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Using the notion of weakly F-contractive mappings, we prove several new common fixed point
theorems for commuting as well as noncommutingmappings on a topological spaceX. By analogy,
we obtain a common fixed point theorem of mappings which are strongly F-expansive on X.

1. Introduction

It is well known that if X is a compact metric space and f : X → X is a weakly contractive
mapping (see Section 2 for the definition), then f has a fixed point in X (see [1, p. 17]). In
late sixties, Furi and Vignoli [2] extended this result to α-condensing mappings acting on a
bounded complete metric space (see [3] for the definition). A generalized version of Furi-
Vignoli’s theorem using the notion of weakly F-contractive mappings acting on a topological
space was proved in [4] (see also [5]).

On the other hand, in [6] while examining KKM maps, the authors introduced
a new concept of lower (upper) semicontinuous function (see Definition 2.1, Section 2)
which is more general than the classical one. In [7], the authors used this definition of
lower semicontinuity to redefine weakly F-contractive mappings and strongly F-expansive
mappings (see Definition 2.6, Section 2 ) to formulate and prove several results for fixed
points.

In this article, we have used the notions of weakly F-contractive mappings (f : X →
X where X is a topological space) to prove a version of the above-mentioned fixed point
theorem [7, Theorem 1] for common fixed points (see Theorem 3.1). We also prove a common
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fixed point theorem under the assumption that certain iteration of the mappings in question
is weakly F-contractive. As a corollary to this fact, we get an extension (to common fixed
points) of [7, Theorem 3] for Banach spaces with a quasimodulus endowed with a suitable
transitive binary relation. The most interesting result of this section is Theorem 3.8 wherein
the strongly F-expansive condition on f (with some other conditions) implies that f and g
have a unique common fixed point.

In Section 4, we define a new class of noncommuting self-maps and prove some
common fixed point results for this new class of mappings.

2. Preliminaries

Definition 2.1 (see [6]). Let X be a topological space. A function f : X → R is said to be lower
semi-continuous from above (lsca) at x0 if for any net (xλ)λ∈Λ convergent to x0 with

f(xλ1) ≤ f(xλ2) for λ2 ≤ λ1, (2.1)

we have

f(x0) ≤ lim
λ∈Λ

f(xλ). (2.2)

A function f : X → R is said to be lsca if it is lsca at every x ∈ X.

Example 2.2. (i) Let X = R. Define f : X → R by

f(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x + 1, when x > 0,

1
2
, when x = 0,

−x + 1, when x < 0.

(2.3)

Let (zn)n≥1 be a sequence of nonnegative terms such that (zn)n≥1 converges to 0. Then

f(zn+1) ≤ f(zn) for λ2 = n ≤ n + 1 = λ1, f(0) =
1
2
< 1 = lim

n→∞
f(zn). (2.4)

Similarly, if (z′n)n≥1 is a sequence inX of negative terms such that (z′n)n≥1 converges to 0, then

f
(
z′n+1
) ≤ f

(
z′n
)

for λ2 = n ≤ n + 1 = λ1, f(0) =
1
2
< 1 = lim

n→∞
f
(
z′n
)
. (2.5)

Thus, f is lsca at 0.
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(ii) Every lower semi-continuous function is lsca but not conversely. One can check
that the function f : X → R with X = R defined below is lsca at 0 but is not lower semi-
continuous at 0:

f(x) =

⎧
⎨

⎩

x + 1, when x ≥ 0,

x, when x < 0.
(2.6)

The following lemmas state some properties of lsca mappings. The first one is an analogue
of Weierstrass boundedness theorem and the second one is about the composition of a
continuous function and a function lsca.

Lemma 2.3 (see [6]). Let X be a compact topological space and f : X → R a function lsca. Then
there exists x0 ∈ X such that f(x0) = inf{f(x) : x ∈ X}.

Lemma 2.4 (see [7]). Let X be a topological space and f : X → Y a continuous function. If g :
X → R is a function lsca, then the composition function h = g ◦ f : X → R is also lsca.

Proof. Fix x0 ∈ X ×X and consider a net (xλ)λ∈Λ in X convergent to x0 such that

h(xλ1) ≤ h(xλ2) for λ2 ≤ λ1. (2.7)

Set zλ = f(xλ) and z = f(x0). Then since f is continuous, limλf(xλ) = f(x0) ∈ X, and g lsca
implies that

g(z) = g
(
f(x0)

) ≤ lim
λ
g
(
f(xλ)

)
= lim

λ
g(zλ) (2.8)

with g(zλ1) ≤ g(zλ2) for λ2 ≤ λ1. Thus h(x0) ≤ limλh(xλ)) and h is lsca.

