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Let H(B) denote the space of all holomorphic functions on the unit ball B ⊂ C
n. This

paper investigates the following integral-type operator with symbol g ∈ H(B), Tgf(z) =
∫1
0 f(tz)Rg(tz)dt/t, f ∈ H(B), z ∈ B, where Rg(z) =

∑n
j=1 zj∂g/∂zj(z) is the radial derivative of g.

We characterize the boundedness and compactness of the integral-type operators Tg from general
function spaces F(p, q, s) to Zygmund-type spaces Zμ, where μ is normal function on [0, 1).

1. Introduction

Let B be the open unit ball of C
n, let ∂B be its boundary, and let H(B) be the family of all

holomorphic functions on B. Let z = (z1, . . . , zn) and w = (w1, . . . , wn) be points in C
n and

〈z,w〉 = z1w1 + · · · + znwn.
Let

Rf(z) =
n∑

j=1

zj
∂f

∂zj
(z) (1.1)

stand for the radial derivative of f ∈ H(B). For a ∈ B, let g(z, a) = log(1/|ϕa(z)|), where ϕa is
theMöbius transformation of B satisfying ϕa(0) = a, ϕa(a) = 0, and ϕa = ϕ−1

a . For 0 < p, s < ∞,
−n − 1 < q < ∞, we say f ∈ F(p, q, s) provided that f ∈ H(B) and

∥∥f
∥∥p

F(p,q,s) =
∣∣f(0)

∣∣p + sup
a∈B

∫

B

∣∣Rf(z)
∣∣p
(
1 − |z|2

)q
gs(z, a)dv(z) < ∞. (1.2)
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The space F(p, q, s), introduced by Zhao in [1], is known as the general family of
function spaces. For appropriate parameter values p,q, and s, F(p, q, s) coincides with several
classical function spaces. For instance, let D be the unit disk in C, F(p, q, s) = B(q+2)/p if
1 < s < ∞ (see [2]), where Bα, 0 < α < ∞, consists of those analytic functions f in D for
which

∥
∥f

∥
∥
Bα = sup

z∈D

(
1 − |z|2

)α∣
∣f ′(z)

∣
∣ < ∞. (1.3)

The space F(p, p, 0) is the classical Bergman space Ap = A
p

0 (see [3]), F(p, p − 2, 0) is the
classical Besov space Bp, and, in particular, F(2, 1, 0) is just the Hardy space H2. The spaces
F(2, 0, s) are Qs spaces, introduced by Aulaskari et al. [4, 5]. Further, F(2, 0, 1) = BMOA, the
analytic functions of bounded mean oscillation. Note that F(p, q, s) is the space of constant
functions if q + s ≤ −1. More information on the spaces F(p, q, s) can be found in [6, 7].

Recall that the Bloch-type spaces (or α-Bloch space) Bα = Bα(B), α > 0, consists of all
f ∈ H(B) for which

bα
(
f
)
= sup

z∈B

(
1 − |z|2

)α∣∣Rf(z)
∣∣ < ∞. (1.4)

The little Bloch-type space Bα
0(B) = Bα

0 consists of all f ∈ H(B) such that

lim
|z|→ 1

(
1 − |z|2

)α∣∣Rf(z)
∣∣ = 0. (1.5)

Under the norm introduced by ‖f‖Bα = |f(0)| + bα(f), Bα is a Banach space and Bα
0 is

a closed subspace of Bα. If α = 1, we write B and B0 for B1 and B1
0, respectively.

A positive continuous function μ on the interval [0,1) is called normal if there are three
constants 0 ≤ δ < 1 and 0 < a < b such that

μ(r)
(1 − r)a

is decreasing on [δ, 1), lim
r→ 1

μ(r)
(1 − r)a

= 0,

μ(r)

(1 − r)b
is increasing on [δ, 1), lim

r→ 1

μ(r)

(1 − r)b
= ∞.

