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This paper is devoted to some applications of a weighted symmetrization inequality related to a
second order boundary value problem. We first interpret the inequality in the context of elastic
membranes, and observe that it lends itself to make a comparison between the deflection of
a membrane with a varying density with that of a membrane with a uniform density. Some
mathematical consequences of the inequality including a stability result are presented. Moreover,
a similar inequality where the underlying differential equation is of fourth order is also discussed.

1. Introduction

In this paper we discuss some applications of a weighted symmetrization inequality related
to a second-order boundary value problem. We begin by interpreting the inequality in
the context of elastic membranes. Let us briefly describe the physical situation and its
mathematical formulation that leads to the inequality we are interested in. An elastic
membrane of varying density a(x) is occupying a region Ω, a disk in the plane R

2. The
membrane is fixed at the boundary and is subject to a load f(x)h(x). The governing equation
in terms of the deflection function u(x) is the elliptic boundary value problem

−∇ · (a(x)∇u) = f(x)h(x), in Ω,

u = 0, on ∂Ω
(P)

On the other hand, the following boundary value problemmodels a membrane with uniform
density:

−CΔv = f∗
μ(x), in Ω∗

μ,

v = 0, on ∂Ω∗
μ,

(S)
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where C is a constant depending on a(x) and h(x), whereas Ω∗
μ and f∗

μ denote
symmetrizations of Ω and f , with respect to the measure μ, respectively; see thefollowing
section for precise notation and definitions. We call (S) the symmetrization of (P). In [1], see
also [2], the following weighted symmetrization inequality is proved:

u∗
μ(x) ≤ v(x), x ∈ Ω∗

μ, (1.1)

where u and v are solutions of (P) and (S), respectively. Physically, (1.1) implies that the
deflection of the membrane with varying density, after symmetrization, is dominated by that
of the membrane with uniform density.

The aim of the present paper is to point out some applications of (1.1). In particular,
we prove the following inequality:

∫
Ω
a(x)|∇u|2dx ≤ C

∫
Ω∗

μ

|∇v|2dx. (1.2)

We also address the case of equality in (1.2). In case a(x) = 1, the constant C in (1.2)
is simply equal to 1; hence, (1.2) reduces to the well-known Pólya-Szegö inequality; see,
for example, [3, 4]. Inequality (1.2) deserves to be added to the standard list of existing
rearrangement inequalities since it can serve, mathematically, physical situations in which
the object, whether it is a membrane, plate, or so forth, is made of several materials.

Once (1.2) is proved, we then present a stability result. Finally, the paper ends with a
weighted rearrangement inequality related to a fourth-order boundary value problem. More
precisely, we introduce

∇ ·
(
a(x)∇

(
1
h
∇ · (b(x)∇u)

))
= f(x)h(x), in Ω,

u = ∇ · (b(x)∇u) = 0, on ∂Ω,

(PH)

and the symmetrization of (PH):

Δ2v = f∗
μ(x), in Ω∗

μ,

v = Δv = 0, on ∂Ω∗
μ.

(SH)

We prove that

u∗
μ(x) ≤ Cv(x), x ∈ Ω∗

μ, (1.3)

where C is a constant depending on a(x), b(x), and h(x).
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2. Preliminaries

Henceforth Ω ⊂ R
2 denotes a disk centered at the origin. Suppose that (Ω, μ) is a measurable

space. In the following three definitions we assume that f : Ω → [0,∞) is μ-measurable; see,
for example, [5] for further reading.

Definition 2.1. The distribution function of f , with respect to μ, denoted as λf,μ, is defined by

λf,μ(α) = μ
({

x ∈ Ω : f(x) ≥ α
})

, α ∈ [0,∞). (2.1)

Definition 2.2. The decreasing rearrangement of f , with respect to μ, denoted as fΔ
μ , is defined

by

fΔ
μ (s) = inf

{
α : λf,μ(α) < s

}
, s ∈ [

0, μ(Ω)
]
. (2.2)

Definition 2.3. The decreasing radial symmetrization of f , with respect to μ, denoted f∗
μ, is

defined by

f∗
μ(x) = fΔ

μ

(
π |x|2

)
, x ∈ Ω∗

μ, (2.3)

where Ω∗
μ is the ball centered at the origin with radius (μ(Ω)/π)1/2.

In the following section we will use the following result which seems to have been
overlooked in Theorem 7.1 in [1]. In the literature this result is usually referred to as the
weighted Hardy-Littlewood inequality; see [5].

