Research Article

The Obstacle Problem for the A-Harmonic Equation

Zhenhua Cao, ${ }^{\mathbf{1 , 2}}{ }^{\mathbf{2}}$ Gejun Bao, ${ }^{2}$ and Haijing Zhu ${ }^{\mathbf{3}}$
${ }^{1}$ Department of Mathematics, Jiangxi Normal University, Nanchang 330022, China
${ }^{2}$ Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
${ }^{3}$ College of Mathematics and Physics, Shandong Institute of Light Industry, Jinan 250353, China
Correspondence should be addressed to Gejun Bao, baogj@hit.edu.cn

Received 9 December 2009; Revised 26 March 2010; Accepted 31 March 2010
Academic Editor: Shusen Ding
Copyright © 2010 Zhenhua Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Firstly, we define an order for differential forms. Secondly, we also define the supersolution and subsolution of the A-harmonic equation and the obstacle problems for differential forms which satisfy the A-harmonic equation, and we obtain the relations between the solutions to A-harmonic equation and the solution to the obstacle problem of the A-harmonic equation. Finally, as an application of the obstacle problem, we prove the existence and uniqueness of the solution to the A-harmonic equation on a bounded domain Ω with a smooth boundary $\partial \Omega$, where the A harmonic equation satisfies $d^{\star} A(x, d u)=0, x \in \Omega ; u=\rho, x \in \partial \Omega$, where ρ is any given differential form which belongs to $W^{1, p}\left(\Omega, \Lambda^{l-1}\right)$.

1. Introduction

Recently, a large amount of work about the A-harmonic equation for the differential forms has been done. In 1999 Nolder gave some properties for the solution to the A-harmonic equation in [1], and different versions of these properties had been established in [2-4]. The properties of the nonhomogeneous A-harmonic equation have been discussed in [5-10]. In the above papers, we can think that the boundary values were zero. In this paper, we mainly discuss the existence and uniqueness of the solution to A-harmonic equation with boundary values on a bounded domain Ω.

Now let us see some notions and definitions about the A-harmonic equation $d^{\star} A(x, d u)=0$.

Let $e_{1}, e_{2}, \ldots, e_{n}$ denote the standard orthogonal basis of \mathbb{R}^{n}. For $l=0,1, \ldots, n$, we denote by $\Lambda^{l}=\Lambda^{l}\left(\mathbb{R}^{n}\right)$ the linear space of all l-vectors, spanned by the exterior product $e_{I}=$ $e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{l}}$ corresponding to all ordered l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right), 1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n$. The Grassmann algebra $\Lambda=\oplus \Lambda^{l}$ is a graded algebra with respect to the exterior products of $\alpha=\sum \alpha_{I} e_{I} \in \Lambda$ and $\beta=\sum \beta_{I} e_{I} \in \Lambda$, then its inner product is obtained by

$$
\begin{equation*}
\langle\alpha, \beta\rangle=\sum \alpha_{I} \beta_{I} \tag{1.1}
\end{equation*}
$$

with the summation over all $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$ and all integers $l=0,1, \ldots, n$. And the norm of $\alpha=\sum \alpha_{I} e_{I} \in \Lambda$ is given by $|\alpha|=\langle\alpha, \alpha\rangle^{1 / 2}$.

The Hodge star operator $\star: \Lambda^{l} \rightarrow \Lambda^{n-l}$ is defined by the rule if $\omega=\omega_{I} d x_{I}=$ $\omega_{i_{1}, i_{2}, \ldots, i_{l}} d x_{i_{1}} \wedge d x_{i_{2}} \cdots \wedge d x_{i_{l}}$, then

$$
\begin{equation*}
\star \omega=(-1)^{\sum(I)} \omega_{I} d x_{J} \tag{1.2}
\end{equation*}
$$

