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A general theorem concerning the |A|k—summability factors of infinite series has been proved.

1. Introduction

Aweighted mean matrix, denoted by (N,pn), is a lower triangular matrix with entries pk/Pn,
where {pk} is a nonnegative sequence with p0 > 0, and Pn :=

∑n
k=0 pk.

Mishra and Srivastava [1] obtained sufficient conditions on a sequence {pk} and a
sequence {λn} for the series

∑
anPnλn/npn to be absolutely summable by the weighted mean

matrix (N,pn).
Recently Savaş and Rhoades [2] established the corresponding result for a nonnegative

triangle, using the correct definition of absolute summability of order k ≥ 1.
Let A be an infinite lower triangular matrix. We may associate with A two lower

triangular matrices A and Â, whose entries are defined by

ank =
n∑

i=k

ani, ânk = ank − an−1,k, (1.1)

respectively. The motivation for these definitions will become clear as we proceed.
Let A be an infinite matrix. The series

∑
ak is said to be absolutely summable by A, of

order k ≥ 1, written as |A|k, if

∞∑

k=0

nk−1|Δtn−1|k < ∞, (1.2)
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where Δ is the forward difference operator and tn denotes the nth term of the matrix
transform of the sequence {sn}, where sn :=

∑n
k=1 ak.

Thus

tn =
n∑

k=1

anksk =
n∑

k=1

ank

k∑

ν=1

aν =
n∑

ν=1

aν

n∑

k=ν

ank =
n∑

ν=1

anνaν,

tn − tn−1 =
n∑

ν=1

anνaν −
n−1∑

ν=1

an−1,νaν =
n∑

ν=1

ânνaν,

(1.3)

since an−1,n = 0.
A sequence {λn} is said to be of bounded variation (bv) if

∑
n |Δ λn| < ∞. Let bv0 =

bv ∩ c0, where c0 denotes the set of all null sequences.
A positive sequence {bn} is said to be an almost increasing sequence if there exist an

increasing sequence {cn} and positive constants A and B such that Acn ≤ bn ≤ Bcn, (see [3]).
Obviously, every increasing sequence is almost increasing. However, the converse need not
be true as can be seen by taking the example, say bn = e(−1)

n

n.
A positive sequence γ := {γn} is said to be a quasi β-power increasing sequence if there

exists a constant K = K(β, γ) ≥ 1 such that

Knβγn ≥ mβγm (1.4)

holds for all n ≥ m ≥ 1. It should be noted that every almost increasing sequence is quasi
β-power increasing sequence for any nonnegative β, but the converse need not be true as can
be seen by taking an example, say γn = n−β for β > 0 (see [4]). If (1.4) stays with β = 0 then γ
is simply called a quasi-increasing sequence. It is clear that if {γn} is quasi β-power increasing
then {nβγn} is quasi-increasing.

A positive sequence γ = {γn} is said to be a quasi-f-power increasing sequence, if
there exists a constantK = K(γ, f) ≥ 1 such thatKfnγn ≥ fmγm holds for all n ≥ m ≥ 1, where
f := {fn} = {nβ(logn)μ}, μ > 0, 0 < β < 1 was considered instead of nβ(see [5, 6]).

Given any sequence {xn}, the notation xn � O(1) means xn = O(1) and 1/xn = O(1).
Quite recently, Savaş and Rhoades [2] proved the following theorem for |A|k-

summability factors of infinite series.

Theorem 1.1. Let A be a triangle with nonnegative entries satisfying

(i) an0 = 1, n = 0, 1, . . . ,

(ii) an−1,ν ≥ anν for n ≥ ν + 1,

(iii) nann � O(1),

(iv) Δ(1/ann) = O(1), and

(v)
∑n

ν=0 aνν|ân,ν+1| = O(ann).

If {Xn} is a positive nondecreasing sequence and the sequences {λn} and {βn} satisfy
(vi) |Δλn| ≤ βn,

(vii) lim βn = 0,

(viii) |λn|Xn = O(1),
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(ix)
∑∞

n=1 nXn|Δβn| < ∞, and

(x) Tn :=
∑n

ν=1
|sν|k
ν

= O(Xn),

then the series
∑∞

n=1 anλn/nann is summable |A|k, k ≥ 1.

It should be noted that if {Xn} is an almost increasing sequence then (viii) implies that
the sequence {λn} is bounded. However, when {Xn} is a quasi β-power increasing sequence
or a quasi f-increasing sequence, (viii) does not imply |λm| = O(1), m → ∞. For example,
since Xm = m−β is a quasi β-power increasing sequence for 0 < β < 1, if we take λm = mδ,
0 < δ < β < 1 then |λm|Xm = mδ−β = O(1), m → ∞ holds but |λm| = mδ /=O(1) (see [7]).

