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We establish the Poincaré type inequalities for the composition of the maximal operator and the
Green’s operator in John domains.

1. Introduction

Let Ω be a bounded, convex domain and B a ball in R
n, n ≥ 2. We use σB to denote the ball

with the same center as B and with diam(σB) = σ diam(B), σ > 0. We do not distinguish the
balls from cubes in this paper. We use |E| to denote the n-dimensional Lebesgue measure of
the set E ⊆ R

n. We say that w is a weight if w ∈ L1
loc(R

n) and w > 0, a.e.
Differential forms are extensions of functions in R

n. For example, the function
u(x1, x2, . . . , xn) is called a 0-form. Moreover, if u(x1, x2, . . . , xn) is differentiable, then
it is called a differential 0-form. The 1-form u(x) in R

n can be written as u(x) =
∑n

i=1 ui(x1, x2, . . . , xn)dxi. If the coefficient functions ui(x1, x2, . . . , xn), i = 1, 2, . . . , n, are
differentiable, then u(x) is called a differential 1-form. Similarly, a differential k-form u(x)
is generated by {dxi1 ∧ dxi2 ∧ · · · ∧ dxik}, k = 1, 2, . . . , n, that is,

u(x) =
∑

I

uI(x)dxI =
∑

ui1i2···ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik , (1.1)

where ∧ is the Wedge Product, I = (i1, i2, . . . , ik), 1 ≤ i1 < i2 < · · · < ik ≤ n. Let

∧l = ∧l(Rn) (1.2)
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be the set of all l-forms in R
n,

D′
(
Ω,∧l

)
(1.3)

the space of all differential l-forms on Ω, and

Lp
(
Ω,∧l

)
(1.4)

the l-forms u(x) =
∑

I uI(x)dxI on Ω satisfying
∫
Ω |uI |pdx < ∞ for all ordered l-tuples I,

l = 1, 2, . . . , n. We denote the exterior derivative by

d : D′
(
Ω,∧l

)
−→ D′

(
Ω,∧l+1

)
(1.5)

for l = 0, 1, . . . , n − 1, and define the Hodge star operator

� : ∧k −→ ∧n−k (1.6)

as follows. If u = uIdxI , i1 < i2 < · · · < ik is a differential k-form, then

�u = (−1)
∑
(I)uIdxJ , (1.7)

where I = (i1, i2, . . . , ik), J = {1, 2, . . . , n} − I, and
∑
(I) = k(k + 1)/2 +

∑k
j=1 ij . The Hodge

codifferential operator

d� : D′
(
Ω,∧l+1

)
−→ D′

(
Ω,∧l

)
(1.8)

is given by d� = (−1)nl+1 � d� on D′(Ω,∧l+1), l = 0, 1, . . . , n − 1. We write

‖u‖s,Ω =
(∫

Ω
|u|sdx

)1/s

. (1.9)

The differential forms can be used to describe various systems of PDEs and to express
different geometric structures onmanifolds. For instance, some kinds of differential forms are
often utilized in studying deformations of elastic bodies, the related extrema for variational
integrals, and certain geometric invariance. Differential forms have become invaluable tools
for many fields of sciences and engineering; see [1, 2] for more details.

In this paper, we will focus on a class of differential forms satisfying the well-known
nonhomogeneous A-harmonic equation

d�A(x, du) = B(x, du), (1.10)
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where A : Ω × ∧l(Rn) → ∧l(Rn) and B : Ω × ∧l(Rn) → ∧l−1(Rn) satisfy the conditions

|A(x, ξ)| ≤ a|ξ|p−1, A(x, ξ) · ξ ≥ |ξ|p, |B(x, ξ)| ≤ b|ξ|p−1 (1.11)

for almost every x ∈ Ω and all ξ ∈ ∧l(Rn). Here a, b > 0 are constants and 1 < p < ∞ is a fixed
exponent associated with (1.10). If the operator B = 0, (1.10) becomes d�A(x, du) = 0, which
is called the (homogeneous) A-harmonic equation. A solution to (1.10) is an element of the
Sobolev spaceW1,p