where $\sum(I)=l(l+1) / 2+\sum_{k=1}^{l} i_{k}$ and $J=1,2, \ldots, n-I$. So we have $\star \star \omega=(-1)^{l(n-l)} \omega$.
Throughout this paper, $\Omega \subset \mathbb{R}^{n}$ is an open subset, for any constant $\sigma>1, Q$ denotes a cube such that $Q \subset \sigma Q \subset \Omega$, where σQ denotes the cube whose center is as same as Q and $\operatorname{diam}(\sigma Q)=\sigma \operatorname{diam} Q$. We say that $\alpha=\sum \alpha_{I} e_{I} \in \Lambda$ is a differential l-form on Ω if every coefficient α_{I} of α is Schwartz distribution on Ω. The space spanned by differential l-form on Ω is denoted by $D^{\prime}\left(\Omega, \Lambda^{l}\right)$. We write $L^{p}\left(\Omega, \Lambda^{l}\right)$ for the l-form $\alpha=\sum \alpha_{I} d x_{I}$ on Ω with $\alpha_{I} \in L^{p}(\Omega)$ for all ordered l-tuple I. Thus $L^{p}\left(\Omega, \Lambda^{l}\right)$ is a Banach space with the norm

$$
\begin{equation*}
\|\alpha\|_{p, \Omega}=\left(\int_{\Omega}|\alpha|^{p} d x\right)^{1 / p}=\left(\int_{\Omega}\left(\sum_{I}\left|\alpha_{I}\right|^{2}\right)^{p / 2} d x\right)^{1 / p} \tag{1.3}
\end{equation*}
$$

Similarly $W^{k, p}\left(\Omega, \Lambda^{l}\right)$ denotes those l-forms on Ω with all coefficients in $W^{k, p}(\Omega)$. We denote the exterior derivative by

$$
\begin{equation*}
d: D^{\prime}\left(\Omega, \Lambda^{l}\right) \longrightarrow D^{\prime}\left(\Omega, \Lambda^{l+1}\right) \text { for } l=0,1,2, \ldots, n \tag{1.4}
\end{equation*}
$$

and its formal adjoint operator (the Hodge codifferential operator)

$$
\begin{equation*}
d^{\star}: D^{\prime}\left(\Omega, \Lambda^{l}\right) \longrightarrow D^{\prime}\left(\Omega, \Lambda^{l-1}\right) \tag{1.5}
\end{equation*}
$$

The operators d and d^{\star} are given by the formulas

$$
\begin{equation*}
d \alpha=\sum_{I} d \alpha_{I} \wedge d x_{I}, \quad d^{\star}=(-1)^{n l+1} \star d \star \tag{1.6}
\end{equation*}
$$

2. The Obstacle Problem

In this section, we introduce the main work of this paper, which defining the supersolution and subsolution of the A-harmonic equation and the obstacle problems for differential forms which satisfy the A-harmonic equation, and the proof for the uniqueness of the solution to the obstacle problem of the A-harmonic equations for differential forms. We can see this work about functions in [11, Chapter 3 and Appendix I] in detail. We use the similar methods in [11] to do the main work for differential forms.

We firstly give the comparison about differential forms according to the comparison's definition about functions in \mathbb{R}.

Definition 2.1. Suppose that $\alpha=\sum_{I} \alpha_{I}(x) d x_{I}$ and $\beta=\sum_{I} \beta_{I}(x) d x_{I}$ belong to Λ^{l}, we say that $\alpha \geq \beta$ if for any given x, we have $\alpha_{I}(x) \geq \beta_{I}(x)$ for all ordered l-tuples $I=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$, $1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq n$.

Remark 2.2. The above definition involves the order for differential forms which we have been trying to avoid giving. We know that many differential forms can not be compared based on the above definition since there are so many inequalities to be satisfied. However, at the moment, we can not replace this definition by another one and we are working on it now. We just started our research on the obstacle problem for differential forms satisfying the A-harmonic equation and we hope that our work will stimulate further research in this direction.