Remark 2.5 (see [6]). LetX be topological space. Let f : X → X be a continuous function and
F : X × X → R lsca. Then g : X → R defined by g(x) = F(x, f(x)) is also lsca. For this, let
(xλ)λ∈Λ be a net in X convergent to x ∈ X. Since f is continuous, limλf(xλ) = f(x). Suppose
that

g(xλ1) ≤ g(xλ2) for λ2 ≤ λ1. (2.9)

Then since F is lsca, we have

g(x) = F
(
x, f(x)

) ≤ lim
λ

F
(
xλ, f(xλ)

)
= lim

λ
g(xλ). (2.10)

Definition 2.6 (see [7]). Let X be a topological space and F : X ×X → R be lsca. The mapping
f : X → X is said to be

(i) weakly F-contractive if F(f(x), f(y)) < F(x, y) for all x, y,∈ X such that x /=y,

(ii) strongly F-expansive if F(f(x), f(y)) > F(x, y) for all x, y ∈ X such that x /=y.
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IfX is a metric space with metric d and F = d, then we call f, respectively, weakly contractive
and strongly expansive.

Let f, g : X → X. The set of fixed points of f (resp., g) is denoted by F(f) (resp.,
F(g)). A point x ∈ M is a coincidence point (common fixed point) of f and g if fx = gx
(x = fx = gx). The set of coincidence points of f and g is denoted by C(f, g). Maps f, g :
X → X are called (1) commuting if fgx = gfx for all x ∈ X, (2) weakly compatible [8] if
they commute at their coincidence points, that is, if fgx = gfx whenever fx = gx, and (3)
occasionally weakly compatible [9] if fgx = gfx for some x ∈ C(f, g).

3. Common Fixed Point Theorems for Commuting Maps

In this section we extend some results in [7] to the setting of two mappings having a unique
common fixed point.

Theorem 3.1. Let X be a topological space, x0 ∈ X, and f, g : X → X self-mappings such that for
every countable setU ⊆ X,

U = f(U) ∪ {g(x0)
}
=⇒ U is relatively compact (3.1)

and f , g commute on X. If

(i) f is continuous and weakly F-contractive or

(ii) g is continuous and weakly F-contractive with g(U) ⊆ U,

then f and g have a unique common fixed point.

Proof. Let x1 = g(x0) and define the sequence (xn)n≥1 by setting xn+1 = f(xn) for n ≥ 1. Let
A = {xn : n ≥ 1}. Then

A = f(A) ∪ {g(x0)
}
, (3.2)

so by hypothesis A is compact. Define ϕ : A −→ R, by

ϕ(x) =

⎧
⎨

⎩

F
(
x, f(x)

)
if f is continuous,

F
(
x, g(x)

)
if g is continuous.

(3.3)

Now if f or g is continuous and since F is lsca, then by Remark 2.5, ϕ is lsca. So by Lemma 2.3,
ϕ has a minimum at, say, a ∈ A.

(i) Suppose that f is continuous and weakly F-contractive. Then ϕ(x) = F(x, f(x)) as f is
continuous. Now observe that if a ∈ A, f is continuous, and f(A) ⊆ A, then f(a) ∈ A. We
show that f(a) = a. Suppose that f(a)/=a; then

ϕ
(
f(a)

)
= F
(
f(a), f

(
f(a)

))
< F
(
a, f(a)

)
= ϕ(a), (3.4)
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a contradiction to theminimality of ϕ at a.Having f(a) = a, one can see that g(a) = a. Indeed,
if g(a)/=a then we have

F
(
a, g(a)

)
= F
(
f(a), gf(a)

)
= F
(
f(a), fg(a)

)
< F
(
a, g(a)

)
(3.5)

a contradiction.
(ii) Suppose that g is continuous and weakly F-contractive with g(U) ⊆ U. Then ϕ(x) =

F(x, g(x)) as g is continuous. Put U = A; then a ∈ A, g is continuous, and g(A) ⊆ A implies
that g(a) ∈ A. We claim that g(a) = a, for otherwise we will have

ϕ
(
g(a)

)
= F
(
g(a), g

(
g(a)

))
< F
(
a, g(a)

