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Let {X,Xn;n ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random
variables, and X is in the domain of the normal law and EX = 0. In this paper, we obtain a general
law of complete moment convergence for self-normalized sums.

1. Introduction and Main Results

Let {X,Xn;n ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random
variables and put

Sn =
n∑

k=1

Xk, V 2
n =

n∑

k=1

X2
k, (1.1)

for n ≥ 1.We have the famous result following, that is, the complete convergence, for 0 < p < 2
and r ≥ p,

∞∑

n=1

nr/p−2P
(
|Sn| ≥ εn1/p

)
< ∞, ε > 0 (1.2)

if and only if E|X|r < ∞ and when r ≥ 1,EX = 0. For r = 2, p = 1, the sufficiency was proved
by Hsu and Robbins [1], and the necessity by Erdös [2, 3]. For the case r = p = 1, we refer to
Spitzer [4], and one can refer to Baum and Katz [5] for the general result. Note that the sums
obviously tend to infinity as ε ↘ 0. Thus it is interesting to discuss the precise rate and limit
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the value of
∑∞

n=1 ϕ(n)P(|Sn| ≥ εh(n)) as ε ↘ a, a ≥ 0, where ϕ(x) and h(x) are the positive
functions defined on [0,∞). We call ϕ(x) and h(x)weighted function and boundary function,
respectively. The first result in this direction was due to Heyde [6], who proved that

lim
ε↘0

ε2
∞∑

n=1

P(|Sn| ≥ εn) = EX2, (1.3)

if and only if EX = 0 and EX2 < ∞. Later, Chen [7] and Gut and Spătaru [8] both studied the
precise asymptotics of the infinite sums as ε ↘ 0. Moreover, Gut and Spătaru [9, 10] studied
the precise asymptotics of the law of the iterated logarithm and the precise asymptotics for
multidimensionally indexed random variables. Lanzinger and Stadtmüller [11], Spătaru [12,
13], and Huang and Zhang [14] obtained the precise rates in some different cases. While,
Chow [15] discussed the complete moment convergence of i.i.d. random variables. He got
the following result.

Theorem A. Let {Y, Yk; k ≥ 1} be a sequence of i.i.d. random variables with EY1 = 0. Suppose that
p ≥ 1, α > 1/2, pα > 1, and E{|Y |p + |Y | log(1 + |Y |)} < ∞. Then for any ε > 0, one has

∞∑

n=1

npα−2−αE

{
max
j≤n

∣∣∣∣∣

j∑

k=1

Yk

∣∣∣∣∣ − εnα

}

+

< ∞, (1.4)

where {x}+ = max(x, 0).

An important observation is that

∞∑

n=1

npα−2−αE

{
max
j≤n

∣∣∣∣∣

j∑

k=1

Yk

∣∣∣∣∣ − εnα

}

+

=
∞∑

n=1

npα−2−α
∫∞

0
P

(
max
j≤n

∣∣∣∣∣

j∑

k=1

Yk

∣∣∣∣∣ ≥ x + εnα

)
dx

=
∫∞

0

∞∑

n=1

npα−2−αP

(
max
j≤n

∣∣∣∣∣

j∑

k=1

Yk

∣∣∣∣∣ ≥
(
ε + y

)
nα

)
nαdy

=
∫∞

0

∞∑

n=1

npα−2P

(
max
j≤n

∣∣∣∣∣

j∑

k=1

Yk

∣∣∣∣∣ ≥
(
ε + y

)
nα

)
dy.

(1.5)

From (1.5), we obtain that the complete moment convergence implies the complete
convergence, that is, under the conditions of Theorem A, result (1.4) implies that

∞∑

n=1

npα−2P

(
max
j≤n

∣∣∣∣∣

j∑

k=1

Yk

∣∣∣∣∣ ≥ εnα

)
< ∞ ∀ε > 0. (1.6)

Thus, the complete moment convergence rates can reflect the convergence rates more directly
than exact probability convergence rates.

For the investigation of complete moment convergence, some authors have researched
it in different directions. For example, Jiang and Zhang [16] derived the precise asymptotics
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in the law of the iterated logarithm for the moment convergence of i.i.d. random variables by
using the strong approximation method.