(1.6)

Let Z = Z(B) denote the class of all f ∈ H(B) such that

sup
z∈B

(
1 − |z|2

)∣∣∣R2f(z)
∣∣∣ < ∞. (1.7)

Write

∥∥f
∥∥
Z =

∣∣f(0)
∣∣ + sup

z∈B

(
1 − |z|2

)∣∣∣R2f(z)
∣∣∣. (1.8)
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With the norm ‖ · ‖Z, Z is a Banach space. Z is called the Zygmund space (see [8]). Let Z0

denote the class of all f ∈ H(B) such that

lim
|z|→ 1

(
1 − |z|2

)∣∣
∣R2f(z)

∣
∣
∣ = 0. (1.9)

Let μ be a normal function on [0,1). It is natural to extend the Zygmund space to a
more general form, for an f ∈ H(B), we say that f belongs to the space Zμ = Zμ(B) if

sup
z∈B

μ(|z|)
∣
∣
∣R2f(z)

∣
∣
∣ < ∞. (1.10)

It is easy to check that Zμ becomes a Banach space under the norm

∥∥f
∥∥
Zμ

=
∣∣f(0)

∣∣ + sup
z∈B

μ(|z|)
∣∣∣R2f(z)

∣∣∣, (1.11)

and Zμ will be called the Zygmund-type space.
Let Zμ,0 denote the class of holomorphic functions f ∈ Zμ such that

lim
|z|→ 1

μ(|z|)
∣∣∣R2f(z)

∣∣∣ = 0, (1.12)

and Zμ,0 is called the little Zygmund-type space. When μ(r) = 1 − r, from [8, page 261], we
say that f ∈ Z1−r := Z if and only if f ∈ A(B), and there exists a constant C > 0 such that

∣∣f(ζ + h) + f(ζ − h) − 2f(ζ)
∣∣ < C|h|, (1.13)

for all ζ ∈ ∂B and ζ ± h ∈ ∂B, where A(B) is the ball algebra on B.
For g ∈ H(B), the following integral-type operator (so called extended Cesàro

operator) is

Tgf(z) =
∫1

0
f(tz)Rg(tz)

dt

t
, (1.14)

where f ∈ H(B) and z ∈ B. Stević [9] considered the boundedness of Tg on α-Bloch spaces.
Lv and Tang got the boundedness and compactness of Tg from F(p, q, s) to μ-Bloch spaces for
all 0 < p, s < ∞,−n − 1 < q < ∞ (see [10]). Recently, Li and Stević discussed the boundedness
of Tg from Bloch-type spaces to Zygmund-type spaces in [11]. For more information about
Zygmund spaces, see [12, 13].

In this paper, we characterize the boundedness and compactness of the operator Tg
from general analytic spaces F(p, q, s) to Zygmund-type spaces.

In what follows, we always suppose that 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1.
Throughout this paper, constants are denoted by C; they are positive and may have different
values at different places.



4 Journal of Inequalities and Applications

2. Some Auxiliary Results

In this section, we quote several auxiliary results which will be used in the proofs of our main
results. The following lemma is according to Zhang [14].

Lemma 2.1. If f ∈ F(p, q, s), then f ∈ B(n+1+q)/p and

∥
∥f

∥
∥
B(n+1+q)/p ≤

∥
∥f

∥
∥
F(p,q,s). (2.1)

Lemma 2.2 (see [9]). For 0 < α < ∞, if f ∈ Bα, then for any z ∈ B

∣
∣f(z)

∣
∣ ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
∥
∥f

∥
∥
Bα , 0 < α < 1,

C
∥
∥f

∥
∥
Bα log

2

1 − |z|2
, α = 1,

C
∥∥f

∥∥
Bα

(
1 − |z|2

)1−α
, α > 1.

(2.2)

Lemma 2.3 (see [15]). For every f, g ∈ H(B), it holds R[Tg(f)](z) = f(z)Rg(z).