)
= ϕ(a) (3.6)

which is a contradiction. Hence the claim follows.
Now suppose that f(a)/=a then we have

F
(
a, f(a)

)
= F
(
g(a), fg(a)

)
= F
(
g(a), gf(a)

)
< F
(
a, f(a)

)
, (3.7)

a contradiction, hence f(a) = a.
In both cases, uniqueness follows from the contractive conditions: suppose there exists

b ∈ A such that f(b) = b = g(b). Then we have

F(a, b) = F
(
f(a), f(b)

)
< F(a, b),

F(a, b) = F
(
g(a), g(b)

)
< F(a, b)

(3.8)

which is false. Thus f and g have a unique common fixed point.
If g = idX , then Theorem 3.1(i) reduces to [7, Theorem 1].

Corollary 3.2 (see [7, Theorem 1]). Let X be a topological space, x0 ∈ X, and f : X → X
continuous and weakly F-contractive. If the implicationU ⊆ X,

U = f(U) ∪ {x0} =⇒ U is relatively compact, (3.9)

holds for every countable setU ⊆ X, then f has a unique fixed point.

Example 3.3. Let (c0, ‖ · ‖∞) be the Banach space of all null real sequences. Define

X =
{
x = (xn)n≥1 ∈ c0 : xn ∈ [0, 1], for n ≥ 1

}
. (3.10)

Let k ∈ N and (pn)n≥1 ⊆ [0, 1) a sequence such that

(pn)n≤k ⊆ {0}, (
pn
)

n>k ⊆ (0, 1) (3.11)
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with pn → 1 as n → ∞. Define the mappings f, g : X → X by

f(x) =
(
fn(xn)

)

n≥1, g(x) =
(
gn(xn)

)

n≥1, (3.12)

where x ∈ X, xn ∈ [0, 1] and fn, gn : [0, 1] → [0, 1] are such that for 1 ≤ n ≤ k,

∣
∣fn(xn) − fn

(
yn

)∣
∣ =

∣
∣xn − yn

∣
∣

2
, (3.13)

∣
∣gn(xn) − gn

(
yn

)∣
∣ =

∣
∣xn − yn

∣
∣

3
, (3.14)

and for n > k

fn(xn) =
pnxn

2
, gn(xn) =

pnxn

3
. (3.15)

We verify the hypothesis of Theorem 3.1.

(i) Observe that f and g are, clearly, continuous by their definition.

(ii) For x, y ∈ X,we have

∥
∥f(x) − f

(
y
)∥
∥ = sup

n≥1

∣
∣fn(xn) − fn

(
yn

)∣
∣,

∥
∥g(x) − g

(
y
)∥
∥ = sup

n≥1

∣
∣gn(xn) − gn

(
yn

)∣
∣.

(3.16)

Since the sequences (fn(xn))n≥1 and (gn(xn))n≥1 are null sequences, there exists N ∈ N such
that

sup
n≥1

∣
∣fn(xn) − fn

(
yn

)∣
∣ =
∣
∣fN(xN) − fN

(
yN

)∣
∣,

sup
n≥1

∣
∣gn(xn) − gn

(
yn

)∣
∣ =
∣
∣gN(xN) − gN

(
yN

)∣
∣.

(3.17)

Hence

∥
∥fn(xn) − fn

(
yn

)∥
∥ =
∣
∣fN(xN) − fN

(
yN

)∣
∣ <
∣
∣xN − yN

∣
∣ = sup

n≥1

∣
∣xn − yn

∣
∣ =
∥
∥xn − yn

∥
∥,

∥
∥gn(xn) − gn

(
yn

)∥
∥ =
∣
∣gN(xN) − gN

(
yN

)∣
∣ <
∣
∣xN − yN

∣
∣ = sup

n≥1

∣
∣xn − yn

∣
∣ =
∥
∥xn − yn

∥
∥.

(3.18)

This implies that f and g are weakly contractive. Thus f and g are continuous and weakly
contractive. Next suppose that for any countable setU ⊆ X, we have

U = f(U) ∪ {g(0c0)
}
, (3.19)
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then by the definition of f , we can considerU ⊆ [0, 1].Hence closure ofU being closed subset
of a compact set is compact. Also

fg(x) =

(
(pn)

2

2
xn

)

n≥N
= gf(x) for every x ∈ U. (3.20)

So by Theorem 3.1, f and g have a unique common fixed point.