TheoremB. Let {X,Xn;n ≥ 1} be a sequence of i.i.d. random variables withEX = 0,EX2 = σ2 < ∞,
and E(|X|2r/ log(|X|)r) < ∞. Set Sn =

∑n
k=1 Xk, n ≥ 1. Then for r > 1, one has

lim
ε↘√

r−1

1
− log(ε2 − (r − 1))

∞∑

n=1

nr−2−1/2E
{
|Sn| − σε

√
2n logn

}

+
=

σ

(r − 1)
√
2π

. (1.7)

Liu and Lin [17] introduced a new kind of complete moment convergence, Li [18] got
precise asymptotics in complete moment convergence of moving-average processes, Zang
and Fu [19] obtained precise asymptotics in complete moment convergence of the associated
counting process, and Fu [20] also investigated asymptotics for the moment convergence of
U-Statistics in LIL.

On the other hand, the so-called self-normalized sum is of the form Sn/Vn. Using this
notation we can write the classical Student t-statistics as

Tn =
Sn/Vn√(

n − (Sn/Vn)
2
)
/(n − 1)

.
(1.8)

In the recent years, the limit theorems for self-normalized sum Sn/Vn or, equivalently,
Student t-statistics Tn, have attracted more and more attention. Bentkus and Götze [21]
obtained Berry-Esseen inequalities for self-normalized sums. Wang and Jing [22] derived
exponential nonuniform Berry-Esseen bound. Hu et al. [23] achieved cramér type moderate
deviations for the maximum of self-normalized sums. Giné et al. [24] established asymptotic
normality of self-normalized sums as follows.

Theorem C. Let {X,Xn;n ≥ 1} be a sequence of i.i.d. random variables with EX1 = 0. Then for any
x ∈ R,

lim
n→∞

P

(
Sn

Vn
≤ x

)
= Φ(x) (1.9)

holds if and only if X is in the domain of attraction of the normal law, where Φ(x) is the distribution
function of the standard normal random variable.

Meanwhile, Shao [25] showed a self-normalized large deviation result for P(Sn/Vn ≥
x
√
n)without any moment conditions.

Theorem D. Let {Xn;n ≥ 1} be a sequence of positive numbers with xn → ∞ and xn = o(
√
n) as

n → ∞. If EX = 0 and EX2I(|X| ≤ x) is slowly varying as x → ∞, then

lim
n→∞

x−2
n lnP

(
Sn

Vn
≥ xn

)
= −1

2
. (1.10)
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In view of this theorem, and by applying −Xis to it, one can obtain that for large
enough n and any 0 < a ≤ 1/4, there exist C and b such that P(|Sn|/Vn > x) ≤ Ce−(1/2−a)x

2
for

b < x < n1/2/b. In particular, for b < x < n1/2/b, there exists C > 0 such that

P

( |Sn|
Vn

> x

)
≤ Ce−x

2/4. (1.11)

Inspired by the above results, the purpose of this paper is to study a general law of
complete moment convergence for self-normalized sums. Our main result is as follows.

Theorem 1.1. Suppose X is in the domain of attraction of the normal law and EX = 0. Assume that
g(x) is differentiable on the interval [0,+∞), which is strictly increasing to ∞, and differentiable
function g ′(x) is nonnegative. Suppose that g ′(x)/g(x) is monotone and gs(n) = o(

√
n). If

g ′(x)/g(x) is monotone nondecreasing, one assumes that limx→∞(g ′(x+1)g(x)/g(x+1)g ′(x)) = 1.
Then, for s > 0, one has

lim
ε↘0

1
− log ε

∞∑

n=1

g ′(n)
g(n)

E

{ |Sn|
Vn

− εgs(n)
}

+
=

1
s
. (1.12)

Remark 1.2. In Theorem 1.1, the condition gs(n) = o(
√
n) is mild. For example, g(x) =

xα, (logx)β, (log logx)γ with some suitable conditions of α > 0, β > 0, and γ > 0 and some
others all satisfy this condition.

Remark 1.3. If 0 < σ2 = EX2 < ∞, by the strong law of large numbers, we have V 2
n/n →

σ2, a.s. Then, we can easily obtain the following result:

lim
ε↘0

1
− log ε

∞∑

n=1

g ′(n)√
ng(n)

E
{|Sn| − εσ

√
ngs(n)

}
+ =

σ

s
. (1.13)

Obviously, our main result is the generalization of i.i.d. random variables which have the
finiteness of the second moments.

As examples, in Theorem 1.1, we can obtain some corollaries by choosing different
s > 0 and g(x) as follows.