Lemma 2.4 (see [10]). Let p = n + 1 + q. Suppose that for each w ∈ B, z-variable functions gw
satisfy |gw(z)| ≤ C/|1 − 〈z,ω〉|, then

∫

B

∣∣gω(z)
∣∣p
(
1 − |z|2

)q
gs(z, a)dv(z) ≤ C. (2.3)

Lemma 2.5. Assume that g ∈ H(B), 0 < p, s < ∞, −n − 1 < q < ∞, and μ is a normal function on
[0, 1), then Tg : F(p, q, s) → Zμ(or Zμ,0) is compact if and only if Tg : F(p, q, s) → Zμ(or Zμ,0)
is bounded, and for any bounded sequence {fk}k∈N

in F(p, q, s) which converges to zero uniformly on
compact subsets of B as k → ∞, one has limk→∞‖Tgf‖Zμ

= 0.

The proof of Lemma 2.5 follows by standard arguments (see, e.g., Lemma 3 in [16]).
Hence, we omit the details.

The following lemma is similar to the proof of Lemma 1 in [17]. Hence, we omit it.

Lemma 2.6. Let μ be a normal function. A closed setK in Zμ,0 is compact if and only if it is bounded
and satisfies

lim
|z|→ 1

sup
f∈K

μ(|z|)
∣∣∣R2f(z)

∣∣∣ = 0. (2.4)

3. Main Results and Proofs

Now, we are ready to state and prove the main results in this section.

Theorem 3.1. Let 0 < p, s < ∞, −n − 1 < q < ∞, and let μ be normal, g ∈ H(B) and n + 1 + q ≥ p,
then Tg : F(p, q, s) → Zμ is bounded if and only if
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(i) for n + 1 + q > p,

M1 = sup
z∈B

μ(|z|)∣∣Rg(z)
∣
∣
(
1 − |z|2

)−(n+1+q)/p
< ∞, (3.1)

M2 = sup
z∈B

μ(|z|)
∣
∣
∣R2g(z)

∣
∣
∣
(
1 − |z|2

)1−(n+1+q)/p
< ∞, (3.2)

(ii) for n + 1 + q = p,

M3 = sup
z∈B

μ(|z|)∣∣Rg(z)
∣∣
(
1 − |z|2

)−1
< ∞, (3.3)

M4 = sup
z∈B

μ(|z|)
∣∣∣R2g(z)

∣∣∣ log
2

1 − |z|2
< ∞. (3.4)

Proof. (i) First, for f,g ∈ H(B), suppose that n + 1 + q > p and f ∈ F(p, q, s). By Lemmas
2.1–2.3, we write R2f = R(Rf). We have that

∥∥Tgf
∥∥
Zμ

=
∣∣Tgf(0)

∣∣ + sup
z∈B

μ(|z|)
∣∣∣R2(Tgf

)
(z)

∣∣∣

≤ sup
z∈B

μ(|z|)
(∣∣Rf(z)

∣∣∣∣Rg(z)
∣∣ +

∣∣f(z)
∣∣
∣∣∣R2g(z)

∣∣∣
)

≤ ∥∥f
∥∥
B(n+1+q)/psup

z∈B

μ(|z|)∣∣Rg(z)
∣∣
(
1 − |z|2

)−(n+1+q)/p

+ C
∥∥f

∥∥
B(n+1+q)/psup

z∈B

μ(|z|)
∣∣∣R2g(z)

∣∣∣
(
1 − |z|2

)1−(n+1+q)/p

≤ C
∥∥f

∥∥
F(p,q,s)sup

z∈B

μ(|z|)∣∣Rg(z)
∣∣
(
1 − |z|2

)−(n+1+q)/p

+ C
∥∥f

∥∥
F(p,q,s)sup

z∈B

μ(|z|)
∣∣∣R2g(z)

∣∣∣
(
1 − |z|2

)1−(n+1+q)/p
.

