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We obtain gradient estimates in Orlicz spaces for weak solutions ofA-Harmonic Equations under
the assumptions that A satisfies some proper conditions and the given function satisfies some
moderate growth condition. As a corollary we obtain Lp-type regularity for such equations.

1. Introduction

In this paper we consider the following general nonlinear elliptic problem:

divA(∇u, x) = div
(
|f|p−2f

)
in Ω, (1.1)

where Ω is an open bounded domain in R
n, f = (f1, . . . , fn) and A = A(ξ, x) : R

n × R
n → R

n

are two given vector fields, andA is measurable in x for each ξ and continuous in ξ for almost
everywhere x. Moreover, for given p ∈ (1,∞) the structural conditions on the functionA(ξ, x)
are given as follows:

[A(ξ, x) −A(
η, x

)] · (ξ − η
) ≥ C1

∣∣ξ − η
∣∣p, (1.2)

|A(ξ, x)| ≤ C2

(
1 + |ξ|p−1

)
, (1.3)

A(ξ, x) · ξ ≥ C3|ξ|p − C4, (1.4)

∣∣A(ξ, x) −A(
ξ, y

)∣∣ ≤ C5w
(∣∣x − y

∣∣)(1 + |ξ|p−1
)

(1.5)
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for all ξ, η ∈ R
n, x, y ∈ Ω, and some positive constantsCi > 0, i = 1, 2, 3, 4, 5. Here the modulus

of continuity w(x) : R
+ → R

+ is nondecreasing and satisfies

w(r) −→ 0 as r −→ 0. (1.6)

Especially when A(ξ, x) = |ξ|p−2ξ, (1.1) is reduced to be quasilinear elliptic equations of p-
Laplacian type

div
(
|∇u|p−2∇u

)
= div

(
|f|p−2f

)
in Ω. (1.7)

As usual, the solutions of (1.1) are taken in a weak sense. We now state the definition
of weak solutions.

Definition 1.1. A function u ∈ W
1,p
loc (Ω) is a local weak solution of (1.1) if for any ϕ ∈ W

1,p
0 (Ω),

one has

∫

Ω
A(∇u, x) · ∇ϕdx =

∫

Ω
|f|p−2f · ∇ϕdx. (1.8)

DiBenedetto and Manfredi [1] and Iwaniec [2] obtained Lq, q ≥ p, gradient estimates
for weak solutions of (1.7) while Acerbi and Mingione [3] studied the case that p = p(x).
Moreover, the authors [4, 5] obtained Lq, q ≥ p, gradient estimates for weak solutions of
quasilinear elliptic equation of p-Laplacian type

div
(
(A∇u · ∇u)(p−2)/2A∇u

)
= div

(
|f|p−2f

)
in Ω (1.9)

under the different assumptions on the coefficients A and the domain Ω. Boccardo and
Gallouët [6, 7] obtained W1,q, q < n(p − 1)/(n − 1), p ≤ n, regularity for weak solutions
of the problem −diva(x, u,Du) = f with some structural conditions.

Recently, Byun and Wang [8] obtained W1,p, 2 ≤ p < ∞, regularity for weak solutions
of the general nonlinear elliptic problem

diva(∇u, x) = div f in Ω, (1.10)

with a(ξ, x) satisfying (δ, R)-vanishing condition and the following structural conditions:

[
a(ξ, x) − a

(
η, x

)] · (ξ − η
) ≥ C′

1

∣∣ξ − η
∣∣2,

|a(ξ, x)| ≤ C′
2(1 + |ξ|),

∣∣∇ξa(ξ, x)
∣∣ ≥ C′

3.

(1.11)
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The purpose of this paper is to extend the Lp-type estimates in [8] to the Lφ-type estimates in
Orlicz spaces for the more general problem (1.1) with A satisfying (1.2)–(1.5). In particular,
we are interested in estimates like

∫

Br

φ
(|∇u|p)dx ≤ C

{∫

B2r

φ
(|f|p)dx + φ

(∫

B2r

|u|pdx
)

+ 1

}
, (1.12)

where C is a constant independent from u and f. Indeed, if φ(x) = |x|q/p with q > p, (1.12) is
reduced to the classical Lq estimate.