Corollary 1.4. Let g(x) = (log logx)b+1, s = 1/2(b + 1), where b > −1, one has

lim
ε↘0

1
− log ε

∞∑

n=1

1
n logn log logn

E

{ |Sn|
Vn

− ε
√
log logn

}

+
= 2. (1.14)

Corollary 1.5. Let g(x) = (logx)b+1, s = 1/2(b + 1), where b > −1, one has

lim
ε↘0

1
− log ε

∞∑

n=1

1
n logn

E

{ |Sn|
Vn

− ε
√
logn

}

+
= 2. (1.15)
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Corollary 1.6. Let g(x) = xr/p−1, s = (2 − p)/2(r − p), where 1 < p < r < 2, one has

lim
ε↘0

1
− log ε

∞∑

n=1

1
n
E

{ |Sn|
Vn

− εn1/p−1/2
}

+
=

2p
2 − p

. (1.16)

2. Proof of Theorem 1.1

In this section, let A(ε) = g−1(ε−r), for r > 1/s and ε > 0, g−1(x) is the inverse function of
g(x). Here and in the sequel, Cwill denote positive constants, possibly varying from place to
place. Theorem 1.1 will be proved via the following propositions.

Proposition 2.1. One has

lim
ε↘0

1
− log ε

∞∑

n=1

g ′(n)
g(n)

E
{|N| − εgs(n)

}
+ =

1
s
. (2.1)

Here and in the sequel,N denotes the standard normal random variable.

Proof. Via the change of variable, for arbitrary δ > 0, we have

lim
ε↘0

1
− log ε

∫∞

δ

g ′(x)
g(x)

∫∞

εgs(x)
P(|N| ≥ t)dt dx = lim

ε↘0

1
− log ε

∫∞

g(δ)

1
y

∫∞

εys

P(|N| ≥ t)dt dy

= lim
ε↘0

1
−s log ε

∫∞

εgs(δ)

1
x

∫∞

x

P(|N| ≥ t)dt dx

= lim
ε↘0

1
s

∫∞

εgs(δ)
P(|N| ≥ t)dt

=
1
s
.

(2.2)

Thus, if g ′(x)/g(x) is monotone nonincreasing, then (g ′(x)/g(x))
∫∞
εgs(x) P(|N| ≥ t)dt is

nonincreasing. Hence

∫∞

2

g ′(y
)

g
(
y
)
∫∞

εgs(y)
P(|N| ≥ t)dt dy ≤

∞∑

n=2

g ′(n)
g(n)

E
{|N| − εgs(n)

}
+

≤
∫∞

1

g ′(y
)

g
(
y
)
∫∞

εgs(y)
P(|N| ≥ t)dt dy,

(2.3)
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then, by (2.2), the proposition holds. If g ′(y)/g(y) is nondecreasing, then by limn→∞(g ′(n +
1)g(n)/g ′(n)g(n + 1)) = 1, for any 0 < δ0 < 1, there exists n1 = n1(δ0) such that g ′(n +
1)g(n)/g ′(n)g(n+ 1) < 1+ δ and g ′(n)g(n+ 1)/g ′(n+ 1)g(n) > 1− δ for n ≥ n1. Thus we have

1
1 + δ

∫∞

2

g ′(y
)

g
(
y
)
∫∞

εgs(y)
P(|N| ≥ t)dt dy ≤

∞∑

n=2

g ′(n)
g(n)

E
{|N| − εgs(n)

}
+

≤ 1
1 − δ

∫∞

1

g ′(y
)

g
(
y
)
∫∞

εgs(y)
P(|N| ≥ t)dt dy,

(2.4)

then, by (2.2) and letting δ ↘ 0, we complete the proof of this proposition.

Proposition 2.2. One has

lim
ε↘0

1
− log ε

∑

n≤A(ε)

g ′(n)
g(n)

∣∣∣∣E
{ |Sn|

Vn
− εgs(n)

}

+
− E

{|N| − εgs(n)
}
+

∣∣∣∣ = 0. (2.5)

Proof. Set

Δn := sup
x∈R

∣∣∣∣P
( |Sn|

Vn
≥ x

)
− P(|N| ≥ x)

∣∣∣∣ −→ 0. (2.6)

It is easy to see, from (1.9), that Δn → 0, as n → ∞. Observe that

lim
ε↘0

1
− log ε

∑

n≤A(ε)

g ′(n)
g(n)

∣∣∣∣E
{ |Sn|

Vn
− εgs(n)

}

+
− E

{|N| − εgs(n)
}
+

∣∣∣∣

= lim
ε↘0

1
− log ε

∑

n≤A(ε)

g ′(n)
g(n)