The goal of this paper is to prove a theorem by using quasi f-increasing sequences.
We show that the crucial condition of our proof, {λn} ∈ bv0, can be deduced from another
condition of the theorem.

2. The Main Results

We have the following theorem:

Theorem 2.1. Let A be nonnegative triangular matrix satisfying conditions (i)–(v) and let
{βn} and {λn} be sequences satisfying conditions (vi) and (vii) of Theorem 1.1 and

m∑

n=1

λn = o(m), m −→ ∞. (2.1)

If {Xn} is a quasi f-increasing sequence and condition (x) and

∞∑

n=1

nXn

(
β, μ

)∣
∣Δβn

∣
∣ < ∞ (2.2)

are satisfied, then the series
∑∞

n=1 anλn/nann is summable |A|k, k ≥ 1, where {fn} := {nβ(logn)μ},
μ ≥ 0, 0 ≤ β < 1, and Xn(β, μ) := (nβ(logn)μXn).

Theorem 2.1 includes the following theorem with the special case μ = 0.

Theorem 2.2. Let A satisfying conditions (i)–(v) and let {βn} and {λn} be sequences satisfying
conditions (vi), (vii), and (2.1). If {Xn} is a quasi β-power increasing sequence for some 0 ≤ β < 1
and conditions (x) and

∞∑

n=1

nXn

(
β
)∣
∣Δβn

∣
∣ < ∞ (2.3)

are satisfied, where Xn(β) := (nβXn), then the series
∑∞

ν=1 anλn/nann is summable |A|k, k ≥ 1.

If we take that {Xn} is an almost increasing sequence instead of a quasi β-power
increasing sequence then our Theorem 2.2 reduces to [8, Theorem 1].
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Remark 2.3. The crucial condition, {λn} ∈ bv0, and condition (viii) do not appear among the
conditions of Theorems 2.1 and 2.2. By Lemma 3.3, under the conditions on {Xn}, {βn}, and
{λn} as taken in the statement of the Theorem 2.1, also in the statement of Theorem 2.2 with
the special case μ = 0, conditions {λn} ∈ bv0 and (viii) hold.

3. Lemmas

We shall need the following lemmas for the proof of our main Theorem 2.1.

Lemma 3.1 (see [9]). Let {ϕn} be a sequence of real numbers and denote

Φn :=
n∑

k=1

ϕk, Ψn :=
∞∑

k=n

∣
∣Δϕk

∣
∣. (3.1)

If Φn = o(n) then there exists a natural number N such that

∣
∣ϕn

∣
∣ ≤ 2Ψn (3.2)

for all n ≥ N.

Lemma 3.2 (see [7]). If {Xn} is a quasi f-increasing sequence, where {fn} = {nβ(logn)μ}, μ ≥ 0,
0 ≤ β < 1, then conditions (2.1) of Theorem 2.1,

m∑

n=1

|Δλn| = o(m), m −→ ∞, (3.3)

∞∑

n=1

nXn

(
β, μ

)|Δ|Δλn|| < ∞, (3.4)

where Xn(β, μ) = (nβ(logn)μXn), imply conditions (viii) and

λn −→ 0, n −→ ∞. (3.5)

Lemma 3.3 (see [7]). If {Xn} is a quasi f-increasing sequence, where {fn} = {nβ(logn)μ}, μ ≥ 0,
0 ≤ β < 1, then under conditions (vi), (vii), (2.1) and (2.2), conditions (viii) and (3.5) are satisfied.

Lemma 3.4 (see [7]). Let {Xn} be a quasi f-increasing sequence, where {fn} = {nβ(logn)μ}, μ ≥ 0,
0 ≤ β < 1. If conditions (vi), (vii), and (2.2) are satisfied, then

nβnXn = O(1), (3.6)

∞∑

n=1

βnXn < ∞. (3.7)
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4. Proof of Theorem 2.1

Let Tn denote the nth term of the A-transform of the partial sums of the series
∑∞

n=1(anλn)/(nann). Then, we have

Tn =
n∑

ν=1

anν

ν∑

i=1

aiλi
aiii

=
m∑

i=1

aiλi
aiii

n∑

ν=i

anν =
n∑

i=1

ani
aiλi
aiii

. (4.1)

Thus,

Tn − Tn−1 =
n∑

i=1

ani
aiλi
aiii

−
n−1∑

i=1

an−1,i
aiλi
aiii

=
n∑

i=1

(ani − an−1,i)
aiλi
aiii

=
n∑

i=1

âni
aiλi
aiii

=
n∑

i=1

âni
λi
aiii

(si − si−1)

=
n−1∑

i=1

âni
λi
aiii

si + ann
λn

annn
sn −

n∑

i=1

âni
λisi−1
aiii

=
n−1∑

i=1

âni
λi
aiii

si + ann
λn

annn
sn −

n−1∑

i=1

ân,i+1
λi+1si

(i + 1)ai+1,i+1

=
n−1∑

i=1

(

âni
λi
aiii

− ân,i+1
λi+1

(i + 1)ai+1,i+1

)

si + ann
λn

nann
.