loc (Ω,∧l−1) such that
∫
Ω A(x, du) ·dϕ+B(x, du) ·ϕ = 0 for all ϕ ∈ W

1,p
loc (Ω,∧l−1)

with compact support. Let A : Ω × ∧l(Rn) → ∧l(Rn) be defined by A(x, ξ) = ξ|ξ|p−2 with
p > 1. Then, A satisfies the required conditions and d�A(x, du) = 0 becomes the p-harmonic
equation

d�
(
du|du|p−2

)
= 0 (1.12)

for differential forms. If u is a function (0-form), (1.12) reduces to the usual p-harmonic
equation div(∇u|∇u|p−2) = 0 for functions. A remarkable progress has been made recently
in the study of different versions of the harmonic equations; see [3] for more details.

Let C∞(Ω,∧l) be the space of smooth l-forms on Ω and

W
(
Ω,∧l

)
=
{
u ∈ L1

loc

(
Ω,∧l

)
: u has generalized gradient

}
. (1.13)

The harmonic l-fields are defined by

H
(
Ω,∧l

)
=
{
u ∈ W

(
Ω,∧l

)
: du = d�u = 0, u ∈ Lp for some 1 < p < ∞

}
. (1.14)

The orthogonal complement of H in L1 is defined by

H⊥ =
{
u ∈ L1 :< u, h >= 0 for all h ∈ H

}
. (1.15)

Then, the Green’s operator G is defined as

G : C∞
(
Ω,∧l

)
−→ H⊥ ∩ C∞

(
Ω,∧l

)
(1.16)

by assigning G(u) to be the unique element of H⊥ ∩ C∞(Ω,∧l) satisfying Poisson’s equation
ΔG(u) = u−H(u), whereH is the harmonic projection operator that maps C∞(Ω,∧l) ontoH
so that H(u) is the harmonic part of u. See [4] for more properties of these operators.

For any locally Ls-integrable form u(y), the Hardy-Littlewood maximal operator Ms

is defined by

Ms(u) = sup
r>0

(
1

|B(x, r)|
∫

B(x,r)

∣
∣u
(
y
)∣
∣sdy

)1/s

, (1.17)
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where B(x, r) is the ball of radius r, centered at x, 1 ≤ s < ∞. We writeM(u) = M1(u) if s = 1.
Similarly, for a locally Ls-integrable form u(y), we define the sharp maximal operator M#

s by

M#
s(u) = sup

r>0

(
1

|B(x, r)|
∫

B(x,r)

∣
∣u
(
y
) − uB(x,r)

∣
∣sdy

)1/s

, (1.18)

where the l-form uB ∈ D′(B,∧l) is defined by

uB =

⎧
⎨

⎩

|B|−1
∫

B

u
(
y
)
dy, l = 0,

d(Tu), l = 1, 2, . . . , n
(1.19)

for all u ∈ Lp(B,∧l), 1 ≤ p < ∞, and T is the homotopy operator which can be found in [3].
Also, from [5], we know that both Ms(u) and M#

s(u) are L
s-integrable 0-form.

Differential forms, the Green’s operator, and maximal operators are widely used not
only in analysis and partial differential equations, but also in physics; see [2–4, 6–9]. Also, in
real applications, we often need to estimate the integrals with singular factors. For example,
when calculating an electric field, we will deal with the integral E(r) = (1/4πε0)

∫
D ρ(x)((r −

x)/‖r − x‖3)dx, where ρ(x) is a charge density and x is the integral variable. The integral
is singular if r ∈ D. When we consider the integral of the vector field F = ∇f , we have
to deal with the singular integral if the potential function f contains a singular factor, such
as the potential energy in physics. It is clear that the singular integrals are more interesting
to us because of their wide applications in different fields of mathematics and physics. In
recent paper [10], Ding and Liu investigated singular integrals for the composition of the
homotopy operator T and the projection operator H and established some inequalities for
these composite operators with singular factors. In paper [11], they keep working on the
same topic and derive global estimates for the singular integrals of these composite operators
in δ-John domains. The purpose of this paper is to estimate the Poincaré type inequalities for
the composition of the maximal operator and the Green’s operator over the δ-John domain.