∣∣∣∣

∫∞

0
P

( |Sn|
Vn

≥ x + εgs(n)
)
dx −

∫∞

0
P
(|N| ≥ x + εgs(n)

)
dx

∣∣∣∣

≤ lim
ε↘0

1
− log ε

∑

n≤A(ε)

g ′(n)
g(n)

∫∞

0

∣∣∣∣P
( |Sn|

Vn
≥ x + εgs(n)

)
−
∫∞

0
P
(|N| ≥ x + εgs(n)

)∣∣∣∣dx

≤ lim
ε↘0

1
− log ε

∑

n≤A(ε)

g ′(n)
g(n)

(Δn1 + Δn2 + Δn3 + Δn4),

(2.7)
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where

Δn1 =
∫min(logn,1/

√
Δn)

0

∣∣∣∣P
( |Sn|

Vn
≥ x + εgs(n)

)
− P

(|N| ≥ x + εgs(n)
)∣∣∣∣dx,

Δn2 =
∫n1/4

min(logn,1/
√

Δn)

∣∣∣∣P
( |Sn|

Vn
≥ x + εgs(n)

)
− P

(|N| ≥ x + εgs(n)
)∣∣∣∣dx,

Δn3 =
∫n1/2

n1/4

∣∣∣∣P
( |Sn|

Vn
≥ x + εgs(n)

)
− P

(|N| ≥ x + εgs(n)
)∣∣∣∣dx,

Δn4 =
∫∞

n1/2

∣∣∣∣P
( |Sn|

Vn
≥ x + εgs(n)

)
− P

(|N| ≥ x + εgs(n)
)∣∣∣∣dx.

(2.8)

Thus for Δn1, it is easy to see that

Δn1 ≤
√
Δn −→ 0, as n −→ ∞. (2.9)

Now we are in a position to estimate Δn2. From (1.11) and by Markov’s inequality, we have

Δn2 ≤
∫n1/4

min(logn,1/
√

Δn)
e−(x+εg

s(n))2/4dx +
∫n1/4

min(logn,1/
√

Δn)

C
(
x + εgs(n)

)2dx

≤
∫n1/4

min(logn,1/
√

Δn)
e−x

2/4dx +
∫n1/4

min(logn,1/
√

Δn)

C

x2
dx −→ 0, as n −→ ∞.

(2.10)

For Δn3, by Markov’s inequality and (1.11), we have

Δn3 ≤
∫n1/2

n1/4
P

( |Sn|
Vn

≥ n1/4
)
dx +

∫n1/2

n1/4

C
(
x + εgs(n)

)2dx

≤ e−
√
n/4

(
n1/2 − n1/4

)
+
∫n1/2

n1/4

C

x2
dx −→ 0, as n −→ ∞.

(2.11)

From Cauchy inequality, it follows that

|Sn|
Vn

≤ √
n. (2.12)
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Therefore

Δn4 =
∫∞

n1/2
P
(|N| ≥ x + εgs(n)

)
dx

≤
∫∞

n1/2

C
(
x + εgs(n)

)2dx

≤
∫∞

n1/2

C

x2
dx −→ 0, as n −→ ∞.

(2.13)

Denote Δ′
n = Δn1 + Δn2 + Δn3 + Δn4. Note that limε↘0(1/ − log ε)

∑
n≤A(ε)(g

′(n)/g(n)) = r, r >
1/s. Then, since the weighted average of a sequence that converges to 0 also converges to 0,
it follows that, for any M > 1,

lim
ε↘0

1
− log ε

∑

n≤A(ε)

g ′(n)
g(n)

∣∣∣∣E
{ |Sn|

Vn
− εgs(n)

}

+
− E

{|N| − εgs(n)
}
+

∣∣∣∣

≤ lim
ε↘0

1
− log ε

∑

n≤A(ε)

g ′(n)
g(n)

Δ′
n −→ 0, as ε ↘ 0.

(2.14)

The proof is completed.

