)(B − b). (2.4)



4 Journal of Inequalities and Applications

Approaching the problem from a different angle, Zitikis [6] has sharpened Grüss’s
bound by including restrictions on the means of the random variables X and Y , as stated in
the next proposition.

Proposition 2.2. Let X ∈ [a,A] and Y ∈ [b, B] be two random variables. Furthermore, let
[μa, μA] ⊆ [a,A] and [μb, μB] ⊆ [b, B] be intervals such that E[X] ∈ [μa, μA] and E[Y ] ∈ [μb, μB].
Then

|Cov[X,Y ]| ≤ (1 − A)(1 − B)
4

(A − a)(B − b), (2.5)

where A and B are “information coefficients” defined by

A = 1 − 2
A − a

sup
x∈[μa,μA]

√

(A − x)(x − a),

B = 1 − 2
B − b

sup
y∈[μb,μB]

√
(

B − y
)(

y − b
)

.

(2.6)

When there is no “useful information,” then the two information coefficients A and B

are equal to 0 by definition (Zitikis [6]), and thus bound (2.5) reduces to the classical Grüss
bound.

Mitrinović et al. [17] have in detail discussed Chebyshev’s integral inequality,
formulated next as a proposition, which gives an insight into Grüss’s inequality and
especially into the sign of the covariance Cov[X,Y ].

Proposition 2.3. Let v, w, and f be real functions defined on [x1, x2], and let f be nonnegative and
integrable. If the functions v and w are both increasing, or both decreasing, then

∫x2

x1

f(x)dx ×
∫x2

x1

v(x)w(x)f(x)dx ≥
∫x2

x1

v(x)f(x)dx ×
∫x2

x1

w(x)f(x)dx. (2.7)

If, however, one of the two functions v and w is increasing and the other one is decreasing, then
inequality (2.7) is reversed.

With an appropriately defined random variable X (see a note following Grüss’s
inequality (2.1) above), Chebyshev’s integral inequality (2.7) can be rewritten in the
following form:

Cov[v(X), w(X)] ≥ 0. (2.8)

Aswewill see in a moment, inequality (2.8) is also implied by the notion of positive quadrant
dependence (Lehmann [12]). For details on economic applications of Chebyshev’s integral
inequality (2.8), we refer to Athey [18], Wagener [19], and references therein.
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There have been many attempts to express the covariance Cov[X,Y ] in terms of the
cumulative distribution functions of the random variables X and Y . Among them is a result
by Hoeffding [20], who proved that

Cov[X,Y ] =
∫∫

[

H
(

x, y
) − F(x)G

(

y
)]

dx dy, (2.9)

where H is the joint cumulative distribution function of (X,Y ), and F and G are the
(marginal) cumulative distribution functions of X and Y , respectively. Mardia [21], Mardia
and Thompson [22] extended Hoeffding’s result by showing that

Cov[Xr, Ys] =
∫∫

[

H
(

x, y
) − F(x)G

(

y
)]

rxr−1sys−1dx dy. (2.10)

For further extensions of these results, we refer to Sen [23] and Lehmann [12]. Cuadras [24]
has generalized these works by establishing the following result.

Proposition 2.4. Let v and w be any real functions of bounded variation and defined, respectively,
on the intervals [a,A] and [b, B] of the extended real line [−∞,∞]. Furthermore, let X ∈ [a,A] and
Y ∈ [b, B] be any random variables such that the expectations E[v(X)], E[w(Y )], and E[v(X)w(Y )]
are finite. Then

Cov[v(X), w(Y )] =
∫

(b,B]

∫

(a,A]

[

H
(

x, y
) − F(x)G

(

y
)]

dv(x)dw
(

y
)

. (2.11)

Equation (2.11) plays a crucial role in establishing our main result, which is
Theorem 3.1 in the next section. To facilitate easier intuitive understanding of that section,
we note that the function

C
(

x, y
)

= H
(

x, y
) − F(x)G

(

y
)

, (2.12)

which is the integrand on the right-hand side of (2.11), governs the dependence structure
between the random variables X and Y . For example, when C(x, y) = 0 for all x and y,
then the random variables are independent. Hence, departure of C(x, y) from 0 serves a
measure of dependence between X and Y . Depending on which side (positive or negative)
the departure from 0 takes place, we have positive or negative dependence between the two
random variables. Specifically, when C(x, y) ≥ 0 for all x and y, then X and Y are called
positively quadrant dependent, and when C(x, y) ≤ 0 for all x and y, then the random
variables are negatively quadrant dependent. For applications of these notions of dependence
and also for further references, we refer to the monographs by Balakrishnan and Lai [25],
Denuit et al. [26].
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3. A New Grüss-Type Bound