2. Definitions and Lemmas

We first introduce the following definition and lemmas that will be used in this paper.

Definition 2.1. A proper subdomain Ω ⊂ R
n is called a δ-John domain, δ > 0, if there exists a

point x0 ∈ Ω which can be joined with any other point x ∈ Ω by a continuous curve γ ⊂ Ω so
that

d(ξ, ∂Ω) ≥ δ|x − ξ| (2.1)

for each ξ ∈ γ . Here d(ξ, ∂Ω) is the Euclidean distance between ξ and ∂Ω.
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Lemma 2.2 (see [12]). Let φ be a strictly increasing convex function on [0,∞) with φ(0) = 0 and
D a domain in R

n. Assume that u is a function in D such that φ(|u|) ∈ L1(D,μ) and μ({x ∈ D :
|u − c| > 0}) > 0 for any constant c, where μ is a Radon measure defined by dμ(x) = w(x)dx for a
weight w(x). Then, one has

∫

D

φ
(a

2
∣
∣u − uD,μ

∣
∣
)
dμ ≤

∫

D

φ(a|u|)dμ (2.2)

for any positive constant a, where uD,μ = (1/μ(D))
∫
D udμ.

Lemma 2.3 (see [13]). Each Ω has a modified Whitney cover of cubes V = {Qi} such that
⋃

i

Qi = Ω,
∑

Qi∈V
χ√5/4Qi

≤ NχΩ (2.3)

and someN > 1, and ifQi∩Qj /= ∅, then there exists a cube R (this cube need not be a member of V) in
Qi ∩Qj such thatQi ∪Qj ⊂ NR. Moreover, ifΩ is δ-John, then there is a distinguished cubeQ0 ∈ V
which can be connected with every cube Q ∈ V by a chain of cubes Q0 = Qj0 , Qj1 , . . . , Qjk = Q from
V and such that Q ⊂ ρQji , i = 0, 1, 2, . . . , k, for some ρ = ρ(n, δ).

Lemma 2.4 (see [14]). Let u be a smooth differential form satisfying (1.10) in a domainD, σ > 10 <
s, and t < ∞. Then, there exists a constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,σB (2.4)

for all balls B with σB ⊂ D, where σ > 1 is a constant.

Lemma 2.5 (see [5]). Let Ms be the Hardy-Littlewood maximal operator defined in (1.17), G the
Green’s operator, and u ∈ Lt(Ω,∧l), l = 1, 2, 3, . . . , n, 1 ≤ s < t < ∞, a smooth differential form in a
bounded domain Ω. Then,

‖Ms(G(u))‖t,Ω ≤ C‖u‖t,Ω (2.5)

for some constant C, independent of u.

Lemma 2.6 (see [5]). Let u ∈ Ls(Ω,∧l), l = 1, 2, 3, . . . , n, 1 ≤ s < ∞, be a smooth differential form
in a bounded domainΩ,M#

s the sharp maximal operator defined in (1.18), andG the Green’s operator.
Then,

∥
∥
∥M#

s(G(u))
∥
∥
∥
s,Ω

≤ C|Ω|1/s‖u‖s,Ω (2.6)

for some constant C, independent of u.