By the some definitions as the solution, supersolution (or subsolution) to quasilinear elliptic equation, we can give the definitions of the solution, supersolution (or subsolution) to A-harmonic equation

$$
\begin{equation*}
d^{\star} A(x, d u)=0 . \tag{2.1}
\end{equation*}
$$

Definition 2.3. If a differential form $u \in W_{\text {loc }}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$ satisfies

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x=0, \tag{2.2}
\end{equation*}
$$

for any $\varphi \in W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$, then we say that u is a solution to (2.1). If for any $0 \leq \varphi \in$ $W_{\text {loc }}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$, we have

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x \geq 0(\leq 0), \tag{2.3}
\end{equation*}
$$

then we say that u is a supersolution (subsolution) to (2.1).
We can see that if u is a subsolution to (2.1), then for $0 \geq \varphi \in W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$, we have

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x \geq 0 . \tag{2.4}
\end{equation*}
$$

According to the above definition, we can get the following theorem.
Theorem 2.4. A differential form $u \in W_{\mathrm{loc}}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$ is a solution to (2.1) if and only if u is both supersolution and subsolution to (2.1).

Proof. The sufficiency is obvious, we only prove the necessity. For any $\varphi \in W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$, we suppose that $\varphi=\sum_{I} \varphi_{I} d x_{I}$,

$$
\begin{equation*}
\varphi_{1}=\sum_{I} \varphi_{I}^{+} d x_{I} \geq 0, \quad \varphi_{2}=\sum_{I} \varphi_{I}^{-} d x_{I} \leq 0 ; \tag{2.5}
\end{equation*}
$$

by Definition 2.3, it holds that

$$
\begin{equation*}
\int_{\Omega}\left\langle A(x, d u), d \varphi_{1}\right\rangle d x \geq 0, \quad \int_{\Omega}\left\langle A(x, d u), d \varphi_{2}\right\rangle d x \geq 0 \tag{2.6}
\end{equation*}
$$

So

$$
\begin{align*}
0 & \leq \int_{\Omega}\left\langle A(x, d u), d \varphi_{1}\right\rangle d x+\int_{\Omega}\left\langle A(x, d u), d \varphi_{2}\right\rangle d x \tag{2.7}\\
& =\int_{\Omega}\left\langle A(x, d u), d \varphi_{1}+d \varphi_{2}\right\rangle d x=\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x .
\end{align*}
$$

Using - φ in place of φ, we also can get

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x \leq 0 . \tag{2.8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x=0 . \tag{2.9}
\end{equation*}
$$

Therefore u is a solution to (2.1).
Next we will introduce the obstacle problem to A-harmonic equation, whose definition is according to the same definition as the obstacle problem of quasilinear elliptic equation. For the obstacle problem of quasilinear elliptic equation we can see [11] for details.

Suppose that Ω is a bounded domain. that $\psi=\sum_{I} \psi_{I} d x_{I}$ is any differential form in Ω which satisfies any ψ_{I} that is function in Ω with values in the extended reals $[-\infty, \infty]$, and $\rho \in W^{1, p}\left(\Omega, \Lambda^{l-1}\right)$. Let

$$
\begin{equation*}
\mathscr{K}_{\Psi, p}\left(\Omega, \Lambda^{l-1}\right)=\left\{v \in W^{1, p}\left(\Omega, \Lambda^{l-1}\right): v \geq \psi \text { a.e., } v-\rho \in W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)\right\} . \tag{2.10}
\end{equation*}
$$

The problem is to find a differential form in $\not_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$ such that for any $v \in$ $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$, we have

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u) d(v-u)\rangle \geq 0 . \tag{2.11}
\end{equation*}
$$

Definition 2.5. A differential form $u \in \mathscr{K}_{\psi, p}\left(\Omega, \Lambda^{l-1}\right)$ is called a solution to the obstacle problem of A-harmonic equation (2.1) with obstacle ψ and boundary values ρ or a solution to the obstacle problem of A-harmonic equation (2.1) in $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$ if u satisfies (2.11) for any $v \in \mathscr{K}_{\Psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$.