(3.5)

Hence, (3.1) and (3.2) imply that Tg : F(p, q, s) → Zμ is bounded.
Conversely, assume that Tg : F(p, q, s) → Zμ is bounded. Taking the test function

f(z) ≡ 1 ∈ F(p, q, s), we see that g ∈ Zμ, that is,

sup
z∈B

μ(|z|)
∣∣∣R2g(z)

∣∣∣ < ∞. (3.6)
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For w ∈ B, set

fw(z) =

(
1 − |w|2

)1+(n+1+q)/p

(1 − 〈z,w〉)2(n+1+q)/p
−

(
1 − |w|2

)

(1 − 〈z,w〉)(n+1+q)/p
, z ∈ B. (3.7)

Then, ‖fw‖F(p,q,s) ≤ C by [14] and fw(w) = 0.
Hence,

∞ >
∥
∥Tgfw

∥
∥
Zμ

≥ sup
z∈B

μ(|z|)
∣
∣
∣R2(Tgfw

)
(z)

∣
∣
∣

= sup
z∈B

μ(|z|)
∣∣∣Rfw(z)Rg(z) + fw(z)R2g(z)

∣∣∣

≥ μ(|w|)
∣∣∣Rfw(w)Rg(w) + fw(w)R2g(w)

∣∣∣

= μ(|w|)∣∣Rfw(w)
∣∣∣∣Rg(w)

∣∣

=
μ(|w|)∣∣Rg(w)

∣∣|w|2
(
1 − |w|2

)(n+1+q)/p
.

(3.8)

From (3.8), we have

sup
|w|>1/2

μ(|w|)∣∣Rg(w)
∣∣

(
1 − |w|2

)(n+1+q)/p
< 4 sup

|w|>1/2

μ(|w|)∣∣Rg(w)
∣∣|w|2

(
1 − |w|2

)(n+1+q)/p
≤ 4

∥∥Tgfw
∥∥
Zμ

< ∞. (3.9)

On the other hand, we have

sup
|w|≤1/2

μ(|w|)∣∣Rg(w)
∣∣

(
1 − |w|2

)(n+1+q)/p
< C sup

|w|≤1/2
μ(|w|)∣∣Rg(w)

∣∣ < ∞. (3.10)

Combing (3.9) and (3.10), we get (3.1).
In order to prove (3.2), let w ∈ B and set

hw(z) =
1 − |w|2

(1 − 〈z,w〉)(n+1+q)/p
. (3.11)
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It is easy to see that hw(w) = 1/(1 − |w|2)(n+1+q)/p−1, Rhw(w) ≈ |w|2/(1 − |w|2)(n+1+q)/p.
We know that hw ∈ F(p, q, s); moreover, there is a positive constant C such that ‖hw‖F(p,q,s) ≤
C. Hence,

∞ >
∥
∥Tghw

∥
∥
Zμ

≥ sup
z∈B

μ(|z|)
∣
∣
∣R2(Tghw

)
(z)

∣
∣
∣

= sup
z∈B

μ(|z|)
∣
∣
∣Rhw(z)Rg(z) + hw(z)R2g(z)

∣
∣
∣

≥ μ(|w|)
∣
∣
∣R2g(w)

∣
∣
∣
(
1 − |w|2

)1−(n+1+q)/p − μ(|w|)∣∣Rg(w)
∣
∣|w|2

(
1 − |w|2

)(n+1+q)/p
.

(3.12)

From (3.1) and (3.12), we see that (3.2) holds.
(ii) If n+1+q = p, then, by Lemmas 2.1 and 2.2, we have F(p, q, s) ⊆ B1, for f ∈ F(p, q, s),

we get

∥∥Tgf
∥∥
Zμ

=
∣∣Tgf(0)

∣∣ + sup
z∈B

μ(|z|)
∣∣∣R2(Tgf

)
(z)

∣∣∣

≤ sup
z∈B

μ(|z|)
(∣∣Rf(z)

∣∣∣∣Rg(z)
∣∣ +

∣∣f(z)
∣∣
∣∣∣R2g(z)

∣∣∣
)

≤ ∥∥f
∥∥
B1sup

z∈B

μ(|z|)∣∣Rg(z)
∣∣
(
1 − |z|2

)−1

+ C
∥∥f

∥∥
B1sup

z∈B

μ(|z|)
∣∣∣R2g(z)

∣∣∣ log
2

1 − |z|2

≤ C
∥∥f

∥∥
F(p,q,s)sup

z∈B

μ(|z|)∣∣Rg(z)
∣∣
(
1 − |z|2

)−1

+ C
∥∥f

∥∥
F(p,q,s)sup

z∈B

μ(|z|)
∣∣∣R2g(z)

∣∣∣ log
2

1 − |z|2
.