Lemma 2.4. Let f : Ω → [0,∞) and g : Ω → [0,∞) be μ-measurable functions. Then

∫
Ω
fg dμ ≤

∫μ(Ω)

0
fΔ
μ (s)g

Δ
μ (s)ds, (2.4)

provided the integrals converge.

Proof. See Theorem 1 in [3, 4].

An immediate consequence of (2.4) is the following.

Corollary 2.5. Let f : Ω → [0,∞) and g : Ω → [0,∞) be μ-measurable functions. Then

∫
Ω
fg dμ ≤

∫
Ω∗

μ

f∗
μ(x)g

∗
μ(x)dx, (2.5)

provided the integrals converge.
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Proof. From (2.4), we have

∫
Ω
fg dμ ≤

∫μ(Ω)

0
fΔ
μ (s)g

Δ
μ (s)ds. (2.6)

Hence, by changing the variable s = πr2, we obtain

∫
Ω
fg dμ ≤ 2π

∫ (μ(Ω)/π)1/2

0
fΔ
μ

(
πr2

)
gΔ
μ

(
πr2

)
r dr =

∫
Ω∗

μ

f∗
μ(x)g

∗
μ(x)dx, (2.7)

as desired.

Definition 2.6. A pair (h, a) ∈ C(Ω) × C(Ω) is called admissible if and only if the following
conditions hold.

(i) a(x) ≥ a0 > 0, for some constant a0.

(ii) h is almost radial in the sense that there exists a radial function h0 ≥ 0 such that

ch0(x) ≤ h(x) ≤ h0(x), in Ω, (2.8)

for some c ∈ (0, 1].

(iii) There exists K > 0 such that

s(r) ≥ Kr

(
h0(r)
a(x)

)1/2

,
ds

dr
≥ K

(
h0(r)
a(x)

)1/2

, (2.9)

where r = |x|, x ∈ Ω. Here, s(r) is the solution to the initial value problem

s
ds

dr
= rh0(r), s(0) = 0, (2.10)

in (0, R), where R is the radius of the ball Ω.

The following result is a special case of Theorem 3.1 in [1].

Theorem 2.7. Suppose that (h, a) ∈ C(Ω) × C(Ω) is admissible. Suppose that f ∈ C(Ω) is a
nonnegative function, dμ = h(x)dx, andC := Kc2, whereK and c are the constants in Definition 2.6,
corresponding to the pair (h, a). Let u ∈ W1,2

0 (Ω) and v ∈ W1,2
0 (Ω∗

μ) be solutions of (P) and (S),
respectively. Then

u∗
μ(x) ≤ v(x), (2.11)

for x ∈ Ω∗
μ.

Remark 2.8. In case h(x) = 1, in Theorem 2.7, that is, dμ coincides with the usual Lebesgue
measure, (2.11) reduces to the classical symmetrization inequality; see, for example, [6, 7].
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3. Main Results

Our first main result is the following.

Theorem 3.1. Suppose that (h, a) ∈ C(Ω) × C(Ω) is admissible, f ∈ C(Ω) is non-negative, and
dμ = h(x)dx. Suppose that u ∈ W1,2

0 (Ω) satisfies

−∇ · (a(x)∇u) = fh, in Ω,

u = 0, on ∂Ω.
(3.1)

Suppose that v ∈ W1,2
0 (Ω∗

μ) satisfies

−CΔv = f∗
μ, in Ω∗

μ,

v = 0, on ∂Ω∗
μ,

(3.2)

where C := Kc2. Then

∫
Ω
a(x)|∇u|2dx ≤ C

∫
Ω∗

μ

|∇v|2dx. (3.3)

In addition, if equality holds in (3.3), then

u∗
μ(x) = v(x), x ∈ Ω∗

μ. (3.4)

Proof. Multiplying the differential equation in (3.1) by u and integrating over Ω yield

∫
Ω
a(x)|∇u|2dμ =

∫
Ω
fudμ. (3.5)

Now we can apply Corollary 2.5 to the right-hand side of the above equation to deduce

∫
Ω
a(x)|∇u|2dμ ≤

∫
Ω∗

μ

f∗
μ(x)u

∗
μ(x)dx. (3.6)

Hence, by (2.11), we obtain

∫
Ω
a(x)|∇u|2dμ ≤

∫
Ω∗

μ

f∗
μ(x)v(x)dx. (3.7)
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Next, we multiply the differential equation in (3.2) by v and integrate over Ω∗
μ to obtain

C

∫
Ω∗

μ

|∇v|2dx =
∫
Ω∗

μ

f∗
μ(x)v(x)dx. (3.8)