If $\psi=\rho$, then we denote that $\mathcal{K}_{\psi, \psi}\left(\Omega, \Lambda^{l-1}\right)=\mathcal{K}_{\psi}\left(\Omega, \Lambda^{l-1}\right)$. We have some relations between the solution to quasilinear elliptic equation and the solution to obstacle problem in PDE. As to differential forms, we also have some relations between the solution to A harmonic equation and the solution to obstacle problem of A-harmonic equation. We have the following two theorems.

Theorem 2.6. If a differential form u is a supersolution to (2.1), then u is a solution to the obstacle problem of (2.1) in $\mathcal{K}_{\Psi, u}\left(\Omega, \Lambda^{l-1}\right)$. For any $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$, if u is a solution to the obstacle problem of (2.1) in $\mathcal{K}_{\Psi, p}\left(\Omega, \Lambda^{l-1}\right)$, then u is a supersolution to (2.1) in Ω.

Proof. If u is a solution to the obstacle problem of (2.1) in $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$, then for any $0 \leq \varphi \in$ $W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$, we have $v=u+\varphi \in \mathscr{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$, so it holds that

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x=\int_{\Omega}\langle A(x, d u), d v-d u\rangle d x \geq 0 . \tag{2.12}
\end{equation*}
$$

Thus u is a supersolution to (2.1) in Ω. Conversely, if u is a supersolution to (2.1) in Ω, then for any $v \in \mathscr{K}_{u}\left(\Omega, \Lambda^{l-1}\right)$, we have

$$
\begin{equation*}
v-u \geq 0, \quad v-u \in W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right) . \tag{2.13}
\end{equation*}
$$

Thus let $\varphi=v-u$, then we have

$$
\begin{equation*}
0 \leq \int_{\Omega}\langle A(x, d u), d \varphi\rangle d x=\int_{\Omega}\langle A(x, d u), d v-d u\rangle d x . \tag{2.14}
\end{equation*}
$$

So u is a solution to the obstacle problem of (2.1) in $\mathcal{K}_{\psi, u}\left(\Omega, \Lambda^{l-1}\right)$.
Theorem 2.7. A differential form u is a solution to (2.1) if and only if u is a solution to the obstacle problem of (2.1) in $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$ with ρ satisfying $u-\rho \in W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$.

Proof. If is a solution to the obstacle problem of (2.1) in $\not_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$, then for any $\varphi \in$ $W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$, we have $v=u+\varphi=u-\rho+\rho+\varphi \in \mathcal{K}_{-\infty, p}\left(\Omega, \Lambda^{l-1}\right)$. So we can obtain

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x=\int_{\Omega}\langle A(x, d u), d v-d u\rangle d x \geq 0 . \tag{2.15}
\end{equation*}
$$

By using $-\varphi$ in place of φ, we have

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d(-\varphi)\rangle d x=\int_{\Omega}\langle A(x, d u), d v-d u\rangle d x \geq 0 . \tag{2.16}
\end{equation*}
$$

So

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x=0 . \tag{2.17}
\end{equation*}
$$

Thus u is a solution to (2.1) in Ω.

Conversely, if u is a solution to (2.1) in Ω, then for any $v \in \mathcal{K}_{-\infty, \rho}\left(\Omega, \Lambda^{l-1}\right)$, we have $v-u \in W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$. Now let $\varphi=v-u$, then we have

$$
\begin{equation*}
0=\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x=\int_{\Omega}\langle A(x, d u), d v-d u\rangle d x \tag{2.18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
0 \leq \int_{\Omega}\langle A(x, d u), d v-d u\rangle d x \tag{2.19}
\end{equation*}
$$

So the theorem is proved.
The following we will discuss the existence and uniqueness of the solution to the obstacle problem of (2.1) in $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$ and the solution to (2.1). First we introduce a definition and two lemmas.