Corollary 3.4. Let (X, d) be a metric space, x0 ∈ X, and f, g : X → X self-mappings such that for
every countable setU ⊆ X,

U = f(U) ∪ {g(x0)
}
=⇒U is relatively compact, (3.21)

and f , g commute on X. If

(i) f is continuous and weakly contractive or

(ii) g is continuous and weakly contractive with g(U) ⊆ U,

then f and g have a unique common fixed point.

Proof. It is immediate from Theorem 3.1 with F = d.

Corollary 3.5. Let X be a compact metric space, x0 ∈ X, and f, g : X → X self-mappings such that
for every countable setU ⊆ X,

U = f(U) ∪ {g(x0)
}
=⇒ U is closed (3.22)

and f , g commute on X. If

(i) f is continuous and weakly contractive or

(ii) g is continuous and weakly F-contractive with g(U) ⊆ U,

then f and g have a unique common fixed point.

Proof. It is immediate from Theorem 3.1.

Theorem 3.6. Let X be a topological space, x0 ∈ X, and f, g : X → X self-mappings such that for
every countable setU ⊆ X,

(1)U = f(U) ∪ {g(x0)} =⇒ U is relatively compact;
(2)U = fk(U) ∪ {g(x0)} =⇒ U is relatively compact for some k ∈ N;
(3)U = fk(U) ∪ {gk(x0)} =⇒ U is relatively compact for some k ∈ N.

And f , g commute on X. Further, if

(i) f is continuous and fk weakly F-contractive or

(ii) g is continuous and gk weakly F-contractive with g(U) ⊆ U,
(3.23)

then f and g have a unique common fixed point.
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Proof. Part (3): we proceed as in Theorem 3.1. Let x1 = gk(x0) for some k ∈ N and define the
sequence (xn)n≥1 by setting xn+1 = fk(xn) for n ≥ 1. Let A = {xn : n ≥ 1}. Then

A = fk(A) ∪
{
gk(x0)

}
, (3.24)

so by hypothesis (3), A is compact. Define ϕ : A → R by

ϕ(x) =

⎧
⎨

⎩

F
(
x, fk(x)

)
if f is continuous,

F
(
x, gk(x)

)
if g is continuous.

(3.25)

Now since F is lsca and if f or g is continuous, then by Remark 2.5 ϕwould be lsca and hence
by Lemma 2.3, ϕwould have a minimum, say, at a ∈ A.

(i) Suppose that f is continuous and fkweakly F-contractive. Then ϕ(x) = F(x, fk(x)) as f
is continuous. Now observe that a ∈ A, f is continuous, and f(A) ⊆ A implies that
fk is continuous and fk(A) ⊆ A and so fk(a) ∈ A for some k ∈ N. We show that
fk(a) = a. Suppose that fk(a)/=a for any k ∈ N, then

ϕ
(
fk(a)

)
= F
(
fk(a), fk

(
fk(a)

))
< F
(
a, fk(a)

)
= ϕ(a), (3.26)

a contradiction to the minimality of ϕ at a. Therefore, fk(a) = a, for some k ∈ N. One can
check that g(a) = a. Suppose that gk(a)/=a, then we have

F
(
a, gk(a)

)
= F
(
fk(a), gk

(
fk(a)

))

= F
(
fk(a), fk

(
gk(a)

))
< F
(
a, gk(a)

) (3.27)

a contradiction. Thus a is a common fixed point of fk and gk and hence of f and g.
(ii) Suppose that g is continuous and gk weakly F-contractivewith g(U) ⊆ U. Then ϕ(x) =

F(x, gk(x)) as g is continuous. Put U = A. Then a ∈ A, g continuous and g(A) ⊆ A imply
that gk(a) ∈ A. We claim that gk(a) = a, for otherwise we will have

ϕ
(
gk(a)

)
= F
(
gk(a), gk

(
gk(a)

))
< F
(
a, gk(a)

)
= ϕ(a) (3.28)

which is a contradiction. Hence the claim follows.
Now suppose that fk(a)/=a then we have

F
(
a, fk(a)

)
= F
(
gk(a), fk

(
gk(a)

))

= F
(
gk(a), gk

(
fk(a)

))
< F
(
a, fk(a)

) (3.29)
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a contradiction, hence fk(a) = a. Thus a is a common fixed point of fk and gk and hence of f
and g.

