
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 865096, 9 pages
doi:10.1155/2010/865096

Research Article
Lyapunov Inequalities for
One-Dimensional p-Laplacian Problems with
a Singular Weight Function

Inbo Sim1 and Yong-Hoon Lee2

1 Department of Mathematics, University of Ulsan, Ulsan 680-749, South Korea
2 Department of Mathematics, Pusan National University, Pusan 609-735, South Korea

Correspondence should be addressed to Yong-Hoon Lee, yhlee@pusan.ac.kr

Received 8 October 2009; Accepted 24 November 2009

Academic Editor: Yeol Je Cho

Copyright q 2010 I. Sim and Y.-H. Lee. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We estimate Lyapunov inequalities for a single equation, a cycled system and a coupled system of
one-dimensional p-Laplacian problems with weight functions having stronger singularities than
L1.

1. Introduction

The Lyapunov inequality for linear ordinary differential equation

−u′′ = r(t)u, t ∈ (a, b),

u(a) = 0 = u(b),
(L)

where r ∈ C([a, b], [0,∞)), gives a necessary condition for the existence of a positive solution
as follows:

4
b − a

≤
∫b

a

r(t)dt. (1.1)

Lyapunov [1] initiated to estimate the above inequality. Since then, there have been several
results to generalize the above linear ordinary differential equation in many directions.
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Before stating many efforts, it is worth to mention Hartman and Pinasco’s work. Hartman
[2] obtained the generalized inequality by using Green’s function:

(b − a) ≤
∫b

a

(t − a)(b − t)r(t)dt. (1.2)

In fact, for a ≤ t ≤ b, by the inequality

(t − a)(b − t) ≤ (b − a)2

4
, (1.3)

condition (1.2) is a generalization of condition (1.1).
Pinasco [3] extended linear ordinary differential equations to the following one-

dimensional p-Laplacian problem:

−ϕp

(
u′(t)

)′ = r(t)ϕp(u(t)), t ∈ (a, b),

u(a) = 0 = u(b),
(P)

where ϕp(x) = |x|p−2x, p > 1 and r ∈ C([a, b], (0,∞)). He obtained Lyapunov inequality for
(P) as follows:

2p

(b − a)p/q
≤
∫b

a

r(t)dt, (1.4)

where 1/p + 1/q = 1.
There have been many studies for various types of equations. Among others, one may

refer to de Náploi and Pinasco [4] for the case of monotone quasilinear operators which
include one-dimensional p-Laplacian as a special case, Parhi and Panigrahi [5] for the case
of third order differential equations, Cañada et al. [6] for the case of partial differential
equations which have a weight function in L1, and Clark and Hinton [7] for the case of
Hamiltonian systems.

Until now, the most general class of weight functions for the Lyapunov inequalities is
L1(a, b). The purpose of this paper is to get Lyapunov inequalities for single equations as well
as systems of one-dimensional p-Laplacian problems with singular weight functions which
have a stronger singularities than those of L1(a, b).

For this purpose, we first give three specific classes of weight functions. The first class
can be given as

A �
{
r∈C((a, b), [0,∞)) :

∫ (a+b)/2

a

ϕ−1
p

(∫ (a+b)/2

s

r(τ)dτ

)
ds

+
∫b

(a+b)/2
ϕ−1
p

(∫s

(a+b)/2
r(τ)dτ

)
ds <∞

}
.

(1.5)
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It comes naturally from the study of the existence of positive solutions for p-Laplacian
problems. The second one is just the extension of Hartman’s condition to p-Laplacian
problems given as follows:

B �
{
r ∈ C((a, b), [0,∞)) :

∫b

a

(s − a)p−1(b − s)p−1r(s)ds < ∞
}
. (1.6)

It is easy to see that L1(a, b) ⊂ A ∩B and classesA and B are equivalent when p = 2. It is also
known [8] that B � A for p > 2 and A � B for 1 < p < 2. The third one can be given as

C �
{
r∈C((a, b), [0,∞)) : there are α, β>0 such that α, β < p − 1 and

∫b

a

(s − a)α(b − s)βr(s)ds < ∞
}
.

(1.7)

It is obvious to see that C ⊂ B and C ⊂ A (see [8]).
This paper is organized as follows. In Section 2, we show Lyapunov inequality for

one-dimensional p-Laplacian problem when a weight function is r ∈ A ∩ B. In Section 3, we
estimate Lyapunov inequality for a cycled system of one-dimensional p-Laplacian problem
when a weight function is r ∈ C. Finally in Section 4, we have Lyapunov inequality for a
strongly coupled system of one-dimensional p-Laplacian problem when a weight function is
r ∈ C.