Orlicz spaces have been studied as a generalization of Lp spaces since they were
introduced by Orlicz [9] (see [10–16]). The theory of Orlicz spaces plays a crucial role in
a very wide spectrum (see [17]). Here for the reader’s convenience, we will give some
definitions on the general Orlicz spaces. We denote by Φ the function class that consists of all
functions φ : [0,+∞) → [0,+∞) which are increasing and convex.

Definition 1.2. A function φ ∈ Φ is said to satisfy the global Δ2 condition, denoted by φ ∈ Δ2,
if there exists a positive constant K such that for every t > 0,

φ(2t) ≤ Kφ(t). (1.13)

Moreover, a function φ ∈ Φ is said to satisfy the global ∇2 condition, denoted by φ ∈ ∇2, if
there exists a number a > 1 such that for every t > 0,

φ(t) ≤ φ(at)
2a

. (1.14)

Remark 1.3. (1) We remark that the global Δ2 ∩ ∇2 condition makes the functions grow
moderately. For example, φ(t) = |t|α(1 + | log |t‖) ∈ Δ2 ∩ ∇2 for α > 1. Examples such as
t log(1 + t) are ruled out by ∇2, and those such as exp(t2) are ruled out by Δ2.

(2) In fact, if φ ∈ Δ2 ∩ ∇2, then φ satisfies for 0 < θ2 ≤ 1 ≤ θ1 < ∞,

φ(θ1t) ≤ Kθα1
1 φ(t), φ(θ2t) ≤ 2aθα2

2 φ(t), (1.15)

where α1 = log2K and α2 = loga2 + 1.

(3) Under condition (1.15), it is easy to check that φ ∈ Φ satisfies φ(0) = 0 and

lim
t→ 0+

φ(t)
t

= lim
t→+∞

t

φ(t)
= 0. (1.16)
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Definition 1.4. Let φ ∈ Φ. Then the Orlicz class Kφ(Ω) is the set of all measurable functions
g : Ω → R satisfying

∫

Ω
φ
(∣∣g∣∣)dx < ∞. (1.17)

The Orlicz space Lφ(Ω) is the linear hull of Kφ(Ω).

Remark 1.5. We remark that Orlicz spaces generalize Lq spaces in the sense that if we take
φ(t) = tq, t ≥ 0, then φ ∈ Δ2 ∩ ∇2, so for this special case,

Lφ(Ω) = Lq(Ω). (1.18)

Moreover, we give the following lemma.

Lemma 1.6 (see [10, 12, 15]). Assume that φ ∈ Δ2 ∩ ∇2 and g ∈ Lφ(Ω). Then

(1) Kφ = Lφ and C∞
0 is dense in Lφ,

(2) Lα1(Ω) ⊂ Lφ(Ω) ⊂ Lα2(Ω) ⊂ L1(Ω), where α1 and α2 are defined in (1.15),

(3)

∫

Ω
φ
(∣∣g∣∣)dx =

∫∞

0

∣∣{x ∈ Ω :
∣∣g∣∣ > λ

}∣∣d[φ(λ)], (1.19)

(4)

∫∞

0

1
μ

∫

{x∈Ω:|g|>aμ}

∣∣g∣∣dx d
[
φ
(
bμ

)] ≤ C

∫

Ω
φ
(∣∣g∣∣)dx, (1.20)

for any a, b > 0, where C = C(a, b, φ).

Now we are set to state the main result.

Theorem 1.7. Assume that φ ∈ Δ2 ∩ ∇2 and |f|p ∈ L
φ

loc(Ω). If u is a local weak solution of (1.1)
withA satisfying (1.2)–(1.5), then one has

|∇u|p ∈ L
φ

loc(Ω) (1.21)

with the estimate (1.12), that is,

∫

Br

φ
(|∇u|p)dx ≤ C

{∫

B2r

φ
(|f|p)dx + φ

(∫

B2r

|u|pdx
)

+ 1

}
, (1.22)

where B2r ⊂ Ω and C is a constant independent from u and f.
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Remark 1.8. We remark that the global Δ2 ∩ ∇2 condition is optimal. Actually, the authors in
[15] have proved that if u is a solution of the Poisson equation −Δu = f in R

n, then

∫

Rn

φ
(∣∣∣D2u

∣∣∣
)
dx ≤ C

∫

Rn

φ
(∣∣f∣∣)dx (1.23)

holds if and only if φ ∈ Δ2 ∩ ∇2.