Lemma 2.7. Let u ∈ Lt
loc(Ω,∧l), l = 1, 2, . . . , n, be a smooth differential form satisfying the A-

harmonic equation (1.10) in convex domainΩ, G the Green’s operator, andMs the Hardy-Littlewood
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maximal operator defined in (1.17) with 1 < s < t < ∞. Then, there exists a constant C(n, t, α, λ, ρ),
independent of u, such that

(∫

B

|Ms(G(u))|t 1
d(x, ∂Ω)α

dx

)1/t

≤ C
(
n, t, α, λ, ρ

)|B|γ
(∫

ρB

|u|t 1

|x − xB|λ
dx

)1/t

(2.7)

for all balls B with ρB ⊂ Ω and any real number α and λ with α > λ ≥ 0 and γ = (λ − α)/nt, where
xB is the center of the ball and ρ > 1 is a constant.

Proof. Let ε ∈ (0, 1) be small enough such that εn < α−λ and B any ball with B ⊂ Ω, center xB

and radius rB. Taking k = t/(1 − ε), we see that k > t. Note that 1/t = 1/k + (k − t)/kt; using
Hölder’s inequality, we obtain

(∫

B

|Ms(G(u))|t 1
d(x, ∂Ω)α

dx

)1/t

=

⎛

⎝
∫

B

(

|Ms(G(u))| 1

d(x, ∂Ω)α/t

)t

dx

⎞

⎠

1/t

≤
(∫

B

|Ms(G(u))|kdx
)1/k

⎛

⎝
∫

B

(
1

d(x, ∂Ω)α/t

)kt/(k−t)
dx

⎞

⎠

(k−t)/kt

≤ ‖Ms(G(u))‖k,B
(∫

B

(d(x, ∂Ω))−αβdx
)1/βt

,

(2.8)

where β = k/(k − t). Since k > t > s, using Lemma 2.5, we get

‖Ms(G(u))‖k,B ≤ C1‖u‖k,B. (2.9)

Let m = ntk/(nt + αk − λk), then 0 < m < t < k. Using Lemma 2.4, we have

‖u‖k,B ≤ C2|B|(m−k)/mk‖u‖m,ρB, (2.10)

where ρ > 1 is a constant and ρB ⊂ Ω. By Hölder’s inequality with 1/m = 1/t + (t −m)/mt
again, we find

‖u‖m,ρB =

(∫

ρB

(
|u||x − xB|−λ/t|x − xB|λ/t

)m
dx

)1/m

≤
(∫

ρB

(
|u||x − xB|−λ/t

)t
dx

)1/t(∫

ρB

(
|x − xB|λ/t

)mt/(t−m)
dx

)(t−m)/mt

≤
(∫

ρB

|u|t|x − xB|−λdx
)1/t(∫

ρB

(|x − xB|mλ/(t−m)dx

)(t−m)/mt

.

(2.11)
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Note that d(x, ∂Ω) ≥ (ρ − 1)rB for all x ∈ B, it follows that

(d(x, ∂Ω))−αβ ≤ [(ρ − 1
)
rB
]−αβ

. (2.12)

Hence, we have

(∫

B

(d(x, ∂Ω))−αβdx
)1/βt

≤ [(ρ − 1
)
rB
]−α/t|B|1/βt

= C3(rB)−α/t|B|1/βt.
(2.13)

Now, by the elementary integral calculation, we obtain

(∫

ρB

(|x − xB|mλ/(t−m)dx

)(t−m)/mt

≤ C4
(
ρrB
)λ/t+n(t−m)/mt

. (2.14)

Substituting (2.9)–(2.14) into (2.8), we obtain

(∫

B

|Ms(G(u))|t 1
d(x, ∂Ω)α

dx

)1/t

< C5(rB)−α/t+λ/t+n(t−m)/mt|B|1/βt+(m−k)/mk

(∫

ρB

|u|t|x − xB|−λdx
)1/t

= C5(rB)n/k−n/t|B|1/t−1/k+(λ−α)/nt
(∫

ρB

|u|t|x − xB|−λdx
)1/t

= C6|B|1/k−1/t|B|1/t−1/k+(λ−α)/nt
(∫

ρB

|u|t|x − xB|−λdx
)1/t

= C6|B|(λ−α)/nt
(∫

ρB

|u|t|x − xB|−λdx
)1/t

= C
(
n, t, α, λ, ρ

)|B|γ
(∫

ρB

|u|t|x − xB|−λdx
)1/t

.