2. Single Equation

Let us consider problem (P). By a solution of (P) we mean that u ∈ C[a, b] ∩ C1(a, b), ϕp(u′)
is absolutely continuous in any compact subinterval of (a, b), and u satisfies the first equation
in (P) in (a, b) and u(a) = 0 = u(b). We assume r ∈ A ∩ B. It is known that all solutions for
(P) are of class C1

0[a, b] (see [9]).

Theorem 2.1. Assume r ∈ A ∩ B. If u is a positive solution for (P), then one has

(b − a)p−1

2p−2
≤
∫b

a

(t − a)p−1(b − t)p−1r(t)dt. (2.1)

Proof. By Hölder’s inequality, we get

|u(t)| ≤
∫ t

a

∣∣u′(s)
∣∣ds ≤ (t − a)(p−1)/p

(∫ t

a

∣∣u′∣∣pds
)1/p

. (2.2)
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For a ≤ t ≤ (a + b)/2, noting t − a ≤ (2/(b − a))(t − a)(b − t),we have

|u(t)| ≤
(

2
b − a

(t − a)(b − t)
)(p−1)/p(∫ (a+b)/2

a

∣∣u′∣∣pds
)1/p

. (2.3)

Thus, we have

|u(t)|p ≤
(

2
b − a

(t − a)(b − t)
)p−1(∫ (a+b)/2

a

∣∣u′∣∣pds
)
. (2.4)

Similarly, by Hölder’s inequality, we get

|u(t)| ≤
∫b

t

∣∣u′(s)
∣∣ds ≤ (b − t)(p−1)/p

(∫b

t

∣∣u′∣∣pds
)1/p

. (2.5)

For (a + b)/2 ≤ t ≤ b, noting b − t ≤ (2/(b − a))(t − a)(b − t),we get

|u(t)|p ≤
(

2
b − a

(t − a)(b − t)
)p−1(∫b

(a+b)/2

∣∣u′∣∣pds
)
. (2.6)

Adding (2.4) and (2.6), we have

2|u(t)|p ≤
(

2
b − a

(t − a)(b − t)
)p−1(∫b

a

∣∣u′∣∣pds
)
. (2.7)

Multiplying both sides of (2.7) by r(t) and rewriting, we get

(b − a)p−1

2p−2
r(t)|u(t)|p ≤ r(t)((t − a)(b − t))p−1

(∫b

a

∣∣u′∣∣pds
)
. (2.8)

Since u is a solution for (P), we have

∫b

a

∣∣u′∣∣pdt =
∫b

a

r(t)|u(t)|pdt. (2.9)

We note that the right-hand side makes sense because u is in C1
0[a, b]. Integrating (2.8) on

[a, b] and using (2.9), we have

(b − a)p−1

2p−2

∫b

a

∣∣u′∣∣pdt =
∫b

a

(b − a)p−1

2p−2
r(t)|u(t)|pdt

≤
∫b

a

r(t)((t − a)(b − t))p−1
(∫b

a

∣∣u′∣∣pds
)
dt.

(2.10)
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Therefore, we get

(b − a)p−1

2p−2
≤
∫b

a

r(t)((t − a)(b − t))p−1dt. (2.11)

Remark 2.2. (i) When p = 2, the above result coincides with Hartman’s estimate. But
Hartman’s argument does not work here by lack of Green’s function for p-Laplacian.

(ii) If r ∈ L1(a, b), for a ≤ t ≤ b, since (t − a)(b − t) ≤ (b − a)2/4 and p/q = p − 1, we
have Pinasco’s estimate (1.4). Thus our estimate generalizes Pinasco’s.