Our approach is based on the paper [18]. Recently Acerbi and Mingione [18] obtained
local Lq, q ≥ p, gradient estimates for the degenerate parabolic p-Laplacian systems which
are not homogeneous if p /= 2. There, they invented a new iteration-covering approach, which
is completely free from harmonic analysis, in order to avoid the use of the maximal function
operator.

This paper will be organized as follows. In Section 2, we give a new normalization
method and the iteration-covering procedure, which are very important to obtain the main
result. We finish the proof of Theorem 1.7 in Section 3.

2. Preliminary Materials

2.1. New Normalization

In this paper we will use a new normalization method, which is much influenced by [8, 19],
so that the highly nonlinear problem considered here is invariant.

For each λ ≥ 1, we define

uλ(x) =
u(x)
λ

, fλ(x) =
f(x)
λ

, (2.1)

Aλ(ξ, x) =
A(λξ, x)
λp−1

. (2.2)

Lemma 2.1 (new normalization). If u ∈ W
1,p
loc (Ω) is a local weak solution of (1.1) and A satisfies

(1.2)–(1.5), then

(1) Aλ satisfies (1.2)–(1.5) with the same constants Ci (1 ≤ i ≤ 4),

(2) uλ is a local weak solution of

divAλ(∇uλ, x) =
1

λp−1
divA(∇u, x) = div

(
|fλ|p−2fλ

)
in Ω. (2.3)

Proof. We first prove thatAλ satisfies (1.2)–(1.5)with the same constants Ci (1 ≤ i ≤ 4). From
(1.2) and (2.2) we find that

[Aλ(ξ, x) −Aλ

(
η, x

)] · (ξ − η
)
=

1
λp

[A(λξ, x) −A(
λη, x

)] · (λξ − λη
)

≥ C1
1
λp

∣∣λξ − λη
∣∣p = C1

∣∣ξ − η
∣∣p

(2.4)



6 Journal of Inequalities and Applications

for all ξ, η ∈ R
n. That is to say, Aλ satisfies (1.2). Moreover, Aλ satisfies (1.3)-(1.4) since

|Aλ(ξ, x)| = |A(λξ, x)|
λp−1

≤ C2

(
1

λp−1
+ |ξ|p−1

)
≤ C2

(
1 + |ξ|p−1

)
,

Aλ(ξ, x) · ξ = 1
λp

A(λξ, x) · λξ ≥ 1
λp

(
C3|λξ|p − C4

) ≥ C3|ξ|p − C4

(2.5)

for all ξ, η ∈ R
n and λ ≥ 1. Furthermore,

∣∣Aλ(ξ, x) −Aλ

(
ξ, y

)∣∣ = 1
λp−1

∣∣A(λξ, x) −A(
λξ, y

)∣∣

≤ C5

λp−1
w
(∣∣x − y

∣∣)(1 + |λξ|p−1
)

≤ C5w
(∣∣x − y

∣∣)(1 + |ξ|p−1
)

(2.6)

for all ξ, η ∈ R
n and λ ≥ 1.

Finally we prove (2). Indeed, since u is a local weak solution of (1.1), it follows from
Definition 1.1, (2.1), and (2.2) that

∫

Ω
Aλ(∇uλ, x) · ∇ϕdx =

1
λp−1

∫

Ω
A(∇u, x) · ∇ϕdx

=
1

λp−1

∫

Ω
|f|p−2f · ∇ϕdx =

∫

Ω
|fλ|p−2fλ · ∇ϕdx.

(2.7)

Thus we complete the proof.

2.2. The Iteration-Covering Procedure

In this subsection we give one important lemma (the iteration-covering procedure), which is
much motivated by [18]. To start with, let u be a local weak solution of the problem (1.1). By
a scaling argument we may as well assume that r = 1 in Theorem 1.7. We write

λ0 =

[
−
∫

B2

|∇u|pdx +
1
ε
−
∫

B2

|f|pdx
]1/p

, (2.8)

where ε > 0 is going to be chosen later in (3.47). Moreover, for any x ∈ Ω and ρ > 0, we write

Jλ
[
Bρ(x)

]
= −
∫

Bρ(x)
|∇uλ|pdy +

1
ε
−
∫

Bρ(x)
|fλ|pdy, (2.9)