From (3.7) and (3.8), we obtain (3.3).
Nowwe assumes equality holds in (3.3). This, in conjunctionwith (3.6) and (3.7), yield

that

∫
Ω∗

μ

f∗
μ(x)u

∗
μ(x)dx =

∫
Ω∗

μ

f∗
μ(x)v(x)dx. (3.9)

Hence

∫
Ω∗

μ

f∗
μ(x)

(
v(x) − u∗

μ(x)
)
dx = 0. (3.10)

Since v(x) − u∗
μ(x) ≥ 0, thanks to (2.11), we infer that v(x) = u∗

μ(x), over the set {x ∈ Ω∗
μ :

f∗
μ(x) > 0}. In particular, it follows that v(0) = u∗

μ(0). At this point, we recall the function

ξ(t) =
1

4πC

(
uΔ
μ (t)

)−1(−uΔ
μ (t)

)′ ∫
{x∈Ω∗

μ:u∗
μ(x)>t}

f∗
μ

(
y
)
dy, (3.11)

which was implicitly used in the proof of Theorem 3.1 in [1]. This function satisfies

(a) ξ(t) ≥ 1, for almost every t ∈ [0, u∗
μ(0)],

(b)
∫u∗

μ(x)
0 ξ(t)dt = v(x), for every x ∈ Ω∗

μ.

We claim that ξ(t) = 1. To derive a contradiction, let us assume that the assertion in the
claim is false, that is, there is a set of positive measure upon which ξ(t) > 1. In this case, by (a),

we obtain
∫u∗

μ(0)
0 ξ(t)dt > u∗

μ(0). However, by (b),
∫u∗

μ(0)
0 ξ(t)dt = v(0); hence u∗

μ(0) < v(0), which
is a contradiction. Finally, since ξ(t) = 1, we can apply (b) again to deduce u∗

μ(x) = v(x), for
x ∈ Ω∗

μ, as desired.

As mentioned in the introduction, we prove a stability result.

Theorem 3.2. Let (hn, a) ∈ C(Ω)×C(Ω), n ∈ N, be admissible. Suppose that Cn := K2
ncn converges

to, say, C > 0. In addition, suppose that the sequence {hn} is decreasing and pointwise convergent
to h ∈ C(Ω). Suppose that f ∈ C(Ω) is a non-negative function, and dμn = hn(x)dx. Let un ∈
W1,2

0 (Ω) satisfy

−∇ · (a(x)∇un) = fhn, in Ω,

un = 0, on ∂Ω,
(3.12)



Journal of Inequalities and Applications 7

and let vn ∈ W1,2
0 (Ω∗

μn
) satisfy

−CnΔvn = f∗
μn
, in Ω∗

μn
,

vn = 0, on ∂Ω∗
μn
.

(3.13)

Then, there exist û ∈ W1,2
0 (Ω) and v̂ ∈ W1,2

0 (Ω∗
μ) such that

−∇ · (a(x)∇û) = fh, in Ω,

û = 0, on ∂Ω,
(3.14)

−CΔv̂ = f∗
μ, in Ω∗

μ,

v̂ = 0, on ∂Ω∗
μ,

(3.15)

where dμ := h(x)dx. Moreover,

û∗
μ(x) ≤ v̂(x), (3.16)

for x ∈ Ω∗
μ.

Proof. Since {hn} is decreasing, we can apply the Maximum Principle, see, for example, [8],
to deduce that {un} is also decreasing. On the other hand, it is easy to show that {un} is a
Cauchy sequence in W1,2

0 (Ω); hence there exists û ∈ W1,2
0 (Ω) such that un → û, in W1,2

0 (Ω).
Multiplying the differential equation in (3.12) by an arbitrary u ∈ W1,2

0 (Ω) and integrating
over Ω yield

∫
Ω
a(x)∇un · ∇udx =

∫
Ω
fhnudx. (3.17)

Hence, taking the limit as n → ∞, keeping in mind that hn → h and ∇un → ∇û, in L2(Ω),
we obtain

∫
Ω
a(x)∇û · ∇udx =

∫
Ω
fhudx. (3.18)

Thus, since u is arbitrary, û verifies (3.14), as desired.
Next we prove existence of v̂ such that vn → v̂, in W1,2

0 (Ω∗
μ), and verify (3.15). We

proceed in this direction by first showing that

f∗
μn
(x) −→ f∗

μ(x) (3.19)
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for x ∈ Ω∗
μ. Indeed, since {hn} is decreasing, the sequence {λf,μn} is also decreasing. This, in

turn, implies that {fΔ
μn
} is decreasing. Moreover, by the Lebesgue Dominated Convergence

Theorem, we have

λf,μn(α) =
∫
{x∈Ω:f(x)≥α}

hn(x)dx −→
∫
{x∈Ω:f(x)≥α}

h(x)dx, as n −→ ∞. (3.20)

Since λf,μn(α) ≥ λf,μ(α), we can apply Definition 2.3 to infer that fΔ
μ (s) ≤ fΔ

μn
(s), s ∈ [0, μ(Ω)].