(2.15)

We have completed the proof.

Similarly, by Lemma 2.6, we can prove the following lemma.

Lemma 2.8. Let u ∈ Ls
loc(Ω,∧l), 1 < s < ∞, l = 1, 2, . . . , n, be a smooth differential form satisfying

the A-harmonic equation (1.10) in convex domain Ω, M#
s the sharp maximal operator defined in

(1.18), and G Green’s operator. Then, there exists a constant C(n, s, α, λ, ρ), independent of u, such
that

(∫

B

∣
∣
∣M#

s(G(u))
∣
∣
∣
s 1
d(x, ∂Ω)α

dx

)1/s

≤ C
(
n, s, α, λ, ρ

)|B|γ
(∫

ρB

|u|s 1

|x − xB|λ
dx

)1/s

(2.16)
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for all balls B with ρB ⊂ Ω and any real number α and λ with α > λ ≥ 0 and γ = 1/s − (λ − α)/ns,
where xB is the center of the ball and ρ > 1 is a constant.

3. Main Results

Theorem 3.1. Let u ∈ Lt
loc(Ω,∧l), l = 1, 2, . . . , n, be a smooth differential form satisfying the A-

harmonic equation (1.10),GGreen’s operator, andMs the Hardy-Littlewood maximal operator defined
in (1.17) with 1 < s < t < ∞. Then, there exists a constant C(n, ρ, t, α, λ,N,Q0,Ω), independent of
u, such that

(∫

Ω

∣
∣
∣Ms(G(u)) − (Ms(G(u)))Q0

∣
∣
∣
t 1
d(x, ∂Ω)α

dx

)1/t

≤ C
(
n, ρ, t, α, λ,N,Q0,Ω

)
(∫

Ω
|u|tg(x)dx

)1/t
(3.1)

for any bounded and convex δ-John domain Ω ⊂ R
n, where

g(x) =
∑

i

χρQi

1
∣
∣x − xQi

∣
∣λ
, (3.2)

ρ > 1 and α > λ ≥ 0 are constants, the fixed cube Q0 ⊂ Ω, the cubes Qi ⊂ Ω, the constant N > 1
appeared in Lemma 2.3, and xQi is the center of Qi.

Proof. First, we use Lemma 2.3 for the bounded and convex δ-John domain Ω. There is a
modified Whitney cover of cubes V = {Qi} for Ω such that Ω = ∪Qi, and

∑
Qi∈V χ√5/4Qi

≤
NχΩ for someN > 1. Moreover, there is a distinguished cubeQ0 ∈ Vwhich can be connected
with every cube Q ∈ V by a chain of cubes Q0 = Qj0 , Qj1 , . . . , Qjk = Q from V such that
Q ⊂ ρQji , i = 0, 1, 2, . . . , k, for some ρ = ρ(n, δ). Then, by the elementary inequality (a + b)s ≤
2s(|a|s + |b|s), s ≥ 0, we have

(∫

Ω

∣
∣
∣Ms(G(u)) − (Ms(G(u)))Q0

∣
∣
∣
t 1
d(x, ∂Ω)α

dx

)1/t

=

(∫

∪Qi

∣
∣
∣Ms(G(u)) − (Ms(G(u)))Q0

∣
∣
∣
t
dμ

)1/t

≤
⎛

⎝
∑

Qi∈V

(

2t
∫

Qi

∣
∣
∣Ms(G(u)) − (Ms(G(u)))Qi

∣
∣
∣
t
dμ

+2t
∫

Qi

∣
∣
∣(Ms(G(u)))Qi

− (Ms(G(u)))Q0

∣
∣
∣
t
dμ

))1/t
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≤ C1(t)