Eλ(1) =
{
x ∈ B1 : |∇uλ|p > 1

}
. (2.10)
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From (1.6), we can choose a proper constant R0 = R0(ε) ∈ (0, 1) such that

w(R0) ≤ ε. (2.11)

Lemma 2.2. Given λ ≥ λ∗ =: (10/R0)
n/pλ0 +1, there exists a family of disjoint balls {Bρi(xi)}, xi ∈

Eλ(1) such that 0 < ρi = ρ(xi) ≤ R0/10 and

Jλ
[
Bρi(xi)

]
= 1, Jλ

[
Bρ(xi)

]
< 1 for any ρ > ρi. (2.12)

Moreover, one has

Eλ(1) ⊂
⋃
i∈N

B5ρi(xi) ∪ negligible set, (2.13)

∣∣Bρi(xi)
∣∣ ≤ 3

(∫

{x∈Bρi
(xi):|∇uλ|p>1/3}

|∇uλ|pdx +
1
ε

∫

{x∈Bρi
(xi):|fλ|p>ε/3}

|fλ|pdx
)
. (2.14)

Proof. (1) We first claim that

sup
w∈B1

sup
R0/10≤ρ≤R0

Jλ
[
Bρ(w)

] ≤ 1. (2.15)

To prove this, fix any w ∈ B1 and R0/10 ≤ ρ ≤ R0. Let λ ≥ λ∗ = (10/R0)
n/pλ0 + 1. Then we

have

−
∫

Bρ(w)
|∇uλ|pdx ≤ |B1|∣∣Bρ(w)

∣∣−
∫

B1

|∇uλ|pdx

≤
(
10
R0

)n

−
∫

B1

|∇uλ|pdx

=
1
λp

(
10
R0

)n

−
∫

B1

|∇u|pdx.

(2.16)

Similarly,

−
∫

Bρ(w)
|fλ|pdx ≤

(
10
R0

)n

−
∫

B1

|fλ|pdx =
1
λp

(
10
R0

)n

−
∫

B1

|f|pdx. (2.17)

Consequently, combining the two inequalities above, (2.8) and (2.9), we know that

Jλ
[
Bρ(w)

] ≤ 1 (2.18)

for any w ∈ B1 and R0/10 ≤ ρ ≤ R0, which implies that (2.15) holds truely.
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(2) Now for a.e. w ∈ Eλ(1), a version of Lebesgue’s differentiation theorem implies
that

lim
ρ→ 0

Jλ
[
Bρ(w)

]
> 1, (2.19)

which implies that there exists some ρ > 0 satisfying

Jλ
[
Bρ(w)

]
> 1. (2.20)

Therefore from (2.15) we can select a radius ρw ∈ (0, R0/10] such that

ρw =: max
{
ρ | Jλ

[
Bρ(w)

]
= 1, 0 < ρ ≤ R0

10

}
. (2.21)

Then we observe that

Jλ
[
Bρw(w)

]
= 1 (2.22)

and that for ρw < ρ ≤ R0,

Jλ
[
Bρ(w)

]
< 1. (2.23)

From the argument above we know that for a.e. w ∈ Eλ(1) there exists a ball Bρw(w)
constructed as above. Therefore, applying Vitali’s covering lemma, we can find a family of
disjoint balls {Bρi(xi)}i∈N

with xi ∈ Eλ(1) and ρi = ρ(xi) ∈ (0, R0/10], so that (2.12) and
(2.13) hold truely.

(3) From (2.12)we see that

Jλ
[
Bρi(xi)

]
=: −

∫

Bρi
(xi)

|∇uλ|pdx +
1
ε
−
∫

Bρi
(xi)

|fλ|pdx = 1. (2.24)

That is to say,

∣∣Bρi(xi)
∣∣ =

∫

Bρi
(xi)

|∇uλ|pdx +
1
ε

∫

Bρi
(xi)

|fλ|pdx. (2.25)

Therefore, by splitting the right-side two integrals in (2.25) as follows we have

∣∣Bρi(xi)
∣∣ ≤

∫

{x∈Bρi
(xi):|∇uλ|p>1/3}

|∇uλ|pdx +

∣∣Bρi(xi)
∣∣

3

+
1
ε

∫

{x∈Bρi
(xi):|fλ|>ε/3}

|fλ|pdx +

∣∣Bρi(xi)
∣∣

3
.

