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We give a new construction of the q-Euler numbers and polynomials of higher order attached
to Dirichlet’s character χ. We derive some theoretic identities involving the generalized q-Euler
numbers and polynomials of higher order.

1. Introduction

Let C be the complex number field. We assume that q ∈ C with |q| < 1 and the q-
number is defined by [x]q = (1 − qx)/(1 − q) in this paper. The q-factorial is given by
[n]q! = [n]q[n − 1]q · · · [2]q[1]q and the q-binomial formulae are known as
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where ( n
i )q = [n]q!/[n − i]q![i]q! = [n]q[n − 1]q · · · [n − i + 1]q/[i]q! (see [1–3]).

After Carlitz had constructed the q-Bernoulli numbers and polynomials, many
mathematicians have studied for q-Bernoulli and q-Euler numbers and polynomials (see [1–
29]). Since the q-extensions of Euler numbers and polynomials contain interesting properties
to study various fields of mathematical physics and number theory, many researchers
considered and investigated the q-Euler numbers and polynomials, and derived some
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identities from them (see [2–5, 8–19]). The purpose of this paper is to give a new approach
to the q-Euler numbers and polynomials of higher order attached to Dirichlet’s character χ.
From this, we will derive some theoretic identities involving generalized q-Euler numbers
and polynomials of higher order.

In Section 2, we present new generating functions which are related to q-Euler
numbers and polynomials of higher order attached to χ. We obtain distribution relations
for the q-Euler polynomials attached to χ, and have some identities involving these q-Euler
polynomials. Using the Cauchy residue theorem, we show that these q-extensions of the q-
l-function of order r attached to χ interpolate the q-Euler polynomials of order r at negative
integers.

2. q-Euler Polynomials of Higher Order Attached to χ

Let N be the set of natural numbers and Z+ = N ∪ {0}. For d ∈ N with d ≡ 1(mod2), let χ be
Dirichlet’s character with conductor d. For r ∈ Z and h ∈ Z, we will study the generalized
q-Euler and (h, q)-Euler polynomials and numbers of order r attached to χ, respectively.

It is known that the Euler polynomials are defined by (2/(et + 1))ext =∑∞
n=0 En(x)(tn/n!), for |t| < π . In the special case x = 0, En = En(0) are called the nth Euler

numbers (see [28, 29]).
First, we define the generalized q-Euler polynomials attached to χ as follows:
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where En,χ,q(x) are called the nth generalized q-Euler polynomials attached to χ. In the special
case x = 0, En,χ,q(= En,χ,q(0)) are called the nth generalized q-Euler numbers attached to χ.

By (2.1), we see that
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Now we consider the q-Euler polynomials of order r attached to χ as follows:
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where E
(r)
n,χ,q(x) are called the nth generalized q-Euler polynomials of order r attached to χ.

In the special case x = 0, E(r)
n,χ,q(= E

(r)
n,χ,q(0)) are called the nth generalized q-Euler numbers of

order r attached to χ.
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From (2.3), we note that
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Thus we have
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In the viewpoint of h-extension of E(r)
n,χ,q(x), we can define the generalized (h, q)-Euler

polynomials of order r attached to χ as follows:
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where E
(h,r)
n,χ,q(x) are called the nth generalized (h, q)-Euler polynomials of order r attached

to χ. In the special case x = 0, E(h,r)
n,χ,q(= E

(h,r)
n,χ,q(0)) are called the nth generalized (h, q)-Euler

numbers of order r attached to χ.
By (2.7), we see that
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That is,
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By (2.3), (2.9), and (2.10), we obtain the following equations:
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In the special case r = 1, we note that
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For s ∈ R and x ∈ C with R(x) > 0, we have

1
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By (2.15), we can define the following q-l-function of order r.

Definition 2.1. For s ∈ C, x ∈ R with R(x) > 0, we define the q-l-function as
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Note that l(h,r)q (s, x | χ) is analytic in whole complex s-plane. By (2.7), (2.15), and the
Cauchy residue theorem, we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, one has
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