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Let (Xn, n ≥ 1) be a standardized nonstationary Gaussian sequence. Let Mn = max{Xk, 1 ≤ k ≤ n}
denote the partial maximum and Sn =

∑n
k−1 Xk for the partial sum with σn = (Var Sn)

1/2. In this
paper, the almost sure convergence of (Mn, Sn/σn) is derived under some mild conditions.

1. Introduction

There have been more researches on the almost sure convergence of extremes and partial
sums since the pioneer work of Fahrner and Stadtmüller [1] and Cheng et al. [2]. For more
related work on almost sure convergence of extremes and partial sums, see Berkes and
Csáki [3], Peng et al. [4, 5], Tan and Peng [6], and references therein. For the almost sure
convergence of extremes for dependent Gaussian sequence, Csáki and Gonchigdanzan [7]
and Lin [8] proved

lim
n→∞

1
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provided

∣
∣rn logn − ρ∣∣(log logn)1+ε = O(1), (1.2)

where I denotes an indicator function, Φ(x) is the standard normal distribution function, and
φ(x) = (1/

√
2π)e−x

2/2 = Φ′(x). Mn is the partial maximum of a standard stationary Gaussian
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sequence {Xn, n ≥ 1} with correlation rn = EX1Xn+1, n ≥ 0. The norming constants an and bn
are defined by

an = (2 logn)−1/2, bn = (2 logn)1/2 − log log n + log 4π

2(2 logn)1/2
. (1.3)

For some extensions of (1.1), see Chen and Lin [9] and Peng and Nadarajah [10].
Sometimes, in practice, one would like to know how partial sums and maxima behave

simultaneously in the limit; see Anderson and Turkman [11] for a discussion of an application
involving extreme wind gusts and average wind speeds. Peng et al. [12] studied the almost
sure limiting behavior for partial sums and maxima of i.i.d. random variables. Dudziński
[13, 14] proved the almost sure limit theorems in the joint version for the maxima and the
partial sums of stationary Gaussian sequences, that is, let X1, X1, . . . be stationary Gaussian
sequences and Mk = maxi≤kXi, Sn =

∑n
i=1 Xi, σn =

√
Var(Sn), for all x, y ∈ (−∞,∞)

lim
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= exp
(−e−x)Φ(y) a.s. (1.4)

if

(C1) sups≥n
∑s−1

t=s−n |rt| 	 (log n)1/2/(log log n)1+ε for some ε > 0,

(C2)
∑n

t=1(n − t)rt ≥ 0 for all n ≥ 1,

(C3) limn→∞rn log n = 0.

Or

rn =
L(n)
nα

, n ≥ 1 (1.5)

for some α > 0. L(x) is a positive slowly varying function at infinity. Here a 	 b means
a = O(b).

This paper focuses on extending (1.4) to nonstationary Gaussian sequences {Xn, n ≥
1} under some mild conditions similar to (C1)–(C3). The paper is organized as follows: in
Section 2, we give the main results, and related proofs are provided in Section 3.

2. The Main Results

Let rij = E(XiXj), i, j ≥ 1, denote the correlations of standard nonstationary Gaussian
sequence {Xn, n ≥ 1}. Mn, Sn, and σn are defined as before. The main results are the
following.

Theorem 2.1. Let {Xn, n ≥ 1} be a standardized nonstationary Gaussian sequence. Suppose that
there exists numerical sequence {uni, 1 ≤ i ≤ n, n ≥ 1} such that

∑n
i=1(1 − Φ(uni)) → τ for some

0 < τ <∞ and n(1 −Φ(λn)) is bounded, where λn = min1≤i≤nuni. If

sup
i /= j

∣
∣rij
∣
∣ < δ < 1, (2.1)
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log n
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then

lim
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≤ y
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a.s. (2.4)

for all y ∈ (−∞,∞).

Theorem 2.2. For the nonstationary Gaussian sequence {Xn, n ≥ 1}, under the conditions (2.1)–
(2.3), we have

lim
n→∞

1
logn
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1
k

I

(

Mk ≤ akx + bk,
Sk
σk

≤ y
)

= exp
(−e−x)Φ(y) a.s. (2.5)

for all x, y ∈ (−∞,∞), where an and bn are defined as in (1.3).

3. Proof of the Main Results

To prove the main results, we need some auxiliary lemmas.

Lemma 3.1. Suppose that the standardized nonstationary Gaussian sequences {Xn, n ≥ 1} satisfy
the conditions (2.1)–(2.3). Assume that n(1 −Φ(λn)) is bounded. Then for < l,
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Proof. We will start with the following observations. For all 1 ≤ i ≤ l,

∣
∣
∣
∣Cov

(

Xi,
Sl
σl

)∣
∣
∣
∣ =

1
σl
|Cov(Xi, Sl)| ≤ 1

σl

l∑

j=1

∣
∣rij
∣
∣. (3.2)
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By (2.2), for large l there exists c1 > 0 such that

σl ≥ c1l
1/2. (3.4)

By (2.3) and (3.4), we have
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for large l. Obviously,
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By the Normal Comparison Lemma [13, Theorem 4.2.1 ], we get
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Since n(1 −Φ(λn)) is bounded, for large n and some absolute positive constant C,
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. (3.10)
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Similarly,
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It remains to estimate A3(l). It is easy to check that
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By the arguments similar to that of Lemma 2.4 in Csáki and Gonchigdanzan [7], we get
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Combining with above analysis, we have

A3(l) 	 k

l
+

1

(log log l)1+ε
. (3.16)

The proof is complete.