(2.26)

Thus we obtain the desired estimate (2.14). This completes our proof.
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3. Proof of Main Result

In the following it is sufficient to consider the proof of Theorem 1.7 as an a priori estimate,
therefore assuming a priori that |∇u|p ∈ L∞

loc(Ω) ⊂ L
φ

loc(Ω). This assumption can be removed
in a standard way via an approximation argument as the one in [12, 15, 18].

We first give the following local Lp estimates for problem (1.1).

Lemma 3.1. Suppose that |f|p ∈ Lφ(B2R), B2R ⊂ Ω, and let u ∈ W
1,p
loc (Ω) be a local weak solution of

(1.1) withA satisfying (1.2)–(1.5). Then one has

∫

BR

|∇u|pdx ≤ C

{
1
Rp

∫

B2R

|u|pdx +
∫

B2R

|f|pdx + 1

}
. (3.1)

Proof. We may choose the test function ϕ = ζpu ∈ W
1,p
0 (B2R) in Definition 1.1, where ζ ∈

C∞
0 (Rn) is a cutoff function satisfying

0 ≤ ζ ≤ 1, ζ ≡ 1 in BR, ζ ≡ 0 in
R

n

B2R
, |∇ζ| ≤ C

R
. (3.2)

Then we have

∫

B2R

A(∇u, x) · ∇(ζpu)dx =
∫

B2R

|f|p−2f · ∇(ζpu)dx (3.3)

and then write the resulting expression as

I1 = I2 + I3 + I4, (3.4)

where

I1 =
∫

B2R

ζpA(∇u, x) · ∇udx,

I2 = −
∫

B2R

pζp−1uA(∇u, x) · ∇ζ dx,

I3 =
∫

B2R

ζp|f|p−2f · ∇udx,

I4 =
∫

B2R

pζp−1u|f|p−2f · ∇ζ dx.

(3.5)

Estimate of I1. Using (1.4), we find that

I1 ≥ C

∫

B2R

(|∇u|p − 1
)
ζpdx (3.6)
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Estimate of I2. From Young’s inequality with τ , (1.3), and (3.2)we have

I2 ≤
∫

B2R

pζp−1|A(∇u, x)||u||∇ζ|dx

≤ C

∫

B2R

pζp−1
∣∣∣
(
1 + |∇u|p−1

)∣∣∣|u||∇ζ|dx

≤ τ

∫

B2R

ζp
(|∇u|p + 1

)
dx + C(τ)

∫

B2R

|∇ζ|p|u|pdx

≤ τ

∫

B2R

ζp
(|∇u|p + 1

)
dx +

C(τ)
Rp

∫

B2R

|u|pdx.

(3.7)

Estimate of I3. From Young’s inequality with τ we have

I3 ≤ τ

∫

B2R

ζp|∇u|pdx + C(τ)
∫

B2R

|f|pdx. (3.8)

Estimate of I4. From Young’s inequality and (3.2)we have

I4 ≤ C

{∫

B2R

|∇ζ|p|u|pdx +
∫

B2R

|f|pdx
}

≤ C

{
1
Rp

∫

B2R

|u|pdx +
∫

B2R

|f|pdx
}
.

(3.9)

Combining the estimates of Ii (1 ≤ i ≤ 4), we deduce that

C

∫

B2R

ζp|∇u|pdx ≤ 2τ
∫

B2R

ζp|∇u|pdx + C(τ)

{
1
Rp

∫

B2R

|u|pdx +
∫

B2R

|f|pdx + 1

}
(3.10)

and then finish the proof by choosing τ small enough.

Let v be the weak solution of the following reference equation:

divA(∇v, x∗) = 0 in Br,

v = u on ∂Br,
(3.11)

where x∗ ∈ Br is a fixed point.
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We first state the definition of the global weak solutions.

Definition 3.2. Assume that v ∈ W1,p(Br). One says that v ∈ W1,p(Br)with v − u ∈ W
1,p
0 (Br) is

the weak solution of (3.11) in Br if one has

∫

Br

A(∇v, x∗) · ∇ϕdx = 0 (3.12)

for any ϕ ∈ W
1,p
0 (Br).