Now, fix s ∈ [0, μ(Ω)], and consider an arbitrary η > 0. Then, fΔ
μ (s) + η > α, for some α

satisfying λf,μ(α) < s. Since limn→∞λf,μn(α) = λf,μ(α), it follows that λf,μ(α) ≤ λf,μn(α) < s,
for n ≥ n0, for some n0 ∈ N. Therefore, again from Definition 2.3, we deduce fΔ

μn
(s) ≤ α, for

n ≥ n0. In conclusion, we have

fΔ
μn
(s) − η ≤ fΔ

μ (s) ≤ fΔ
μn
(s), n ≥ n0. (3.21)

This implies that |fΔ
μn
(s) − fΔ

μ (s)| < η, n ≥ n0. Since η is arbitrary, we deduce limn→∞fΔ
μn
(s) =

fΔ
μ (s), that is, (3.19) is verified. By taking the zero extensions of vn and f∗

μn
outside Ω∗

μn
, we

can apply (3.19), keeping in mind that Cn → C, to deduce that {vn} is a Cauchy sequence
in W1,2

0 (Ω∗
μ1
). Hence, there exists v̂ ∈ W1,2

0 (Ω∗
μ1
) such that vn → v̂, in W1,2

0 (Ω∗
μ1
). Next, for an

arbitrary v ∈ W1,2
0 (Ω∗

μ), extended to all of Ω∗
μ1

by setting v = 0 in Ω∗
μ1
\Ω∗

μ, we derive

C

∫
Ω∗

μ1

∇v̂ · ∇v dx =
∫
Ω∗

μ1

f∗
μv dx. (3.22)

Since vn = 0 on Ω∗
μ1
\Ω∗

μn
, it is clear that v̂ = 0 on ∂Ω∗

μ. This, coupled with (3.22), implies that
v̂ satisfy (3.15). If (3.15) were the symmetrization of (3.14), then (3.16) would follow from
(2.11). However, this is not known to us a priori. Therefore, in order to derive (3.16), we first
apply Theorem 2.7 to (3.12) and (3.13) to obtain

(un)
∗
μn
(x) ≤ vn(x), x ∈ Ω∗

μn
. (3.23)

Since {un} and {hn} are decreasing, and, in addition, un → û, hn → h, pointwise; after
passing to a subsequence, if necessary, we can use similar arguments to those used in the
proof of (3.19) to show that

lim
n→∞

(un)∗μn
(x) = (û)∗μ(x), x ∈ Ω∗

μ. (3.24)

Therefore, by taking the limit n → ∞, in (3.23), we derive (3.16), as desired.

Our next result concerns problems (PH) and (SH).
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Theorem 3.3. Suppose that (h, a) ∈ C(Ω) × C(Ω) and (h, b) ∈ C(Ω) × C(Ω) are admissible; in
addition, h(x) > 0. Suppose that f ∈ C(Ω) is non-negative. Suppose that u and v satisfy (PH) and
(SH), respectively, where dμ = h(x)dx. Then

u∗
μ(x) ≤ Cv(x), x ∈ Ω∗

μ, (3.25)

where C is a constant depending on a(x), b(x), and h(x).

Proof. We begin by setting U := −(1/h)∇ · (b(x)∇u). Then, we obtain

−∇ · (b(x)∇u) = hU, in Ω,

u = 0, on ∂Ω,
(3.26)

and, by (PH),

−∇ · (a(x)∇U) = hf, in Ω,

U = 0, on ∂Ω.
(3.27)

Since (h, a) is admissible, we can apply Theorem 2.7 to (3.27), and obtain

U∗
μ(x) ≤ w(x), x ∈ Ω∗

μ, (3.28)

where w satisfies

−C1Δw = f∗
μ, in Ω∗

μ,

w = 0, on ∂Ω∗
μ,

(3.29)

for C1 := K2
1c, where K1 and c are the constants in Definition 2.6, corresponding to the pair