(3.13)

Applying (3.3) and (3.4) in (3.13), for the case n + 1 + q = p, the boundedness of the operator
Tg : F(p, q, s) → Zμ follows.

Conversely, suppose that Tg : F(p, q, s) → Zμ is bounded. Given any w ∈ B, set

fw(z) =

(
1 − |w|2

)2

(1 − 〈z,w〉)2
−

(
1 − |w|2

)

(1 − 〈z,w〉) , z ∈ B, (3.14)

then ‖fw‖F(p,q,s) ≤ C by [14].
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By the boundedness of Tg, it is easy to see that

μ(|w|)∣∣Rg(w)
∣
∣|w|2

(
1 − |w|2

) < ∞. (3.15)

By (3.14) and (3.15), in the same way as proving (3.1), we get that (3.3) holds.
Now, given any w ∈ B, set

fw(z) = log
2

1 − 〈z,w〉 , z ∈ B, (3.16)

then |Rfw(z)| ≤ C/|1 − 〈z,w〉|. Applying Lemma 2.4, we have that ‖fw‖F(p,q,s) ≤ C. Hence,

∞ >
∥∥Tgfw

∥∥
Zμ

≥ sup
z∈B

μ(|z|)
∣∣∣R2(Tgfw

)
(z)

∣∣∣

≥ sup
z∈B

μ(|z|)
∣∣∣Rfw(z)Rg(z) + fw(z)R2g(z)

∣∣∣

≥ μ(|w|)
∣∣∣R2g(w)

∣∣∣ log
2

1 − |w|2
− μ(|w|)∣∣Rg(w)

∣∣|w|2
(
1 − |w|2

) .

(3.17)

From (3.15) and (3.17), we see that (3.4) holds. The proof of this theorem is completed.

Theorem 3.2. Let 0 < p, s < ∞, −n − 1 < q < ∞, and let μ be normal, g ∈ H(B) and n + 1 + q ≥ p,
then the following statements are equivalent:

(A) Tg : F(p, q, s) → Zμ is compact;

(B) Tg : F(p, q, s) → Zμ,0 is compact;

(C) (i) for n + 1 + q > p,

lim
|z|→ 1

μ(|z|)∣∣Rg(z)
∣∣
(
1 − |z|2

)−(n+1+q)/p
= 0, (3.18)

lim
|z|→ 1

μ(|z|)
∣∣∣R2g(z)

∣∣∣
(
1 − |z|2

)1−(n+1+q)/p
= 0, (3.19)

(ii) for n + 1 + q = p,

lim
|z|→ 1

μ(|z|)∣∣Rg(z)
∣∣
(
1 − |z|2

)−1
= 0, (3.20)

lim
|z|→ 1

μ(|z|)
∣∣∣R2g(z)

∣∣∣ log
2

1 − |z|2
= 0. (3.21)
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Proof. (B)⇒ (A). This implication is obvious.
(A)⇒ (C). First, for the case n + 1 + q > p.
Suppose that the operator Tg : F(p, q, s) → Zμ is compact. Let {zk}k∈N

be a sequence
in B such that limk→∞|zk| = 1. Denote fk(z) = fzk(z), k ∈ N, and set

fk(z) =

(
1 − |zk|2

)1+(n+1+q)/p

(1 − 〈z, zk〉)2(n+1+q)/p
−

(
1 − |zk|2

)

(1 − 〈z, zk〉)(n+1+q)/p
, k ∈ N. (3.22)