For (0 ≤)r ∈ C[a, b], Pinasco [3] also estimated the lower bounds for eigenvalues {λn}
of

−ϕp

(
u′(t)

)′ = λr(t)ϕp(u(t)), t ∈ (a, b),

u(a) = 0 = u(b).
(Pλ)

The proof mainly makes use of the nodal property of its corresponding eigenfunctions {un};
that is, un has n−1 interior zeros in (a, b). Recently, when r ∈ A∩B,Kajikiya et al. [9] showed
the existence of eigenvalues {λn} for (Pλ) and its corresponding eigenfunctions also have the
nodal property. Employing Pinasco’s argument ([3, Theorem 1.1]) with (2.1), for each n ∈ N,
we have

λn ≥ (b − a)p−1

(2n)p−2
∫b
ar(t)((t − a)(b − t))p−1dt

. (2.12)

3. Cycled System

Let us consider a cycled system:

ϕp

(
u′
1(t)

)′ + r1(t)ϕp(u2(t)) = 0, t ∈ (a, b),

ϕp

(
u′
2(t)

)′ + r2(t)ϕp(u3(t)) = 0, t ∈ (a, b),

· · ·

ϕp

(
u′
n−1(t)

)′ + rn−1(t)ϕp(un(t)) = 0, t ∈ (a, b),

ϕp

(
u′
n(t)

)′ + rn(t)ϕp(u1(t)) = 0, t ∈ (a, b),

u1(a) = · · · = un(a) = 0 = u1(b) = · · · = un(b).

(CS)

We say that (u1, u2, . . . , un) is a solution of (CS) if ui ∈ C[a, b] ∩ C1(a, b), ϕp(u′
i) is absolutely

continuous in any compact subinterval of (a, b), each ui satisfies the equations in (CS) in
(a, b), and u1(a) = · · · = un(a) = 0 = u1(b) = · · · = un(b). We assume that ri ∈ C. We note that
all solutions for (CS) are of class C1

0[a, b] (see [10]).
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Theorem 3.1. Assume ri ∈ C. If (u1, u2, . . . , un) is a positive solution of (CS), then

∫b

a

((t − a)(b − t))p−1r1(t)dt · · ·
∫b

a

((t − a)(b − t))p−1rn(t)dt ≥

[
(b − a)p−1

]n
[
2p−2

]n . (3.1)

Proof. We only show the case n = 2. For the general case, we can prove it by repeating this
procedure. As in (2.7), for i = 1, 2, we have

|ui(t)|p−1 ≤ 2(p−2)(p−1)/p

(b − a)(p−1)
2/p

((t − a)(b − t))(p−1)
2/p

( ∫b

a

∣∣u′
i

∣∣pds
)(p−1)/p

(3.2)

or

|ui(t)| ≤ 2(p−2)/p

(b − a)(p−1)/p
((t − a)(b − t))(p−1)/p

( ∫b

a

∣∣u′
i

∣∣pds
)1/p

. (3.3)

Multiplying the first equation of (CS) by u1 and integrating on [a, b], we have by (3.2) and
(3.3) that ∫b

a

∣∣u′
1

∣∣pdt ≤
∫b

a

r1(t)|u2|p−1|u1|dt

≤
∫b

a

2p−2

(b − a)p−1
((t − a)(b − t))p−1r1(t)dt

×
( ∫b

a

∣∣u′
2

∣∣pds
)(p−1)/p( ∫b

a

∣∣u′
1

∣∣pds
)1/p

.

(3.4)

Thus, we have

(∫b

a

∣∣u′
1

∣∣pdt
)(p−1)/p

≤ 2p−2

(b − a)p−1

∫b

a

((t − a)(b − t))p−1r1(t)dt

( ∫b

a

∣∣u′
2

∣∣pds
)(p−1)/p

. (3.5)

Similarly, for the second equation in (CS), we have

(∫b

a

∣∣u′
2

∣∣pdt
)(p−1)/p

≤ 2p−2

(b − a)p−1

∫b

a

((t − a)(b − t))p−1r2(t)dt

( ∫b

a

∣∣u′
1

∣∣pds
)(p−1)/p

. (3.6)

Thus, we have

∫b

a

((t − a)(b − t))p−1r1(t)dt
∫b

a

((t − a)(b − t))p−1r2(t)dt ≥

[
(b − a)p−1

]2
[
2p−2

]2 . (3.7)
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Corollary 3.2. Assume ri = r ∈ C, for i = 1, 2, . . . , n. If (u1, u2, . . . , un) is a positive solution of
(CS), then one has

∫b

a

((t − a)(b − t))p−1r(t)dt ≥ (b − a)p−1

2p−2
. (3.8)

4. Strongly Coupled System

Let us consider a strongly coupled system:

ϕp

(
u′
1(t)

)′ + r1(t)
(
ϕp(u1(t)) + ϕp(u2(t)) + · · · + ϕp(un(t))

)
= 0, t ∈ (a, b),

ϕp

(
u′
2(t)