Definition 2.8 (see [11]). Suppose that X is a reflexive Banach space in Ω with dual space X^{\prime}, and let (\cdot, \cdot) denote a pairing between X^{\prime} and X. If $K \subset X$ is a closed convex set, then a mapping $£: \mathbf{K} \rightarrow X^{\prime}$ is called monotone if

$$
\begin{equation*}
(£ u-£ v, u-v) \geq 0 \tag{2.20}
\end{equation*}
$$

for all $u v$ in \mathbf{K}. Further, $£$ is called coercive on \mathbf{K} if there exists $\varphi \in \mathbf{K}$ such that

$$
\begin{equation*}
\frac{\left(£ u_{j}-£ \varphi, u_{j}-\varphi\right)}{\left\|u_{j}-\varphi\right\|} \rightarrow \infty \tag{2.21}
\end{equation*}
$$

whenever u_{j} is a sequence in \mathbf{K} with $\left\|u_{j}\right\| \rightarrow \infty$.
By the definition of ∇u in [12], we can easily get the following lemma.
Lemma 2.9. For any $u \in W^{1, p}\left(\Omega, \Lambda^{l}\right)$, we have $|d u| \leq|\nabla u|$ and $|\nabla| u||\leq|\nabla u|$.
Lemma 2.10 (see [11]). Let \mathbf{K} be a nonempty closed convex subset of X and let $£: \mathbf{K} \rightarrow X^{\prime}$ be monotone, coercive, and weakly continuous on \mathbf{K}. Then there exists an element u in \mathbf{K} such that

$$
\begin{equation*}
(£ u, u-v) \geq 0 \tag{2.22}
\end{equation*}
$$

whenever $v \in \mathbf{K}$.
Using the same methods in [11, Appendix I], we can prove the existence and uniqueness of the solution to the obstacle problem of (2.1).

Theorem 2.11. If $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$ is nonempty, then there exists a unique solution to the obstacle problem of (2.1) in $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$.

Proof. Let $X=L^{p}\left(\Omega, \Lambda^{l}\right)$, then $X^{\prime}=L^{p /(p-1)}\left(\Omega, \Lambda^{l}\right)$. Let

$$
\begin{equation*}
(f, g)=\int_{\Omega}\langle f, g\rangle d x \tag{2.23}
\end{equation*}
$$

where $f \in L^{p}\left(\Omega, \Lambda^{l}\right)$ and $g \in L^{p /(p-1)}\left(\Omega, \Lambda^{l}\right)$. Denote that

$$
\begin{equation*}
\mathbf{K}=\left\{d v: v \in \not_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)\right\} \tag{2.24}
\end{equation*}
$$

We define a mapping $£: \mathbf{K} \rightarrow X^{\prime}$ such that for any $v \in \mathbf{K}$, we have $£ v=A(x, v)$. So for any $u \in L^{p}\left(\Omega, \Lambda^{l}\right)$, we have

$$
\begin{equation*}
(£ v, u)=\int_{\Omega}\langle A(x, v), u\rangle d x \tag{2.25}
\end{equation*}
$$

Then we only prove that \mathbf{K} is a closed convex subset of X and $£: \mathbf{K} \rightarrow X^{\prime}$ is monotone, coercive, and weakly continuous on \mathbf{K}.
(1) \mathbf{K} is convex. For any $x_{1}, x_{2} \in \mathbf{K}$, we have $v_{1}, v_{2} \in \mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$ such that

$$
\begin{equation*}
x_{1}=d v_{1}, \quad x_{2}=d v_{2} \tag{2.26}
\end{equation*}
$$

So for any $t \in(0,1)$, we have

$$
\begin{equation*}
t x_{1}+(1-t) x_{2}=t d v_{1}+(1-t) d v_{2}=d\left(t v_{1}+(1-t) v_{2}\right) \tag{2.27}
\end{equation*}
$$

Since

$$
\begin{equation*}
t v_{1}+(1-t) v_{2}-\rho=t\left(v_{1}-\rho\right)+(1-t)\left(v_{2}-\rho\right) \in \not_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right) \tag{2.28}
\end{equation*}
$$

thus

$$
\begin{equation*}
t x_{1}+(1-t) x_{2} \in \mathbf{K} \tag{2.29}
\end{equation*}
$$