It is easy to see that fk ∈ F(p, q, s) for k ∈ N and fk → 0 uniformly on compact subsets of B

as k → ∞. By Lemma 2.5, it follows that

lim
k→∞

∥
∥Tgfk

∥
∥
Zμ

= 0. (3.23)

By Lemma 2.3, we have

∥∥Tgfk
∥∥
Zμ

≥ sup
z∈B

μ(|z|)
∣∣∣R2(Tgfk

)
(z)

∣∣∣

= sup
z∈B

μ(|z|)
∣∣∣Rfk(z)Rg(z) + fk(z)R2g(z)

∣∣∣

≥ μ(|zk|)
∣∣Rfk(zk)Rg(zk)

∣∣ + fk(zk)R2g(zk)
∣∣∣

= μ(|zk|)
∣∣Rfk(zk)

∣∣∣∣Rg(zk)
∣∣

=
μ(|zk|)Rg(zk)|zk|2
(
1 − |zk|2

)(n+1+q)/p
.

(3.24)

From (3.23) and (3.24), we obtain

lim
k→∞

μ(|zk|)Rg(zk)
(
1 − |zk|2

)(n+1+q)/p
= lim

k→∞
μ(|zk|)Rg(zk)|zk|2
(
1 − |zk|2

)(n+1+q)/p
= 0, (3.25)

which means that (3.18) holds.
Similarly, we take the test function

fk(z) =

(
1 − |zk|2

)2

(1 − 〈z, zk〉)2
−

(
1 − |zk|2

)

(1 − 〈z, zk〉) , k ∈ N. (3.26)

Then, fk ∈ F(p, q, s) for k ∈ N and fk → 0 uniformly on compact subsets of B as k → ∞. We
obtain that (3.20) holds for the case n + 1 + q = p.



10 Journal of Inequalities and Applications

For proving (3.19), we set

hk(z) =
1 − |zk|2

(1 − 〈z, zk〉)(n+1+q)/p
, z ∈ B, (3.27)

then ‖hk‖F(p,q,s) ≤ C, and {hk}k∈N
converges to 0 uniformly on any compact subsets of B as

k → ∞. By Lemma 2.5, it yields

lim
k→∞

∥
∥Tghk

∥
∥
Zμ

= 0. (3.28)

Further, we have

∥∥Tghk

∥∥
Zμ

≥ sup
z∈B

μ(|z|)
∣∣∣R2(Tghk

)
(z)

∣∣∣

= sup
z∈B

μ(|z|)
∣∣∣Rhk(z)Rg(z) + hk(z)R2g(z)

∣∣∣

≥ μ(|zk|)
∣∣∣Rhk(zk)Rg(zk) + hk(zk)R2g(zk)

∣∣∣

≥ μ(|zk|)
∣∣∣R2g(zk)

∣∣∣
(
1 − |zk|2

)1−(n+1+q)/p − μ(|zk|)
∣∣Rg(zk)

∣∣|zk|2
(
1 − |zk|2

)(n+1+q)/p
.

(3.29)

From (3.25), (3.28), and (3.29), it follows that

lim
k→∞

μ(|zk|)
∣∣∣R2g(zk)

∣∣∣
(
1 − |zk|2

)1−(n+1+q)/p
= 0, (3.30)

which implies that (3.19) holds.
(ii) Second, for the case n + 1 + q = p, take the test function

fk(z) =

(
log(2/(1 − 〈z, zk〉))

)2

log
(
2/

(
1 − |zk|2

)) , z ∈ B. (3.31)

Then, ‖fk‖F(p,q,s) ≤ C by Lemma 2.4 and fk → 0 uniformly on any compact subset of B. By
Lemma 2.5 and condition (A), we have

∥∥Tgfk
∥∥
Zμ

−→ 0 as k −→ ∞. (3.32)
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Hence, we have that

∥
∥Tgfk

∥
∥
Zμ

≥ sup
z∈B

μ(|z|)
∣
∣
∣R2(Tgfk

)
(z)

∣
∣
∣

= sup
z∈B

μ(|z|)
∣
∣
∣Rfk(z)Rg(z) + fk(z)R2g(z)

∣
∣
∣

≥ μ(|zk|)
∣
∣
∣R2g(zk)

∣
∣
∣ log

2

1 − |zk|2
− 2

μ(|zk|)
∣
∣Rg(zk)

∣
∣|zk|2

(
1 − |zk|2

) .