From the definition above we can easily obtain the following lemma.

Lemma 3.3. If v ∈ W1,p(B10ρi(xi)) is the weak solution of (3.11) in B10ρi(xi), where xi ∈ Eλ(1) and
ρi are defined in Lemma 2.2, then one has

−
∫

B10ρi (xi)
|∇v|pdx ≤ C

{
−
∫

B10ρi (xi)
|∇u|pdx + 1

}
. (3.13)

Proof. Choosing the test function ϕ = u− v ∈ W
1,p
0 (B10ρi(xi)), from Definition 3.2, we find that

∫

B10ρi (xi)
A(∇v, x∗) · ∇(u − v)dx = 0. (3.14)

That is to say,

∫

B10ρi (xi)
A(∇v, x∗) · ∇v dx =

∫

B10ρi (xi)
A(∇v, x∗) · ∇udx. (3.15)

From (1.4), we conclude that

∫

B10ρi (xi)
A(∇v, x∗) · ∇v dx ≥ C

(∫

B10ρi (xi)
|∇v|pdx − ∣∣B10ρi

∣∣
)
. (3.16)

Moreover, from (1.3) and Young’s inequality with τ we have

∫

B10ρi (xi)
A(∇v, x∗) · ∇udx ≤ C

∫

B10ρi (xi)

(
1 + |∇v|p−1

)
|∇u|dx

≤ τ

∫

B10ρi (xi)
|∇v|pdx + C(τ)

∫

B10ρi (xi)

(
1 + |∇u|p)dx.

(3.17)
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Combining the estimates of Ii (i = 1, 2) and selecting a small enough constant τ > 0, we
deduce that

−
∫

B10ρi (xi)
|∇v|pdx ≤ C

{
−
∫

B10ρi (xi)
|∇u|pdx + 1

}
(3.18)

and then finish the proof.

Lemma 3.4. Suppose that v ∈ W1,p(B10ρi(xi)) is the weak solution of (3.11) in B10ρi(xi) with A
satisfying (1.2)–(1.5). If

−
∫

B10ρi (xi)
|∇u|pdx ≤ 1, −

∫

B10ρi (xi)
|f|pdx ≤ ε, (3.19)

then there existsN0 > 1 such that

sup
B5ρi (xi)

|∇v| ≤ N0, (3.20)

−
∫

B10ρi (xi)
|∇(u − v)|pdx ≤ ε. (3.21)

Proof. If the conclusion (3.21) is true, then the conclusion (3.20) can follow from [20, Lemma
5.1].

Next we are set to prove (3.21). We may choose the test function ϕ = u − v ∈
W

1,p
0 (B10ρi(xi)) in Definitions 1.1 and 3.2 to find that

∫

B10ρi (xi)
A(∇u, x) · ∇(u − v)dx =

∫

B10ρi (xi)
|f|p−2f · ∇(u − v)dx,

∫

B10ρi (xi)
A(∇v, x∗) · ∇(u − v)dx = 0,

(3.22)

where x∗ ∈ B10ρi(xi) is a fixed point. Then a direct calculation shows the resulting expression
as

I1 = I2 + I3, (3.23)
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where

I1 =
∫

B10ρi (xi)
(A(∇u, x) −A(∇v, x)) · ∇(u − v)dx,

I2 = −
∫

B10ρi (xi)
(A(∇v, x) −A(∇v, x∗)) · ∇(u − v)dx,

I3 =
∫

B10ρi (xi)
|f|p−2f · ∇(u − v)dx.

(3.24)

Estimate of I1. Equation (1.2) implies that

I1 ≥ C

∫

B10ρi (xi)
|∇(u − v)|pdx. (3.25)

Estimate of I2. From (1.5) and the fact that ρi ∈ (0, R0/10] we obtain

I2 ≤ Cw
(
10ρi

) ∫

B10ρi (xi)

(
1 + |∇v|p−1

)
(|∇u| + |∇v|)dx

≤ Cw(R0)
∫

B10ρi (xi)

[
1 + |∇v|p +

(
1 + |∇v|p−1

)
|∇u|

]
dx,

(3.26)

then it follows from (2.11), Young’s inequality, and Lemma 3.3 that

I2 ≤ Cε

{∫

B10ρi (xi)

(
1 + |∇v|p)dx +

∫

B10ρi (xi)
|∇u|pdx

}

≤ Cε

∫

B10ρi (xi)

(
1 + |∇u|p)dx.