We start this section with a bound that plays a fundamental role in our subsequent
considerations. Namely, for all x, y ∈ R, we have that

∣
∣C

(

x, y
)∣
∣ ≤ 1

4
(3.1)

irrespectively of the dependence structure between the random variables X and Y . Bound
(3.1) can be verified as follows. First, for any event A, the probability P[A] is the expectation
E[1{A}] of the indicator 1{A}, which is a random variable taking on the value 1 if the eventA
happens, and 0 otherwise. Hence,C(x, y) is equal to the covarianceCov[1{X ≤ x}, 1{Y ≤ y}].
Next we use the Cauchy-Schwarz inequality to estimate the latter covariance and thus obtain
that

∣
∣C

(

x, y
)∣
∣ ≤

√

Var[1{X ≤ x}]Var[1{Y ≤ y
}]

. (3.2)

Since 1{X ≤ x} is a binary random variable taking on the two values 1 and 0 with the
probabilities P[X ≤ x] and P[X > x], respectively, the variance Var[1{X ≤ x}] is equal to
the product of the probabilities P[X ≤ x] and P[X > x]. The product does not exceed 1/4.
Likewise, the variance Var[1{Y ≤ y}] does not exceed 1/4. From bound (3.2) we thus have
bound (3.1).

To see how bound (3.1) is related to Grüss’s bound, we apply it on the right-hand side
of (2.11). We also assume that the functions v and w are right-continuous and monotonic.
Note that, without loss of generality in our context, the latter monotonicity assumption can
be replaced by the assumption that the two functions v andw are non-decreasing. Hence, we
have the bound

|Cov[v(X), w(Y )]| ≤ 1
4
[v(A) − v(a)][w(B) −w(b)], (3.3)

which is Grüss’s bound written in a somewhat different form than that in (2.2).
The following theorem sharpens the upper bound of Grüss’s covariance inequality

(3.3) by utilizing the notion of quadrant dependence (cf. Lehmann [12]) and incorporating
constrains on the means of random variables X and Y (cf. Zitikis [6]).

Theorem 3.1. Let X ∈ [a,A] and Y ∈ [b, B] be any random variables, and let D ∈ [0, 1], which one
calls the “dependence coefficient,” be such that

∣
∣C

(

x, y
)∣
∣ ≤ 1 − D

4
(3.4)

for all x ∈ [a,A] and y ∈ [b, B]. Furthermore, let v and w be two right-continuous and non-
decreasing functions defined on [a,A] and [b, B], respectively, and let Ω1 and Ω2 be intervals such
that E[v(X)] ∈ Ω1 ⊆ [v(a), v(A)] and E[w(Y )] ∈ Ω2 ⊆ [w(b), w(B)]. Then

|Cov[v(X), w(Y )]| ≤ min{1 − D, (1 − A)(1 − B)}
4

[v(A) − v(a)][w(B) −w(b)], (3.5)



Journal of Inequalities and Applications 7

where A and B are “information coefficients” defined by

A = 1 − 2
v(A) − v(a)

sup
x∈Ω1

√

[v(b) − x][x − v(a)],

B = 1 − 2
w(B) −w(b)

sup
y∈Ω2

√
[

w(B) − y
][

y −w(b)
]

.

(3.6)

Before proving the theorem, a few clarifying notes follow. If there is no “useful
information” (see Zitikis [6] for the meaning) about the location of the means E[v(X)]
and E[w(Y )] inside the intervals [v(a), v(A)] and [w(b), w(B)], respectively, then the two
information coefficients A and B are equal to 0 by definition, and thus (1 − A)(1 − B) is
equal to 1. Furthermore, if there is no “useful dependence information” between X and Y ,
then D = 0 by definition. Hence, in the presence of no “useful information” about the means
and dependence, the coefficient min{1 − D, (1 − A)(1 − B)}/4 reduces to the classical Grüss
coefficient 1/4.