Now we establish the uniqueness of a. Suppose there exists b ∈ A such that fk(b) =
b = gk(b) for some k ∈ N. Now if f is continuous and fk is weakly F-contractive, then we
have

F(a, b) = F
(
fk(a), fk(b)

)
< F(a, b) (3.30)

and if g is continuous and gk is weakly F-contractive, then we have

F(a, b) = F
(
gk(a), gk(b)

)
< F(a, b) (3.31)

which is false. Thus fk and gk have a unique common fixed point which obviously is a unique
common fixed point of f and g.

Part (2). The conclusion follows if we set h = gk in part (3).
Part (1). The conclusion follows if we set S = fk and T = gk in part (3).
A nice consequence of Theorem 3.6 is the following theorem where X is taken as a

Banach space equipped with a transitive binary relation.

Theorem 3.7. Let X = (X, ‖ · ‖) be a Banach space with a transitive binary relation � such that
‖x‖ ≤ ‖y‖ for x, y ∈ X with x � y. Suppose, further, that the mappings A,m : X → X are such
that the following conditions are satisfied:

(i) 0 � m(x) and ‖m(x)‖ = ‖x‖ for all x ∈ X;

(ii) 0 � x � y, then Ax � Ay;

(iii) A is bounded linear operator and ‖Akx‖ < ‖x‖ for some k ∈ N and for all x ∈ X such that
x /= 0 with 0 � x.

If either

(a) m
(
f(x) − f

(
y
))

� Am
(
g(x) − g

(
y
))

and g is contractive,

(b) m
(
g(x) − g

(
y
))

� Am
(
f(x) − f

(
y
))

and f is contractive,
(3.32)

for all x, y ∈ X with f, g commuting on X and if one of the conditions, (1)–(3), of Theorem 3.6 holds,
then f and g have a unique common fixed point.

Proof. (a) Suppose thatm(f(x)−f(y)) � Am(g(x)−g(y)) for all x, y ∈ Xwith f, g commuting
on X and g is contractive. Then we have

0 � m
(
f(x) − f

(
y
))

� Am
(
g(x) − g

(
y
))
.

(3.33)
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Next

0 � m
(
f2(x) − f2(y

))

� Am
(
gf(x) − gf

(
y
))

= Am
(
fg(x) − fg

(
y
))

� A2m
(
g(x) − g

(
y
))
.

(3.34)

Therefore, after k-steps, k ∈ N, we get

0 � m
(
fk(x) − fk(y

))

� Akm
(
g(x) − g

(
y
))
.

(3.35)

Hence,

∥
∥
∥fk(x) − fk(y

)∥∥
∥ =
∥
∥
∥m
(
fk(x) − fk(y

))∥∥
∥

≤
∥
∥
∥Akm

(
g(x) − g

(
y
))∥∥
∥

<
∥
∥m
(
g(x) − g

(
y
))∥
∥

=
∥
∥g(x) − g

(
y
)∥
∥

≤ ∥∥x − y
∥
∥.

(3.36)

So fk is weakly contractive. Since f is continuous (as A is bounded and g contractive) by
Theorem 3.6, f and g have a unique common fixed point.

(b) Suppose thatm(g(x)−g(y)) � Am(f(x)−f(y)) and f is contractive for all x, y ∈ X
with f, g commuting on X and f being contractive. The proof now follows if we mutually
interchange f, g in (a) above.

Theorem 3.8. Let X be a topological space, Y ⊂ Z ⊂ X with Y closed and x0 ∈ Y. Let f, g : Y → Z
be mappings such that for every countable setU ⊆ Y,

f(U) = U ∪ {g(x0)
}
=⇒ U is relatively compact (3.37)

and f , g commute on X. If f is a homeomorphism and strongly F-expansive, then f and g have a
unique common fixed point.

Proof. Suppose that f is a homeomorphism and strongly F-expansive. Let z,w ∈ Z with
z/=w. Then there exists x, y ∈ Y such that z = f(x) and w = f(y) or f−1(z) = x and f−1(w) =
y. Since f is strongly F-expansive, we have

F(z,w) = F
(
f(x), f

(
y
))

> F
(
x, y
)
= F
(
f−1(z), f−1(w)

)
, (3.38)
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or

F
(
f−1(z), f−1(w)

)
< F(z,w). (3.39)

So f−1 is a weakly F-contractive mapping. Choose any countable subset V of Z and set B =
V ∩ Y. Suppose that

B = f−1(B) ∪ {g(x0)
}
. (3.40)