(h, a). Similarly, since (h, b) is admissible, another application of Theorem 2.7, to (3.26), yields

u∗
μ(x) ≤ I(x), x ∈ Ω∗

μ, (3.30)

where I satisfies

−C2ΔI = U∗
μ, in Ω∗

μ,

I = 0, on ∂Ω∗
μ,

(3.31)

for C2 := K2c, where K2 and c are the constants in Definition 2.6, corresponding to the pair
(h, b). From (3.28) and (3.31), we deduce −C2ΔI ≤ w, in Ω∗

μ. On the other hand, we know
that C1w = −Δv, where v is the solution of (SH). Thus, −C1C2ΔI ≤ −Δv, in Ω∗

μ. Since I =
v = 0, on ∂Ω∗

μ, we can apply the Maximum Principle to deduce C1C2I ≤ v, in Ω∗
μ. The latter
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inequality, coupled with (3.30), implies that u∗
μ ≤ (1/C1C2)v, in Ω∗

μ. Setting C := 1/C1C2, we
derive (3.25), as desired.

Remark 3.4. The result in Theorem 3.3 can be interpreted in the context of plates with hinged
boundaries. The inequality (3.25) implies that the deflection of a plate, with varying density,
hinged at the boundary, is dominated by the deflection of another plate, similarly hinged at
the boundary, with uniform density. See [9, 10] for similar results.

The last result of this paper is somewhat similar to the result of Theorem 3.3, but the
reader should take note that the underlying differential equation in the next result is different
from that in Theorem 3.3.

Theorem 3.5. Suppose that (h, 1) ∈ C(Ω) × C(Ω) is admissible. Suppose that h(x) ≥ 1 in Ω, and
f ∈ C(Ω) is non-negative. Let u and v satisfy

Δ2u = fh, in Ω,

u = Δu = 0, on ∂Ω,
(3.32)

Δ2v = f∗
μ, in Ω∗

μ,

v = Δv = 0, on ∂Ω∗
μ,

(3.33)

respectively. Then

u∗
e(x) ≤ Cv(x), x ∈ Ω∗

μ, (3.34)

where C is a constant depending on h0. Here u∗
e denotes the decreasing radial symmetrization of u,

with respect to the Lebesgue measure, extended toΩ∗
μ by setting u

∗
e(x) = 0 for x ∈ Ω∗

μ \Ω∗, whereΩ∗

is the symmetrization of Ω with respect to the Lebesgue measure, that is, Ω∗ = Ω.

Proof. As in the proof of Theorem 3.3, we set U = −Δu. Then, by (3.32), we obtain

−Δu = U, in Ω,

u = 0, on ∂Ω,
(3.35)

−ΔU = fh, in Ω,

U = 0, on ∂Ω.
(3.36)

Since (h, 1) is admissible, we can apply Theorem 2.7 to (3.36), and obtain

U∗
μ(x) ≤ w(x), x ∈ Ω∗

μ, (3.37)
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where w satisfies

−C1Δw = f∗
μ, in Ω∗

μ,

w = 0, on ∂Ω∗
μ,

(3.38)

where C1 is a constant related to admissibility of (h, 1). On the other hand, applying
Theorem 2.7 to (3.35), with dμ = dx, yields

u∗(x) ≤ I(x), x ∈ Ω∗ = Ω, (3.39)

where I satisfies

−ΔI = U∗, in Ω,

I = 0, on ∂Ω.
(3.40)

Since h(x) ≥ 1, it readily follows that U∗
μ(x) ≥ U∗(x), for x ∈ Ω. This, in conjunction with

(3.37) and (3.40), implies that

−ΔI(x) ≤ U∗
μ(x) ≤ w(x), x ∈ Ω. (3.41)

Note that, from (3.33) and (3.34), we deduce C1w = −Δv inΩ∗
μ. So, becauseΩ ⊆ Ω∗

μ, it follows
that −ΔI ≤ −(1/C1)Δv, in Ω. In addition, on ∂Ω, I = 0, while v is positive, as a consequence
of the Maximum Principle. Thus, by another application of the Maximum Principle, we infer
that I ≤ (1/C1)v, inΩ. This, coupled with (3.39), implies that u∗ ≤ (1/C1)v, inΩ. Since v > 0
in Ω∗

μ, it follows that u∗
e ≤ Cv, in Ω∗

μ, where C := 1/C1, as desired.

Remark 3.6. All results presented in this paper can easily be extended to higher dimensions;
only simple technical adjustments are required.
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