(3.27)

Furthermore, using (3.19)we can obtain

I2 ≤ C
∣∣B10ρi(xi)

∣∣ε. (3.28)

Estimate of I3. Using Young’s inequality with τ , we have

I3 ≤
∫

B10ρi (xi)
|f|p−1|∇(u − v)|dx

≤ τ

∫

B10ρi (xi)
|∇(u − v)|pdx + C(τ)

∫

B10ρi (xi)
|f|pdx.

(3.29)
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Combing all the estimates of Ii (1 ≤ i ≤ 3) and selecting a small enough constant τ > 0, we
obtain

∫

B10ρi (xi)
|∇(u − v)|pdx ≤ C

∣∣B10ρi(xi)
∣∣ε + C

∫

B10ρi (xi)
|f|pdx, (3.30)

then it follows from (3.19) that

−
∫

B10ρi (xi)
|∇(u − v)|pdx ≤ Cε. (3.31)

This completes our proof.

In view of Lemma 2.2, given λ ≥ λ∗ =: (10/R0)
n/pλ0 + 1, we can construct the disjoint

family of balls {Bρi(xi)}i∈N
, where xi ∈ Eλ(1). Fix any i ∈ N. It follows from Lemma 2.2 that

−
∫

Bρ(xi)
|∇uλ|pdx ≤ 1, −

∫

Bρ(xi)
|fλ|pdx ≤ ε for any ρ > ρi. (3.32)

Furthermore, from the new normalization in Lemma 2.1, we can easily obtain the following
corollary of Lemma 3.4.

Corollary 3.5. Suppose that vλ ∈ W1,p(B10ρi(xi)) is the weak solution of

divAλ(∇vλ, x
∗) = 0 in Qr,

vλ = uλ on ∂pQr,
(3.33)

with x∗ ∈ B10ρi(xi) and Aλ satisfying (1.2)–(1.5). Then there existsN0 > 1 such that

sup
B5ρi (xi)

|∇vλ| ≤ N0,

−
∫

B10ρi (xi)
|∇(uλ − vλ)|pdx ≤ Cε.

(3.34)

Now we are ready to prove the main result, Theorem 1.7.
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Proof. From Corollary 3.5, for any λ ≥ λ∗ =: (10/R0)
n/pλ0 + 1 we have

∣∣{x ∈ B5ρi(xi) : |∇u| > 2N0λ
}∣∣ = ∣∣{x ∈ B5ρi(xi) : |∇uλ| > 2N0

}∣∣

≤ ∣∣{x ∈ B5ρi(xi) : |∇(uλ − vλ)| > N0
}∣∣

+
∣∣{x ∈ B5ρi(xi) : |∇vλ| > N0

}∣∣

=
∣∣{x ∈ B5ρi(xi) : |∇(uλ − vλ)| > N0

}∣∣

≤ 1

N
p

0

∫

B5ρi (xi)
|∇(uλ − vλ)|pdx

≤ Cε
∣∣Bρi(xi)

∣∣,

(3.35)

then it follows from (2.14) in Lemma 2.2 that

∣∣{x ∈ B5ρi(xi) : |∇u|>2N0λ
}∣∣

≤ Cε

(∫

{x∈Bρi
(xi):|∇uλ|p>1/3}

|∇uλ|pdx +
1
ε

∫

{x∈Bρi
(xi):|fλ|p>ε/3}

|fλ|pdx
)
,

(3.36)

where C = C(n, p). Recalling the fact that the balls {Bρi(xi)} are disjoint and

⋃
i∈N

B5ρi(xi) ⊃ Eλ(1) = {x ∈ B1 : |∇uλ| > 1} (3.37)

for any λ ≥ λ∗ =: (10/R0)
n/pλ0 + 1 and then summing up on i ∈ N in the inequality above, we

have

∣∣{x ∈ B1 : |∇u|p > (2N0)pλp
}∣∣ = |{x ∈ B1 : |∇u| > 2N0λ}|

≤
∑
i

∣∣{x ∈ B5ρi(xi) : |∇u| > 2N0λ
}∣∣

≤ Cε

(∫

{x∈B2:|∇uλ|p>1/3}
|∇uλ|pdx +

1
ε

∫

x∈B2:|fλ|p>ε/3
|fλ|pdx

)