(4.2)

It is easy to see that

âniλi
iaii

− ân,i+1λi+1
(i + 1)ai+1,i+1

= Δi

(
âni

iaii

)

λi +
ân,i+1

(i + 1)ai+1,i+1
Δ(λi). (4.3)

Also we may write

Δi

(
âni

iaii

)

λi =
Δi(âni)λi

iaii
+ an,i+1λi

(
1
iaii

− 1
(i + 1)ai+1,i+1

)

. (4.4)

Therefore, for n > 1,

Tn − Tn−1 =
n−1∑

i=1

Δi(âni)
iaii

λisi +
n−1∑

i=1

ân,i+1λi

(
1
iaii

− 1
(i + 1)ai+1,i+1

)

si

+
n−1∑

i=1

ân,i+1

(i + 1)ai+1,i+1
Δi(λi)si +

λn
n
sn

= Tn1 + Tn2 + Tn3 + Tn4, say.

(4.5)
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To complete the proof of the theorem, it will be sufficient to show that

∞∑

n=1

nk−1|Tnr |k < ∞, for r = 1, 2, 3, 4. (4.6)

Using Hölder’s inequality and condition (iii),

I1 =
m+1∑

n=1

nk−1|Tn1|k ≤
m+1∑

n=1

nk−1
(

n−1∑

i=1

∣
∣
∣
∣
Δi(âni)
iaii

λisi

∣
∣
∣
∣

)k

= O(1)
m+1∑

n=1

nk−1
(

n−1∑

i=1

|Δi(âni)λisi|
)k

= O(1)
m+1∑

n=1

nk−1
(

n−1∑

i=1

|Δi(âni)||λi|k|si|k
)

×
(

n−1∑

i=1

|Δi(âni)|
)k−1

.

(4.7)

Since (λn) is bounded by Lemma 3.3, using (ii), (iii), (vi), (x), and property (3.7) of
Lemma 3.4,

I1 = O(1)
m+1∑

n=1

(nann)k−1
n−1∑

i=1

|λi|k|si|k|Δi(âni)|

= O(1)
m+1∑

n=1

(nann)k−1
(

n−1∑

i=1

|λi|k−1|λi||Δi(âni)||si|k
)

= O(1)
m∑

i=1

|λi||si|k
m+1∑

n=i+1

(nann)k−1|Δi(âni)|

= O(1)
m∑

i=1

|λi||si|kaii = O(1)
m∑

i=1

|λi||si|k
i

= O(1)

[
m∑

i=1

|λi|
i∑

r=1

|sr |k
r

−
m−1∑

i=0
|λi+1|

i∑

r=1

|sr |k
r

]

= O(1)
m−1∑

i=1

Δ(|λi|)
i∑

r=1

1
r
|sr |k +O(1)|λm|

m∑

i=1

|si|k
i

= O(1)
m−1∑

i=1

Δ(|λi|)Xi +O(1)|λm|Xm

= O(1)
m∑

i=1

βiXi +O(1)|λm|Xm = O(1).

(4.8)
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Now

I2 =
m+1∑

n=1

nk−1|Tn2|k =
m+1∑

n=1

nk−1
∣
∣
∣
∣
∣

n−1∑

i=1

ân,i+1λiΔ
(

1
iaii

)

si

∣
∣
∣
∣
∣

k

= O(1)
m+1∑

n=1

nk−1
{

n−1∑

i=1

|ân,i+1||λi|
∣
∣
∣
∣Δ

(
1
iaii

)∣
∣
∣
∣|si|

}k

.

(4.9)

From [2],

Δ
(

1
iaii

)

=
1

(i + 1)

[

Δ
(

1
aii

)

+
1
iaii

]

. (4.10)

Thus, using (iv) and (ii),

∣
∣
∣
∣Δ

(
1
iaii

)∣
∣
∣
∣ =

∣
∣
∣
∣

1
i + 1

[

Δ
(

1
aii

)

+
1
iaii

]∣
∣
∣
∣

=
1

i + 1
[O(1) +O(1)].