So \mathbf{K} is convex.
(2) \mathbf{K} is closed in X. Suppose that $d v_{i} \in \mathbf{K}$ is a sequence converging to \tilde{v} in X. Then by the real functions' Poincaré inequality and Lemma 2.9, we have

$$
\begin{align*}
\int_{\Omega}\left|v_{i}-\rho\right|^{p} d x & \leq c(\operatorname{diam} \Omega)^{p} \int_{\Omega}|\nabla| v_{i}-\rho| |^{p} d x \tag{2.30}\\
& \leq c(\operatorname{diam} \Omega)^{p} \int_{\Omega}\left|\nabla v_{i}-\nabla \rho\right|^{p} d x \leq M<\infty
\end{align*}
$$

Thus v_{i} is a bounded sequence in $W^{1, p}\left(\Omega, \Lambda^{l-1}\right)$. Because $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$ is a closed and convex subset of $W^{1, p}\left(\Omega, \Lambda^{l-1}\right)$, we denote that $v_{i}=\sum_{I} v_{i}^{I} d x_{I}$ and $\rho=\sum_{I} \rho^{I} d x_{I}$. Then for any I in $l-1$ tuples, according to Theorems 1.30 and 1.31 in [11], we have a function v^{I} such that

$$
\begin{equation*}
v_{i}^{I} \longrightarrow v^{I} \quad \text { weakly, } \quad v^{I}-\rho^{I} \in W_{0}^{1, p}(\Omega), \quad \nabla v_{i}^{I} \longrightarrow \nabla v^{I}=\left(\frac{\partial v^{I}}{\partial x_{1}}, \ldots, \frac{\partial v^{I}}{\partial x_{n}}\right) \quad \text { weakly. } \tag{2.31}
\end{equation*}
$$

According to Lemma 2.9 and the uniqueness of a limit of a convergence sequence, we only let

$$
\begin{equation*}
\tilde{v}=\sum_{I} \sum_{i=1}^{n} \frac{\partial v^{I}}{\partial x_{i}} d x_{i} \wedge d x_{I} \tag{2.32}
\end{equation*}
$$

Thus $\tilde{v} \in \mathbf{K}$, so \mathbf{K} is closed in X.
(3) $£$ is monotone. Since operator A satisfies

$$
\begin{equation*}
\left\langle A\left(x, \xi_{1}\right)-A\left(x, \xi_{2}\right), \xi_{1}-\xi_{2}\right\rangle \geq 0 \tag{2.33}
\end{equation*}
$$

so for all $u, v \in \mathbf{K}$, it holds that

$$
\begin{equation*}
(£ u-£ v, u-v)=\int_{\Omega}\langle A(x, u)-A(x, v), u-v\rangle d x \geq 0 \tag{2.34}
\end{equation*}
$$

Thus $£$ is monotone.
(4) $£$ is coercive on \mathbf{K}. For any fixed $\varphi \in \mathbf{K}$, we have

$$
\begin{align*}
(£ u-£ \varphi, u-\varphi)= & \int_{\Omega}\langle A(x, u)-A(x, \varphi), u-\varphi\rangle d x \\
= & \int_{\Omega}\langle A(x, u), u\rangle d x+\int_{\Omega}\langle A(x, \varphi), \varphi\rangle d x-\int_{\Omega}\langle A(x, u), \varphi\rangle d x \\
& -\int_{\Omega}\langle A(x, \varphi), u\rangle d x \\
\geq & K^{-1} \int_{\Omega}|u|^{p} d x+K^{-1} \int_{\Omega}|\varphi|^{p} d x-K \int_{\Omega}|u|^{p-1}|\varphi| d x-\int_{\Omega}|\varphi|^{p-1}|u| d x \tag{2.35}\\
\geq & K^{-1}\left(\|u\|^{p}+\|\varphi\|^{p}\right)-K\left(\|u\|^{p-1}\|\varphi\|+\|u\|\|\varphi\|^{p-1}\right) \\
\geq & K^{-1} 2^{-p}\|u-\varphi\|\|u-\varphi\|^{p-1}-K 2^{p-1}\|\varphi\|\left(\|\varphi\|^{p-1}+\|u-\varphi\|^{p-1}\right) \\
& -K\|\varphi\|^{p-1}(\|\varphi\|+\|u-\varphi\|)
\end{align*}
$$