(3.33)

From (3.20), (3.32), and (3.33), it follows that

lim
k→∞

μ(|zk|)
∣∣∣R2g(zk)

∣∣∣ log
2

1 − |zk|2
= 0, (3.34)

which implies that (3.21) holds.
(C)⇒ (B). Suppose that (3.18) and (3.19) hold for f ∈ F(p, q, s). By Lemmas 2.1 and

2.2, we have that

μ(|z|)
∣∣∣R2(Tgf

)
(z)

∣∣∣ = μ(|z|)
∣∣∣Rf(z)Rg(z) + f(z)R2g(z)

∣∣∣

≤ C
∥∥f

∥∥
F(p,q,s)μ(|z|)

∣∣Rg(z)
∣∣
(
1 − |z|2

)−(n+1+q)/p

+ C
∥∥f

∥∥
F(p,q,s)μ(|z|)

∣∣∣R2g(z)
∣∣∣
(
1 − |z|2

)1−(n+1+q)/p
.

(3.35)

Note that (3.18) and (3.19) imply that

lim
|z|→ 1

μ(|z|)
∣∣∣R2g(z)

∣∣∣ = 0. (3.36)

Further, they also imply that (3.1) and (3.2) hold. From this and Theorem 3.1, it follows that
set Tg({f : ‖f‖F(p,q,s) ≤ 1}) is bounded. Using these facts, (3.18), and (3.19), we have

lim
|z|→ 1

sup
‖f‖F(p,q,s)

≤1
μ(|z|)

∣∣∣R2(Tgf
)
(z)

∣∣∣ = 0. (3.37)

Similarly, we obtain that (3.37) holds for the case n+ 1+ q = p by (3.20) and (3.21). Exploiting
Lemma 2.6, the compactness of the operator Tg : F(p, q, s) → Zμ,0 follows. The proof of this
theorem is completed.

Finally, we consider the case n + 1 + q < p.
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Theorem 3.3. Let 0 < p, s < ∞, −n− 1 < q < ∞, and let μ be normal, g ∈ H(B), n+ 1+ q < p, then
the following statements are equivalent:

(A) Tg : F(p, q, s) → Zμ is bounded;

(B) g ∈ Zμ and

sup
z∈B

μ(|z|)∣∣Rg(z)
∣
∣
(
1 − |z|2

)−(n+1+q)/p
< ∞. (3.38)

The proof of Theorem 3.3 follows by the proof of Theorem 3.1. So, we omit the details
here.

Theorem 3.4. Let 0 < p, s < ∞, −n − 1 < q < ∞, and let μ be normal, g ∈ H(B) and n + 1 + q < p,
then the following statements are equivalent:

(A) Tg : F(p, q, s) → Zμ is compact;

(B) g ∈ Zμ and

lim
|z|→ 1

μ(|z|)∣∣Rg(z)
∣∣
(
1 − |z|2

)−(n+1+q)/p
= 0. (3.39)

Proof. (A)⇒ (B). We assume that Tg : F(p, q, s) → Zμ is compact. For f ≡ 1, we obtain that
g ∈ Zμ. Exploiting the test function in (3.22), similarly to the proof of Theorem 3.2, we obtain
that (3.39) holds. As a consequence, it follows that

lim
|z|→ 1

μ(|z|)∣∣Rg(z)
∣∣ = 0. (3.40)

(B)⇒ (A). Assume that {fk}k∈N
is a sequence in F(p, q, s) such that supk∈N

‖fk‖F(p,q,s) ≤ L < ∞,
and fk → 0 uniformly on compact of B as k → ∞. By Lemma 2.1 and [18, Lemma 4.2],

lim
k→∞

sup
z∈B

∣∣fk(z)
∣∣ = 0. (3.41)