⎛

⎜
⎝

⎛

⎝
∑

Qi∈V

∫

Qi

∣
∣
∣Ms(G(u)) − (Ms(G(u)))Qi

∣
∣
∣
t
dμ

⎞

⎠

1/t

+

⎛

⎝
∑

Qi∈V

∫

Qi

∣
∣
∣(Ms(G(u)))Qi

− (Ms(G(u)))Q0

∣
∣
∣
t
dμ

⎞

⎠

1/t
⎞

⎟
⎠.

(3.3)

The first sum in (3.3) can be estimated by using Lemma 2.2 with ϕ = xt, a = 2, and
Lemma 2.7:

∑

Qi∈V

∫

Qi

∣
∣
∣Ms(G(u)) − (Ms(G(u)))Qi

∣
∣
∣
t
dμ

≤
∑

Qi∈V

∫

Qi

2t|Ms(G(u))|tdμ

≤ C2
(
n, ρ, t, α, λ,Ω

)∑

Qi∈V
|Qi|γt

∫

ρQi

|u|tdμi

≤ C3
(
n, ρ, t, α, λ,Ω

)|Ω|γt
∑

Qi∈V

∫

Ω

(
|u|tdμi

)
χρQi

= C4
(
n, ρ, t, α, λ,N,Ω

)|Ω|γt
∫

Ω
|u|tg(x)dx

= C5
(
n, ρ, t, α, λ,N,Ω

)
∫

Ω
|u|tg(x)dx,

(3.4)

where μ(x) and μi(x) are the Radon measures defined by dμ = (1/d(x, ∂Ω)α)dx and dμi(x) =
(1/|x − xQi |λ)dx, respectively.

To estimate the second sum in (3.3), we need to use the property of δ-John domain.
Fix a cubeQi ∈ V and letQ0 = Qj0 , Qj1 , . . . , Qjk = Qi be the chain in Lemma 2.3. Then we have

∣
∣
∣(Ms(G(u)))Qi

− (Ms(G(u)))Q0

∣
∣
∣ ≤

k−1∑

i=0

∣
∣
∣(Ms(G(u)))Qji

− (Ms(G(u)))Qji+1

∣
∣
∣. (3.5)

The chain {Qji} also has property that for each i, i = 0, 1, . . . , k − 1, Qji ∩ Qji+1 /= ∅. Thus, there
exists a cube Di such that Di ⊂ Qji ∩Qji+1 and Qji ∪Qji+1 ⊂ NDi,N > 1, so,

max
{∣
∣Qji

∣
∣,
∣
∣Qji+1

∣
∣
}

∣
∣Qji ∩Qji+1

∣
∣

≤ max
{∣
∣Qji

∣
∣,
∣
∣Qji+1

∣
∣
}

|Di| ≤ C6(N) (3.6)
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Note that

μ(Q) =
∫

Q

1
d(x, ∂Ω)α

dx

≥
∫

Q

1
(diam(Ω))α

dx

= C7(n, α,Ω)|Q|,

(3.7)

where C7(n, α,Ω) is a positive constant. By (3.6), (3.7), and Lemma 2.7, we have

∣
∣
∣(Ms(G(u)))Qji

− (Ms(G(u)))Qji+1

∣
∣
∣
t

=
1

μ
(
Qji ∩Qji+1

)