(3.38)
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for any λ ≥ λ∗ =: (10/R0)
n/pλ0 + 1. Recalling Lemma 1.6(3), we compute

∫

B1

φ
(|∇u|p)dx =

∫∞

0

∣∣{x ∈ B1 : |∇u|p > μ
}∣∣d[φ(μ)]

=
∫ (2N0)

pλ
p
∗

0

∣∣{x ∈ B1 : |∇u|p > μ
}∣∣d[φ(μ)]

+
∫∞

(2N0)pλ
p
∗

∣∣{x ∈ B1 : |∇u|p > μ
}∣∣d[φ(μ)]

=
∫ (2N0)

pλ
p
∗

0

∣∣{x ∈ B1 : |∇u|p > μ
}∣∣d[φ(μ)]

+
∫∞

λ∗

∣∣{x ∈ B1 : |∇u|p > (2N0)pλp
}∣∣d[(2N0)pλp

]

=: J1 + J2.

(3.39)

Estimate of J1. From the definition of λ0 in (2.8)we deduce that

λ
p
∗ ≤ C

[
λ
p

0 + 1
]
≤ C

{
−
∫

B1

u|∇|pdx +
1
ε
−
∫

B1

|f|pdx + 1

}
, (3.40)

then it follows from Lemma 3.1 that

λ
p
∗ ≤ C

{
−
∫

B2

|u|pdx + −
∫

B2

|f|pdx +
1
ε
−
∫

B1

|f|pdx + 1

}

≤ C

{
−
∫

B2

|u|pdx + −
∫

B2

|f|pdx + 1

}
,

(3.41)

where C = C(n, p, ε). Therefore, by (1.15) and Jensen’s inequality, we conclude that

J1 ≤ φ
[
(2N0)pλ

p
∗
]
|B1|

≤ C

{
φ

(
−
∫

B2

|u|pdx
)

+ φ

(
−
∫

B2

|f|pdx
)

+ 1

}

≤ C

{
φ

(∫

B2

|u|pdx
)

+
∫

B2

φ
(|f|p)dx + 1

}
,

(3.42)

where C = C(n, p, φ, ε).
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Estimate of J2. From (3.38) we deduce that

J2 ≤ Cε

∫∞

0

∫

{x∈B2:|∇uλ|p>1/3}
|∇uλ|pdx d

[
(2N0)pλp

]

+ C

∫∞

0

∫

{x∈B2:|fλ|p>ε/3}
|fλ|pdx d

[
(2N0)pλp

]
.

(3.43)

Set μ = λp. The above inequality and (2.1) imply that

J2 ≤ Cε

∫∞

0

1
μ

∫

{x∈B2:|∇u|p>μ/3}
|∇u|pdx d

[
(2N0)pμ

]

+ C

∫∞

0

1
μ

∫

{x∈B2:|f|p>με/3}
|f|pdx d

[
(2N0)pμ

]
,

(3.44)

then it follows from Lemma 1.6(4) that

J2 ≤ C1ε

∫

B2

φ
(|∇u|p)dx + C2

∫

B2

φ
(|f|p)dx, (3.45)

where C1 = C(n, p, φ) and C2 = C(n, p, φ, ε).
Combining the estimates of J1 and J2, we obtain

∫

B1

φ
(|∇u|p)dx ≤ C1ε

∫

B2

φ
(|∇u|p)dx + C3

∫

B2

φ
(|f|p)dx + C4φ

(∫

B2

|u|pdx
)

+ 1, (3.46)

where C3 = C3(n, p, φ, ε) and C4 = C4(n, p, φ, ε). Selecting suitable ε such that

C1ε =
1
2

(3.47)

and reabsorbing at the right-side first integral in the inequality above by a covering and
iteration argument (see [21, Lemma 4.1, Chapter 2], or [22, Lemma 2.1, Chapter 3]), we have

∫

B1

φ
(|∇u|p)dx ≤ C

{∫

B2

φ
(|f|p)dx + φ

(∫

B2

|u|pdx
)

+ 1

}
. (3.48)

Then by an elementary scaling argument, we can finish the proof of the main result.
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