(4.11)

Hence, using Hölder’s inequality, (v), (iii), and the fact that the λn’s are bounded,

I2 = O(1)
m+1∑

n=1

nk−1
{

n−1∑

i=1

|ân,i+1||λi| 1
i + 1

|si|
}k

= O(1)
m+1∑

n=1

nk−1
{

n−1∑

i=1

|ân,i+1|aii|λi||si|
}k

= O(1)
m+1∑

n=1

nk−1
(

n−1∑

i=1

|ân,i+1|aii|λi|k|si|k
)(

n−1∑

i=1

aii|ân,i+1|
)k−1

= O(1)
m+1∑

n=1

(nann)k−1
n−1∑

i=1

|ân,i+1|aii|λi|k|si|k

= O(1)
m∑

i=1

|λi|k|si|kaii

m+1∑

n=i+1

(nann)k−1|ân,i+1|

= O(1)
m∑

i=1

|λi|k|si|kaii

m+1∑

n=i+1

|ân,i+1|

= O(1)
m∑

i=1

|λi|k|si|kaii
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= O(1)
m∑

i=1

|λi||λi|k−1|si|k 1
i

=
m∑

i=1

|λi| |si|
k

i
= O(1),

(4.12)

as in the proof of I1.
It follows from (3.6) that βn = O(1/n) and hence that |Δλn| = O(1/n) by condition

(vi).
Using (iii), Hölder’s inequality, and (v),

I3 =
m+1∑

n=1

nk−1|Tn3|k =
m+1∑

n=1

nk−1
∣
∣
∣
∣
∣

n−1∑

i=1

ân,i+1(Δλi)si
(i + 1)ai+1,i+1

∣
∣
∣
∣
∣

k

= O(1)
m+1∑

n=1

nk−1
(

n−1∑

i=1

|ân,i+1||Δλi||si|
)k

= O(1)
m+1∑

n=1

nk−1
{

n−1∑

i=1

aii

aii
|ân,i+1||Δλi||si|

}k

= O(1)
m+1∑

n=1

nk−1
{

n−1∑

i=1

aii
|ân,i+1|
ak
ii

|Δλi|k|si|k
}{

n−1∑

i=1

aii|ân,i+1|
}k−1

= O(1)
m+1∑

n=1

(nann)k−1
n−1∑

i=1

aii
|ân,i+1|
ak
ii

|Δλi|k|si|k

= O(1)
m+1∑

n=1

n−1∑

i=1

|ân,i+1||Δλi|k|si|k 1

ak
ii

aii

= O(1)
m∑

i=1

aii

ak
ii

|Δλi|k|si|k
m+1∑

n=i+1

|ân,i+1|

= O(1)
m∑

i=0

( |Δλi|
aii

)k−1
|Δλi||si|k

= O(1)
m∑

i=1

|Δλi| |si|k = O(1)
m∑

i=0
|si|kβi.

(4.13)

Since |si|k = i(Ti − Ti−1) by (x), we have

I3 = O(1)
m∑

i=1

i(Ti − Ti−1)βi. (4.14)
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Using Abel’s transformation, (vi), (2.2), and properties (3.7) and (3.6) of Lemma 3.4,

I3 = O(1)
m−1∑

i=1

TiΔ
(
iβi

)
+O(1)mTnβn

= O(1)
m−1∑

i=1

i
∣
∣Δβi

∣
∣Xi +O(1)

m−1∑

i=1

Xiβi +O(1)mXnβn = O(1).

(4.15)

Using the boundedness of λn and (x),

I4 =
m+1∑

n=1

nk−1|Tn4|k =
m+1∑

n=1

nk−1
∣
∣
∣
∣
snλn
n

∣
∣
∣
∣

k

=
m+1∑

n=1

|sn|k|λn|k 1
n
=

m+1∑

n=1

|sn|k
n

|λn||λn|k−1 = O(1),

(4.16)

as in the proof of I1.
A weighted mean matrix, written (N,pn), is a lower triangular matrix with entries

anv = pv/Pn, where {pn} is a nonnegative sequence with p0 > 0 and Pn :=
∑n

i=0 pi → ∞, as
n → ∞.

Corollary 4.1. Let {pn}be a positive sequence satisfying

(i) npn � O(Pn) and

(ii) Δ(Pn/pn) = O(1).

and let {βn} and {λn} be sequences satisfying conditions (vi), (vii), and (2.1). If {Xn} is a quasi
f-increasing sequence, where {fn} := {nβ(logn)μ}, μ ≥ 0, 0 ≤ β < 1, and conditions (x) and (2.2)
are satisfied, then the series

∑∞
n=1(anPnλn)/(npn) is summable |N,pn|k, k ≥ 1.
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