So

$$
\begin{align*}
\frac{\left(£ u_{j}-£ \varphi, u_{j}-\varphi\right)}{\left\|u_{j}-\varphi\right\|} \geq & K^{-1} 2^{-p}\left\|u_{j}-\varphi\right\|^{p-1}-K 2^{p-1}\|\varphi\|\left(\frac{\|\varphi\|^{p-1}}{\left\|u_{j}-\varphi\right\|}+\left\|u_{j}-\varphi\right\|^{p-2}\right) \\
& -K\|\varphi\|^{p-1}\left(\frac{\|\varphi\|}{\left\|u_{j}-\varphi\right\|}+1\right) \tag{2.36}
\end{align*}
$$

When $\left\|u_{j}\right\| \rightarrow \infty$ and $\left\|u_{j}-\varphi\right\| \rightarrow \infty$, we can obtain

$$
\begin{equation*}
\frac{\left(£ u_{j}-£ \varphi, u_{j}-\varphi\right)}{\left\|u_{j}-\varphi\right\|} \longrightarrow \infty \tag{2.37}
\end{equation*}
$$

Therefore $£$ is coercive on \mathbf{K}.
(5) $£$ is weakly continuous on \mathbf{K}. Suppose that $u_{i} \in \mathbf{K}$ is a sequence that converge to $u \in K$ on X. Pick a subsequence $u_{i j}$ such that $u_{i_{j}} \rightarrow u$ a.e. in Ω. Since the mapping $\xi \rightarrow A(x, \xi)$ is continuous for a.e. x, we have

$$
\begin{equation*}
A\left(x, u_{i_{j}}\right) \longrightarrow A(x, u) \tag{2.38}
\end{equation*}
$$

a.e. $x \in \Omega$. Because $L^{p /(p-1)}\left(\Omega, \Lambda^{l}\right)$-norms of $A\left(x, u_{i_{j}}\right)$ are uniformly bounded, we have that

$$
\begin{equation*}
A\left(x, u_{i_{j}}\right) \longrightarrow A(x, u) \tag{2.39}
\end{equation*}
$$

weakly in $L^{p /(p-1)}\left(\Omega, \Lambda^{l}\right)$. Because the weak limit is independent of the choice of the subsequence, it follows that

$$
\begin{equation*}
A\left(x, u_{i}\right) \longrightarrow A(x, u) \tag{2.40}
\end{equation*}
$$

weakly in $L^{p /(p-1)}\left(\Omega, \Lambda^{l}\right)$. Thus for any $v \in L^{p}\left(\Omega, \Lambda^{l}\right)$, we have

$$
\begin{equation*}
\left(£ u_{i}, v\right)=\int_{\Omega}\left\langle £ u_{i}, v\right\rangle d x \rightarrow \int_{\Omega}\langle £ u, v\rangle d x=(£ u, v) . \tag{2.41}
\end{equation*}
$$

Thus $£$ is weakly continuous on \mathbf{K}.
By Lemma 2.10, we can find an element \tilde{u} in \mathbf{K} such that

$$
\begin{equation*}
(£ \tilde{u}, \tilde{v}-\tilde{u}) \geq 0, \tag{2.42}
\end{equation*}
$$

for any $\tilde{v} \in K$, that is to say, there exists $u \in \mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$ such that $d u=\tilde{u}$ and

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d v-d u\rangle d x=(£ d u, d v-d u) \geq 0, \tag{2.43}
\end{equation*}
$$

for any $v \in \mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$. Then the theorem is proved.

By Theorem 2.7, we can see that the solution u to the obstacle problem of (2.1) in $\mathcal{K}_{-\infty, \rho}\left(\Omega, \Lambda^{l-1}\right)$ is a solution of (2.1) in Ω. Then by theorem, we can get the existence and uniqueness of the solution to A-harmonic equation.