We also need the following auxiliary result.

Lemma 3.2. Suppose that the standardized nonstationary Gaussian sequences {Xn, n ≥ 1} satisfy
the conditions (2.1)–(2.3). Assume that n(1 −Φ(λn)) is bounded; then
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for k < min(β2l(log log )2+2ε/c2
2 log l, l), where 0 < β < 1, c2 > 0.
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Condition (2.2) implies that there exist positive numbers c3 and c4 such that c3k
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By (3.10), we have
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While (3.22) implies
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the proof is complete.

We also need the following auxiliary result.
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Lemma 3.3. Let X1, X2, . . . be a standardized nonstationary Gaussian sequences satisfying
assumptions (2.1)–(2.3). Assume that
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By Theorem 6.1.3 of Leadbetter et al. [15], we have
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Since Sk/σk follows the standard normal distribution, we get
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which completes the proof.

We now only give the proof of Theorem 2.1. Theorem 2.2 is a special case of
Theorem 2.1.

Proof of Theorem 2.1. The idea of this proof is similar to that of Theorem 1.1 in Csáki and
Gonchigdanzan [7]. In order to prove Theorem 2.1, it is enough to show that
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By Lemmas 3.1 and 3.2, we infer that if k < β2l(log log l)2+2ε/(c2
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for some ε > 0. By the arguments similar to that of Theorem 1 in Dudziński [13], we can get
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a.s. (3.40)

which completes the proof.
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Figure 1: T he actual error, Δn, for rn = 1/[n(log n)1/2(log log n)] and (x, y) = (−1,−1).
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Figure 2: T he actual error, Δn, for rn = 1/[n(log n)1/2(log log n)] and (x, y) = (0, 0).

4. Numerical Analysis

The aim of this section is to calculate the actual convergence rate of

1
logn

n∑

k=1

1
k

I

(

Mk ≤ a−1
k x + bk,

Sk
σk

≤ y
)

−→ exp
(−e−x)Φ(y) (4.1)

for finite; that is, calculate

Δn

(
x, y
)
=

∣
∣
∣
∣
∣

1
logn

n∑

k=1

1
k

I

(

Mk ≤ akx + bk,
Sk
σk

≤ y
)

− exp
(−e−x)Φ(y)

∣
∣
∣
∣
∣
, (4.2)

where an = (2 logn)−1/2 and bn = (2 logn)1/2 − (log log n + log 4π)/2(2 logn)1/2.
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Figure 3: T he actual error, Δn, for rn = 1/[n(log n)1/2(log log n)] and (x, y) = (1, 1).
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Figure 4: T he actual error, Δn, for rn = 1/[n(log n)1/2(log log n)(log log log n)] and (x, y) = (−1,−1).

Firstly, we will construct a standardized triangular Gaussian array {Xn,j , 1 ≤ j ≤
n, n ≥ 1} with equal correlation rn in n th array for ≥ 1. Meanwhile, the sequence rn must
satisfy the conditions (2.1), (2.2), and (2.3). By Leadbetter et al. [15], we can construct the
Gaussian array by i.i.d Gaussian sequence; that is, let rn to a convex sequence, ξ1, ξ2, . . . is a
standardized i.i.d Gaussian sequence, and η is also a standardized normal random variable
which is independent of ξk (k ≥ 1). For each ≥ 1, let

Xij = (1 − ri)1/2ξj + r
1/2
i η, (4.3)

where = 1, 2, . . . , i. Obviously, Xij (1 ≤ j ≤ i) is a zero mean normal sequence with equal
correlation. By this way, we get the Gaussian array needed.
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Figure 5: T he actual error, Δn, for rn = 1/[n(log n)1/2(log log n)(log log log n)] and (x, y) = (0, 0).
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Figure 6: T he actual error, Δn, for rn = 1/[n(log n)1/2(log log n)(log log log n)] and (x, y) = (1, 1).

Figures 1 to 3 give the actual error, Δn, for rn = 1/[n(logn)1/2(log log n)] and (x, y) =
(−1,−1), (0, 0), (1, 1). In each figure, the actual error shocks tend to zero as n increases. The
overall performance of the actual error becomes better as (x, y) = (0, 0).

Figures 4 to 6 give the actual error, Δn, for

rn =
1

[
n
(
logn

)1/2(log log n
)(

log log log n
)] ,

(
x, y
)
= (−1,−1), (0, 0), (1, 1).

(4.4)

In each figure, the actual error shocks also tend to zero as n increases. Also the overall
performance of the actual error becomes better as (x, y) = (0, 0).
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