Then f−1(B) = U for some U ⊆ Y and we get

f(U) = U ∪ {g(x0)
}
. (3.41)

So by hypothesisU is compact and since f is a homeomorphism, (f(U) =)B is compact. Since
fg(x) = gf(x) for every x ∈ U and f−1(B) = U, we have

f−1g(x) = f−1g
(
ff−1(x)

)
= f−1(gf

)(
f−1(x)

)
= f−1(fg

)(
f−1(x)

)
= gf−1(x) (3.42)

for every x ∈ B. Thus

B = f−1(B) ∪ {g(x0)
}
=⇒ B is relatively compact (3.43)

and f−1g(x) = gf−1(x) for every x ∈ B. Since f−1 is continuous and weakly F-contractive, by
Theorem 3.1, the mappings f−1 and g have a unique common fixed point, say, a ∈ B. Since
f−1(a) = a implies that a = f(a), so a is a unique common fixed point of f and g.

The following example illustrates Theorem 3.8.

Example 3.9. Let X = R
2 with the River metric d : X ×X → R+ defined by

d
(
x, y
)
=

⎧
⎨

⎩

δ
(
x, y
)

if x, y are collinear,

δ(x, 0) + δ
(
0, y
)
, otherwise,

(3.44)

where x = (x1, y1), y = (x2, y2), and δ denotes the Euclidean metric on X. Then X is a
topological space with a topology induced by the metric d. Consider the sets Y,Z defined
by

Y =
{
(u, v) ∈ R

2 : u = v ∈ [0, 1]
}
,

Z =
{

(u, v) ∈ R
2 : u = v ∈

[

0,
3
2

]}

.

(3.45)
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Let the mappings f, g : Y → Z be defined by f(u, v) = ((3/2)u, (3/2)v) and g(u, v) =
((2/3)u, (2/3)v) for (u, v) ∈ Y. Then f is clearly a homeomorphism and for an arbitrary
countable subset A of Y and x0 = (0, 0) ∈ Y ,

f(A) = A ∪ {g(x0)
}
. (3.46)

If and only if A = {(0, 0)}. Indeed, if (u, v) ∈ A such that (u, v)/= (0, 0), then

f(A) =
3
2
A/=A ∪ {(0, 0)} = A ∪ {g(x0)

}
. (3.47)

Further, fg(u, v) = gf(u, v) for every (u, v) ∈ Y. Set F(u, v) = ρ(u, v) where ρ : X × X → R+

is the Radial metric defined by

ρ
(
x, y
)
=

⎧
⎨

⎩

∣
∣y1 − y2

∣
∣ if x1 = x2,

∣
∣y1
∣
∣ +
∣
∣y2
∣
∣ + |x1 − x2| if x1 /=x2,

(3.48)

and x = (x1, y1); y = (x2, y2). Now for x, y ∈ Y, since

F
(
f(x), f

(
y
))

= ρ
(
f(x), f

(
y
))

=
3
2
ρ
(
x, y
)
> ρ
(
x, y
)
= F
(
x, y
)
, (3.49)

f is strongly F-expansive. Also F = ρ : (X, d) × (X, d) → R+ is lower semi-continuous and
hence lsca. Thus all the conditions of Theorem 3.8 are satisfied and f and g have a unique
common fixed point.

4. Occasionally Banach Operator Pair and Weak F-Contractions

In this section, we define a new class of noncommuting self-maps and prove some common
fixed point results for this new class of maps.

The pair (T, I) is called a Banach operator pair [10] if the set F(I) is T -invariant, namely,
T(F(I)) ⊆ F(I). Obviously, commuting pair (T, I) is a Banach operator pair but converse is
not true, in general; see [10–13]. If (T, I) is a Banach operator pair, then (I, T) need not be a
Banach operator pair.

Definition 4.1. The pair (T, I) is called occasionally Banach operator pair if

d(u, Tu) ≤ diam F(I) for some u ∈ F(I). (4.1)

Clearly, Banach operator pair (BOP) (T, I) is occasionally Banach operator pair (OBOP) but
not conversely, in general.