∫

Qji
∩Qji+1

∣
∣
∣(Ms(G(u)))Qji

− (Ms(G(u)))Qji+1

∣
∣
∣
t dx

d(x, ∂Ω)α

≤ C8(n, α,Ω)
∣
∣Qji ∩Qji+1

∣
∣

∫

Qji
∩Qji+1

∣
∣
∣(Ms(G(u)))Qji

− (Ms(G(u)))Qji+1

∣
∣
∣
t dx

d(x, ∂Ω)α

≤ C8(n, α,Ω)C6(N)
max

{∣
∣Qji

∣
∣,
∣
∣Qji+1

∣
∣
}

∫

Qji
∩Qji+1

∣
∣
∣(Ms(G(u)))Qji

− (Ms(G(u)))Qji+1

∣
∣
∣
t
dμ

≤ C9(n, t, α,N,Ω)
i+1∑

k=i

1
∣
∣Qjk

∣
∣

∫

Qjk

∣
∣
∣Ms(G(u)) − (Ms(G(u)))Qjk

∣
∣
∣
t
dμ

≤ C10
(
n, ρ, t, α, λ,N,Ω

) i+1∑

k=i

∣
∣Qjk

∣
∣γt

∣
∣Qjk

∣
∣

∫

ρQjk

|u|tdμjk

= C10
(
n, ρ, t, α, λ,N,Ω

) i+1∑

k=i

∣
∣Qjk

∣
∣γt−1

∫

ρQjk

|u|tdμjk

≤ C11
(
n, ρ, t, α, λ,N,Ω

) i+1∑

k=i

|Ω|γt−1
∫

Ω

(
|u|tdμjk

)
χρQjk

≤ C12
(
n, ρ, t, α, λ,N,Ω

)∑

Qi∈V

∫

Ω

(
|u|tdμi

)
χρQi

= C12
(
n, ρ, t, α, λ,N,Ω

)
∫

Ω
|u|tg(x)dx.

(3.8)

Then, by (3.5), (3.8), and the elementary inequality |∑M
i=1 ti|s ≤ Ms−1∑M

i=1 |ti|s, we finally
obtain

∑

Qi∈V

∫

Qi

∣
∣
∣(Ms(G(u)))Qi

− (Ms(G(u)))Q0

∣
∣
∣
t
dμ

≤ C13
(
n, ρ, t, α, λ,N,Ω

)∑

Qi∈V

∫

Qi

(∫

Ω
|u|tg(x)dx

)

dμ

= C13
(
n, ρ, t, α, λ,N,Ω

)
⎛

⎝
∑

Qi∈V

∫

Qi

dμ

⎞

⎠
∫

Ω
|u|tg(x)dx
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= C13
(
n, ρ, t, α, λ,N,Ω

)
(∫

Ω
dμ

)∫

Ω
|u|tg(x)dx

= C14
(
n, ρ, t, α, λ,N,Ω

)
μ(Ω)

∫

Ω
|u|tg(x)dx

= C15
(
n, ρ, t, α, λ,N,Ω

)
∫

Ω
|u|tg(x)dx.

(3.9)

Substituting (3.4) and (3.9) in (3.3), we have completed the proof of Theorem 3.1.

Using the proof method for Theorem 3.1 and Lemma 2.8, we get the following
theorem.

Theorem 3.2. Let u ∈ Ls
loc(Ω,∧l), l = 1, 2, . . . , n, be a smooth differential form satisfying the A-

harmonic equation (1.10), G Green’s operator, and M#
s the sharp maximal operator defined in (1.18).

Then, there exists a constant C(n, ρ, s, α, λ,N,Q0,Ω), independent of u, such that

(∫

Ω
|M#

s(G(u)) − (M#
s(G(u))Q0

|s 1
d(x, ∂Ω)α

dx

)1/s

≤ C
(
n, ρ, s, α, λ,N,Q0,Ω

)
(∫

Ω
|u|sg(x)dx

)1/s
(3.10)

for any bounded and convex δ-John domain Ω ⊂ R
n, where

g(x) =
∑

i

χρQi

1
∣
∣x − xQi

∣
∣λ
, (3.11)

ρ > 1 and α > λ ≥ 0 are constants, the fixed cube Q0 ⊂ Ω, the cubes Qi ⊂ Ω, the constant N > 1
appeared in Lemma 2.3, and xQi is the center of Qi.
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