Proof of Theorem 3.1. Since |C(x, y)| ≤ (1 − D)/4 by assumption, using (2.11)we have that

|Cov[v(X), w(Y )]| ≤
∫

(b,B]

∫

(a,A]

∣
∣C

(

x, y
)∣
∣dv(x)dw

(

y
)

≤ 1 − D

4

∫

(b,B]

∫

(a,A]
dv(x)dw

(

y
)

=
1 − D

4
[v(A) − v(a)][w(B) −w(b)],

(3.7)

where the last equality holds because the functions v and w are right-continuous and non-
decreasing. Next we restart the estimation of the covariance Cov[v(X), w(Y )] anew. Namely,
using the Cauchy-Schwarz inequality, together with the bound

Cov[v(X), v(X)] ≤ [v(A) − E[v(X)]][E[v(X)] − v(a)] (3.8)

and an analogous one for Cov[w(Y ), w(Y )], we obtain that

|Cov[v(X), w(Y )]| ≤
√

Cov[v(X), v(X)]
√

Cov[w(Y ), w(Y )]

≤ sup
x∈Ω1

√

[v(A) − x)(x − v(a)]sup
y∈Ω2

√
[

w(B) − y
)(

y −w(b)
]

=
(1 − A)(1 − B)

4
[v(A) − v(a)][w(B) −w(b)].

(3.9)

Combining bounds (3.7) and (3.9), we arrive at bound (3.5), thus completing the proof of
Theorem 3.1.
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4. An Example

Here we present an example that helps to compare the bounds of Grüss [13], Zitikis [6], and
the one of Theorem 3.1.

To make our considerations as simple as possible, yet meaningful, we choose to work
with the functions v(x) = x and w(y) = y, and also assume that the random variables X and
Y take on values in the interval [0, 1]. Grüss’s bound (2.3) implies that

|Cov[X,Y ]| ≤ 1
4
= 0.25. (4.1)

Assume now that the pair (X,Y ) has a joint density function, f(s, t), and let it be equal
to (s2 + t2)3/2 for s, t ∈ [0, 1], and 0 for all other s, t ∈ R. The random variables X and Y take
on values in the interval [0, 1] as before, but we can now calculate their means and thus apply
Proposition 2.2 with appropriately specified “μ-constraints.”

The joint cumulative distribution functionH(x, y) =
∫y

0

∫x

0 f(s, t)dsdt of the pair (X,Y )
can be expressed by the formula H(x, y) = xy(x2 + y2)/2. Thus, the (marginal) cumulative
distribution functions of X and Y are equal to F(x) = H(x, 1) = x(x2 + 1)/2 for all x ∈ [0, 1]
and G(y) = H(1, y) = y(y2 + 1)/2 for all y ∈ [0, 1], respectively. Using the equation E[X] =
∫1
0 (1 − F(x))dx, we check that E[X] = 5/8. Likewise, we have E[Y ] = 5/8. Consequently,
we may let the μ-constraints on the means E[X] and E[Y ] be as follows: μa = 5/8 = μA

and μb = 5/8 = μB. We also have a = 0 = b and A = 1 = B, because [0, 1] is the support
of the two random variables X and Y . These notes and the definitions of A and B given in
Proposition 2.2 imply that 1 − A = 1 − B =

√

15/16. Consequently, bound (2.5) implies that

|Cov[X,Y ]| ≤ 15
64

= 0.2344, (4.2)

which is an improvement upon bound (4.1), and thus upon (4.2).
We next utilize the dependence structure betweenX and Y in order to further improve

upon bound (4.2). With A and B already calculated, we next calculate D. For this, we use
the above formulas for the three cumulative distribution functions and see that C(x, y) =
xy(x2 − 1)(1−y2)/4. (The negative sign of C(x, y) for all x, y ∈ (0, 1) reveals that the random
variables X and Y are negatively quadrant dependent.) Furthermore, we check that |C(x, y)|
attains its maximum at the point (1/

√
3, 1/

√
3). Hence, the smallest upper bound for |C(x, y)|

is 1/27, and so we have 1−D = 4/27, which is less than (1−A)(1−B) = 15/16. Hence, bound
(3.5) implies that

|Cov[X,Y ]| ≤ 1
27

= 0.0370, (4.3)

which is a considerable improvement upon bounds (4.1) and (4.2).
We conclude this example by noting that the true value of the covariance Cov[X,Y ] is

Cov[X,Y ] = − 1
64

= −0.0156, (4.4)
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which we have calculated using the equation Cov[X,Y ] =
∫1
0

∫1
0 C(x, y)dx dy (cf. (2.9)) and

the above given expression for C(x, y).
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