Example 4.2. Let X = R = M with usual norm. Define I, T : M → M by Ix = x2 and
Tx = 2−x2, for x /= −1 and I(−1) = T(−1) = 1/2. F(I) = {0, 1} and C(I, T) = {−1, 1}. Obviously
(T, I) is OBOP but not BOP as T0 = 2/∈F(I). Further, (T, I) is not weakly compatible and hence
not commuting.
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Example 4.3. Let X = R with usual norm and M = [0, 1]. Define T, I : M → M by

Tx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
, if x ∈

[

0,
1
4

]

,

1 − 2x, if x ∈
[
1
4
,
1
2

]

,

0, if x ∈
[
1
2
, 1
]

,

(4.2)

Ix =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2x, if x ∈
[

0,
1
2

]

,

1, if x ∈
[
1
2
, 1
]

.

(4.3)

Here F(I) = {0, 1} and T(0) = 1/2/∈F(I) implies that (T, I) is not Banach operator pair.
Similarly, (I, T) is not Banach operator pair. Further,

|0 − T(0)| =
∣
∣
∣
∣0 −

1
2

∣
∣
∣
∣ =

1
2
≤ 1 = diam(F(I)) (4.4)

imply that (T, I) is OBOP. Further, note that C(T, I) = {1/4} and TI(1/4) /= IT(1/4). Hence
{T, I} is not occasionally weakly compatible pair.

Definition 4.4. Let X be a nonempty set and d : X ×X → [0,∞) be a mapping such that

d
(
x, y
)
= 0 if and only if x = y. (4.5)

For a space (X, d) satisfying (4.5) and A ⊆ X, the diameter of A is defined by

diam(A) = sup
{
d
(
x, y
)
: x, y ∈ A

}
. (4.6)

Here we extend this concept to the space (X, d) satisfying condition (4.5).

Definition 4.5. Let (X, d) be a space satisfying (4.5). The pair (T, I) is called occasionally Banach
operator pair on X iff there is a point u in X such that u ∈ F(I) and

d(u, Tu) ≤ diam(F(I)), d(Tu, u) ≤ diam(F(I)). (4.7)

Theorem 4.6. Let X be a topological space, x0 ∈ X, and f, g : X → X self-mappings such that for
every countable setU ⊆ X,

U = f(U) ∪ {x0} =⇒ U is relatively compact. (4.8)
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If f is continuous and weakly F-contractive, F satisfies condition (4.5), and the pair (g, f) is
occasionally Banach operator pair, then f and g have a unique common fixed point.

Proof. By Corollary 3.2, F(f) is a singleton. Let u ∈ F(f). Then, by our hypothesis,

d
(
u, gu

) ≤ diam F
(
f
)
= 0. (4.9)

Therefore, u = gu = fu. That is, u is unique common fixed point of f and g.

Corollary 4.7. Let (X, d) be a metric space, x0 ∈ X, and f, g : X → X self-mappings such that for
every countable setU ⊆ X,

U = f(U) ∪ {x0} =⇒ U is relatively compact. (4.10)

If f is continuous and weakly contractive and the pair (g, f) is occasionally Banach operator pair, then
f and g have a unique common fixed point.

Proof. It is immediate from Theorem 4.6 with F = d.

Corollary 4.8. Let X be a compact metric space, x0 ∈ X, and f, g : X → X self-mappings such that
for every countable setU ⊆ X,

U = f(U) ∪ {x0} =⇒ U is closed. (4.11)

If f is continuous and weakly contractive and the pair (g, f) is occasionally Banach operator pair, then
f and g have a unique common fixed point.

Proof. It is immediate from Theorem 4.6.

Theorem 4.6 holds for a Banach operator pair without condition (4.5) as follows.

Theorem 4.9. Let X be a topological space, x0 ∈ X, and f, g : X → X self-mappings such that for
every countable setU ⊆ X,

U = f(U) ∪ {x0} =⇒ U is relatively compact. (4.12)

If f is continuous and weakly F-contractive and the pair (g, f) is a Banach operator pair, then f and
g have a unique common fixed point.

Proof. By Corollary 3.2, F(f) is a singleton. Let u ∈ F(f). As (g, f) is a Banach operator pair,
by definition g(F(f)) ⊂ F(f). Thus gu ∈ F(f) and hence u = gu = fu. That is, u is unique
common fixed point of f and g.

Corollary 4.10. Let (X, d) be a metric space, x0 ∈ X, and f, g : X → X self-mappings such that for
every countable setU ⊆ X,

U = f(U) ∪ {x0} =⇒ U is relatively compact. (4.13)
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If f is continuous and weakly contractive and the pair (g, f) is a Banach operator pair, then f and g
have a unique common fixed point.
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