From (3.39), we have that for every ε > 0, there is a δ ∈ (0, 1), such that, for every δ < |z| < 1,

μ(|z|)∣∣Rg(z)
∣∣

(
1 − |z|2

)(n+1+q)/p
< ε, (3.42)

and from (3.39) that

Gμ = sup
z∈B

μ(|z|)∣∣Rg(z)
∣∣ < ∞. (3.43)
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Hence,

μ(|z|)
∣∣
∣R2(Tgfk

)
(z)

∣∣
∣ = μ(|z|)

∣∣
∣Rfk(z)Rg(z) + fk(z)R2g(z)

∣∣
∣

≤ sup
|z|≤δ

μ(|z|)∣∣Rfk(z)
∣
∣
∣
∣Rg(z)

∣
∣ + sup

δ<|z|<1
μ(|z|)∣∣Rfk(z)

∣
∣
∣
∣Rg(z)

∣
∣

+
∥∥g

∥∥
Zμ
sup
z∈B

∣∣fk(z)
∣∣

≤ Gμ sup
|z|≤δ

∣
∣Rfk(z)

∣
∣ +

∥
∥fk

∥
∥
B(n+1+q)/p sup

δ<|z|<1

μ(|z|)∣∣Rg(z)
∣
∣

(
1 − |z|2

)(n+1+q)/p

+
∥
∥g

∥
∥
Zμ
sup
z∈B

∣
∣fk(z)

∣
∣

≤ Gμsup
|z|≤δ

∣∣Rfk(z)
∣∣ + εL +

∥∥g
∥∥
Zμ
sup
z∈B

∣∣fk(z)
∣∣.

(3.44)

Since fk → 0 on compact subsets of B by the Cauchy estimate, it follows that Rfk → 0 on
compact subsets of B, in particular on |z| ≤ δ. Taking in (3.44), the supremum over z ∈ B,
letting k → ∞, using the above-mentioned facts, Tgfk(0) = 0, and since ε is an arbitrary
positive number, we obtain

lim
k→∞

∥∥Tgfk
∥∥
Zμ

= 0. (3.45)

Hence, by Lemma 2.5, the compactness of the operator Tg : F(p, q, s) → Zμ follows. The
proof of this theorem is completed.

Theorem 3.5. Let 0 < p, s < ∞, −n − 1 < q < ∞, and let μ be normal, g ∈ H(B) and n + 1 + q < p,
then the following statements are equivalent:

(A) Tg : F(p, q, s) → Zμ,0 is compact;

(B) g ∈ Zμ,0 and

lim
|z|→ 1

μ(|z|)∣∣Rg(z)
∣∣
(
1 − |z|2

)−(n+1+q)/p
= 0. (3.46)

Proof. (A)⇒ (B). For f ≡ 1, we obtain that g ∈ Zμ,0. In the same way as in Theorem 3.4, we
get that (3.46) holds.

(B)⇒ (A). By Lemmas 2.1 and 2.2, we have that

μ(|z|)
∣∣∣R2(Tgf

)
(z)

∣∣∣ = μ(|z|)
∣∣∣Rf(z)Rg(z) + f(z)R2g(z)

∣∣∣

≤ C
∥∥f

∥∥
F(p,q,s)μ(|z|)

∣∣Rg(z)
∣∣
(
1 − |z|2

)−(n+1+q)/p

+ C
∥∥f

∥∥
F(p,q,s)μ(|z|)

∣∣∣R2g(z)
∣∣∣.

(3.47)
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This along with Theorem 3.2 implies that Tg({f : ‖f‖F(p,q,s) ≤ 1}) is bounded. Taking the
supremum over the unit ball in F(p, q, s), letting |z| → 1 in (3.46), using the condition (B),
and finally by applying Lemma 2.6, we get the compactness of the operator Tg : F(p, q, s) →
Zμ,0. This completes the proof of the theorem.
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