Proposition 2.3. One has

lim
ε↘0

1
− log ε

∑

n>A(ε)

g ′(n)
g(n)

E
{|N| − εgs(n)

}
+ = 0. (2.15)

Proof. By the similar argument in Proposition 2.1, it follows that

lim
ε↘0

1
− log ε

∑

n>A(ε)

g ′(n)
g(n)

E
{|N| − εgs(n)

}
+ ≤ lim

ε↘0

1
− log ε

∫∞

A(ε)

g ′(x)
g(x)

∫∞

εgs(x)
P(|N| ≥ t)dt dx

≤ lim
ε↘0

C

− log ε

∫∞

g(A(ε))

1
y

∫∞

εys

P(|N| ≥ t)dt dy

≤ lim
ε↘0

C

−s log ε
∫∞

ε1−rs

1
x

∫∞

x

P(|N| ≥ t)dt dx

≤ lim
ε↘0

C

s

∫∞

ε1−rs
P(|N| ≥ t)dt

= 0.
(2.16)

Then, this proposition holds.
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Proposition 2.4. One has

lim
ε↘0

1
− log ε

∑

n>A(ε)

g ′(n)
g(n)

E

{ |Sn|
Vn

− εgs(n)
}

+
= 0. (2.17)

Proof. By the similar argument in Proposition 2.1, it follows that

1
− log ε

∑

n>A(ε)

g ′(n)
g(n)

E

{ |Sn|
Vn

− εgs(n)
}

+
=

1
− log ε

∑

n>A(ε)

g ′(n)
g(n)

∫∞

0
P

( |Sn|
Vn

≥ x + εgs(n)
)
dx

= B1 + B2 + B3,

(2.18)

where

B1 =
1

− log ε

∑

n>A(ε)

g ′(n)
g(n)

∫n1/4

0
P

( |Sn|
Vn

≥ x + εgs(n)
)
dx,

B2 =
1

− log ε

∑

n>A(ε)

g ′(n)
g(n)

∫n1/2

n1/4
P

( |Sn|
Vn

≥ x + εgs(n)
)
dx,

B3 =
1

− log ε

∑

n>A(ε)

g ′(n)
g(n)

∫∞

n1/2
P

( |Sn|
Vn

≥ x + εgs(n)
)
dx.

(2.19)

For B1, by (1.11), we have

B1 ≤ C

− log ε

∑

n>A(ε)

g ′(n)
g(n)

∫n1/4

0
e−(x+εg

s(n))2/4dx

≤ C

− log ε

∑

n>A(ε)

g ′(n)
g(n)

∫∞

0
e−(x+εg

s(n))2/4dx

≤ C

− log ε

∑

n>A(ε)

g ′(n)
g(n)

∫∞

εgs(n)
e−x

2/4dx

≤ C

− log ε

∫∞

A(ε)

g ′(t)
g(t)

∫∞

εgs(t)
e−x

2/4dx dt

≤ lim
ε↘0

C

− log ε

∫∞

g(A(ε))

1
y

∫∞

εys

e−t
2/4dt dy

≤ lim
ε↘0

C

−s log ε
∫∞

ε1−rs

1
x

∫∞

x

e−t
2/4dt dx

≤ lim
ε↘0

C

s

∫∞

ε1−rs
e−t

2/4dt −→ 0, as ε ↘ 0.

(2.20)
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For B2, using (1.11) again and noticing that gs(n) = o(
√
n), we have

B2 ≤ C

− log ε

∑

n>A(ε)

g ′(n)
g(n)

(
n1/2 − n1/4

)
P

( |Sn|
Vn

≥ n1/4 + εgs(n)
)

≤ C

− log ε

∑

n>A(ε)

g ′(n)
g(n)

(
n1/2 − n1/4

)
e−(n

1/4+εgs(n))
2
/4

≤ C

− log ε

∑

n>A(ε)

g ′(n)
g(n)

(
n1/2 − n1/4

)
e−

√
n/4e−ε

2g2s(n)/4

≤ C

− log ε

∑

n>A(ε)

g ′(n)
g(n)

e−ε
2g2s(n)/4

≤ C

− log ε

∫∞

A(ε)

g ′(x)
g(x)

e−ε
2g2s(x)/4dx

≤ C

− log ε

∫∞

ε1−rs

1
x
e−x

2/4dx −→ 0, as ε ↘ 0.

(2.21)

By noting (2.12), it is easily seen that

B3 = 0. (2.22)

Combining (2.20), (2.21), and (2.22), the proposition is proved.

Theorem 1.1 now follows from the above propositions using the triangle inequality.
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[10] A. Gut and A. Spătaru, “Precise asymptotics in some strong limit theorems for multidimensionally
indexed random variables,” Journal of Multivariate Analysis, vol. 86, no. 2, pp. 398–422, 2003.

[11] H. Lanzinger and U. Stadtmüller, “Refined Baum-Katz laws for weighted sums of iid random
variables,” Statistics & Probability Letters, vol. 69, no. 3, pp. 357–368, 2004.
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