Corollary 2.12. Suppose that Ω is a bounded domain with a smooth boundary $\partial \Omega$ and $\rho \in$ $W^{1, p}\left(\Omega, \Lambda^{l-1}\right)$. There is a differential form $u \in W^{1, p}\left(\Omega, \Lambda^{l-1}\right)$ such that

$$
\begin{gather*}
d^{\star} A(x, d u)=0, \quad x \in \Omega \tag{2.44}\\
u=\rho, \quad x \in \partial \Omega
\end{gather*}
$$

weakly in Ω, that is to say,

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x=0 \tag{2.45}
\end{equation*}
$$

for any $\varphi \in W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$.
Proof. Let $\psi=-\infty$ and u be a solution to the obstacle problem of (2.1) in $\nless \psi_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$. For any $\varphi \in W_{0}^{1, p}\left(\Omega, \Lambda^{l-1}\right)$, we have both $u+\varphi$ and $u-\varphi$ belong to $\mathcal{K}_{\psi, \rho}\left(\Omega, \Lambda^{l-1}\right)$. Then

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x \geq 0, \quad-\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x \geq 0 \tag{2.46}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{\Omega}\langle A(x, d u), d \varphi\rangle d x=0 \tag{2.47}
\end{equation*}
$$

So u is solution to A-harmonic equation $d^{\star} A(x, d u)=0$ in Ω with a boundary value ρ.

Acknowledgment

This work is supported by the NSF of P.R. China (no. 10771044).

References

[1] C. A. Nolder, "Hardy-Littlewood theorems for A-harmonic tensors," Illinois Journal of Mathematics, vol. 43, no. 4, pp. 613-632, 1999.
[2] S. Ding, "Weighted Caccioppoli-type estimates and weak reverse Hölder inequalities for A-harmonic tensors," Proceedings of the American Mathematical Society, vol. 127, no. 9, pp. 2657-2664, 1999.
[3] G. Bao, " $A_{r}(\lambda)$-weighted integral inequalities for A-harmonic tensors," Journal of Mathematical Analysis and Applications, vol. 247, no. 2, pp. 466-477, 2000.
[4] X. Yuming, "Weighted integral inequalities for solutions of the A-harmonic equation," Journal of Mathematical Analysis and Applications, vol. 279, no. 1, pp. 350-363, 2003.
[5] S. Ding, "Two-weight Caccioppoli inequalities for solutions of nonhomogeneous A-harmonic equations on Riemannian manifolds," Proceedings of the American Mathematical Society, vol. 132, no. 8, pp. 2367-2395, 2004.
[6] L. D'Onofrio and T. Iwaniec, "The p-harmonic transform beyond its natural domain of definition," Indiana University Mathematics Journal, vol. 53, no. 3, pp. 683-718, 2004.
[7] S. Ding, "Local and global norm comparison theorems for solutions to the nonhomogeneous A harmonic equation," Journal of Mathematical Analysis and Applications, vol. 335, no. 2, pp. 1274-1293, 2007.
[8] Z. Cao, G. Bao, R. Li, and H. Zhu, "The reverse Hölder inequality for the solution to A-harmonic type system," Journal of Inequalities and Applications, vol. 2008, Article ID 397340, 15 pages, 2008.
[9] G. Bao, Z. Cao, and R. Li, "The Caccioppoli estimates for the solutions to p-harmonic type equation," Dynamics of Continuous, Discrete E Impulsive Systems. Series A, vol. 16, no. S1, pp. 104-108, 2009.
[10] Z. Cao, G. Bao, Y. Xing, and R. Li, "Some Caccioppoli estimates for differential forms," Journal of Inequalities and Applications, vol. 2009, Article ID 734528, 11 pages, 2009.
[11] J. Heinonen, T. Kilpeläìnen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Oxford University Press, New York, NY, USA, 1993.
[12] T. Iwaniec and A. Lutoborski, "Integral estimates for null Lagrangians," Archive for Rational Mechanics and Analysis, vol. 125, no. 1, pp. 25-79, 1993.