)′ + r2(t)
(
ϕp(u1(t)) + ϕp(u2(t)) + · · · + ϕp(un(t))

)
= 0, t ∈ (a, b),

· · ·

ϕp

(
u′
n(t)

)′ + rn(t)
(
ϕp(u1(t)) + ϕp(u2(t)) + · · · + ϕp(un(t))

)
= 0, t ∈ (a, b),

u1(a) = · · · = un(a) = 0 = u1(b) = · · · = un(b),

(SCS)

where ri ∈ C. We can give a definition for a solution of (SCS) as the definition for a solution
of (CS) and it is known that all positive solutions for (SCS) are of class C1

0[a, b] (see [10]).
We emphasize that it is only shown for a positive solution so far.

Theorem 4.1. Assume ri ∈ C. If (u1, u2, . . . , un) is a positive solution of (SCS), then one has

∫b

a

((t − a)(b − t))p−1r1(t)dt + · · · +
∫b

a

((t − a)(b − t))p−1rn(t)dt ≥ 1
n

(b − a)p−1

2p−2
. (4.1)

Proof. As in the proof of Theorem 3.1, we only show the case n = 2.Multiplying u1 to the first
equation in (SCS) and integrating on [a, b] and using (2.7), (3.2), and (3.3), we have

∫b

a

∣∣u′
1

∣∣pdt ≤
∫b

a

r1(t)|u1|pdt +
∫b

a

r1(t)|u2|p−1|u1|dt

≤ 2p−2

(b − a)p−1

∫b

a

((t − a)(b − t))p−1r1(t)dt
∫b

a

∣∣u′
1

∣∣pds

+
2p−2

(b − a)p−1

∫b

a

((t − a)(b − t))p−1r1(t)dt

×
( ∫b

a

∣∣u′
2

∣∣pds
)(p−1)/p( ∫b

a

∣∣u′
1

∣∣pds
)1/p

.

(4.2)
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Similarly, from the second equation of (SCS), we have

∫b

a

∣∣u′
2

∣∣pdt ≤
∫b

a

r2(t)|u2|pdt +
∫b

a

r2(t)|u1|p−1|u2|dt

≤ 2p−2

(b − a)p−1

∫b

a

((t − a)(b − t))p−1r2(t)dt
∫b

a

∣∣u′
2

∣∣pds

+
2p−2

(b − a)p−1

∫b

a

((t − a)(b − t))p−1r2(t)dt

×
( ∫b

a

∣∣u′
1

∣∣pds
)(p−1)/p( ∫b

a

∣∣u′
2

∣∣pds
)1/p

.

(4.3)

Let us denote X =
∫b
a|u′

1|pdt, Y =
∫b
a|u′

2|pdt, C1 = (2p−2/(b − a)p−1)
∫b
a((t − a)(b − t))p−1r1(t)dt,

and C2 = (2p−2/(b − a)p−1)
∫b
a((t − a)(b − t))p−1r2(t)dt. Then from (4.2) and (4.3), we have

X ≤ C1X + C1X
1/pY (p−1)/p,

Y ≤ C2Y + C2Y
1/pX(p−1)/p,

(4.4)

respectively. Equation (4.4) implies

X ≤ C1(X + Y ) + C1

(
X1/pY (p−1)/p + Y 1/pX(p−1)/p

)
,

Y ≤ C2(X + Y ) + C2

(
X1/pY (p−1)/p + Y 1/pX(p−1)/p

)
,

(4.5)

respectively. Therefore, we have

X + Y ≤ (C1 + C2)(X + Y ) + (C1 + C2)
(
X1/pY (p−1)/p + Y 1/pX(p−1)/p

)
. (4.6)

Since X1/pY (p−1)/p + Y 1/pX(p−1)/p ≤ X + Y ([11, page 38]), we get

X + Y ≤ 2(C1 + C2)(X + Y ). (4.7)

Hence, we have

C1 + C2 ≥ 1
2
. (4.8)

That is, ∫b

a

((t − a)(b − t))p−1r1(t)dt +
∫b

a

((t − a)(b − t))p−1r2(t)dt ≥ 1
2
(b − a)p−1

2p−2
. (4.9)
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Corollary 4.2. Assume ri = r ∈ C, for i = 1, 2, . . . , n. If (u1, u2, . . . , un) is a positive solution of
(SCS), then one has

∫b

a

((t − a)(b − t))p−1r(t)dt ≥ 1
n2

(b − a)p−1

2p−2
. (4.10)
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