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Local regularity and local boundedness results for very weak solutions of obstacle problems
of the A-harmonic equation divA(x,∇u(x)) = 0 are obtained by using the theory of Hodge
decomposition, where |A(x, ξ)| ≈ |ξ|p−1.

1. Introduction and Statement of Results

Let Ω be a bounded regular domain in Rn, n ≥ 2. By a regular domain we understand
any domain of finite measure for which the estimates for the Hodge decomposition in (1.5)
and (1.6) are satisfied; see [1]. A Lipschitz domain, for example, is a regular domain. We
consider the second-order divergence type elliptic equation (also calledA-harmonic equation
or Leray-Lions equation):

divA(x,∇u(x)) = 0, (1.1)

whereA(x, ξ) : Ω×Rn → Rn is a Carathéodory function satisfying the following conditions:

(a) 〈A(x, ξ), ξ〉 ≥ α|ξ|p,
(b) |A(x, ξ)| ≤ β|ξ|p−1,
(c) A(x, 0) = 0,
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where p > 1 and 0 < α ≤ β <∞. The prototype of (1.1) is the p-harmonic equation:

div
(
|∇u|p−2∇u

)
= 0. (1.2)

Suppose that ψ is an arbitrary function in Ω with values in R ∪ {±∞}, and θ ∈ W1,r(Ω) with
max{1, p − 1} < r ≤ p. Let

Kr
ψ,θ(Ω) =

{
v ∈W1,r(Ω) : v ≥ ψ a.e., and v − θ ∈W1,r

0 (Ω)
}
. (1.3)

The function ψ is an obstacle and θ determines the boundary values.
For any u, v ∈ Kr

ψ,θ(Ω), we introduce the Hodge decomposition for |∇(v − u)|r−p∇(v −
u) ∈ Lr/(r−p+1)(Ω), see [1]:

|∇(v − u)|r−p∇(v − u) = ∇φv,u + hv,u, (1.4)

where φv,u ∈ W
1,r/(r−p+1)
0 (Ω) and hv,u ∈ Lr/(r−p+1)(Ω,Rn) are a divergence-free vector field,

and the following estimates hold:

∥∥∇φv,u
∥∥
r/(r−p+1) ≤ c1‖∇(v − u)‖r−p+1r , (1.5)

‖hv,u‖r/(r−p+1) ≤ c1
(
p − r)‖∇(v − u)‖r−p+1r , (1.6)

where c1 = c1(n, p) is some constant depending only on n and p.

Definition 1.1 (see [2]). A very weak solution to the Kr
ψ,θ-obstacle problem is a function u ∈

Kr
ψ,θ

(Ω) such that

∫

Ω

〈A(x,∇u), |∇(v − u)|r−p∇(v − u)〉dx ≥
∫

Ω
〈A(x,∇u), hv,u〉dx, (1.7)

whenever v ∈ Kr
ψ,θ(Ω).

Remark 1.2. If r = p in Definition 1.1, then hv,u = 0 by the uniqueness of the Hodge
decomposition (1.4), and (1.7) becomes

∫

Ω
〈A(x,∇u),∇(v − u)〉dx ≥ 0. (1.8)

This is the classical definition for Kp

ψ,θ
-obstacle problem; see [3] for some details of solutions

ofKp

ψ,θ
-obstacle problem.
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This paper deals with local regularity and local boundedness for very weak solutions
of obstacle problems. Local regularity and local boundedness properties are important
among the regularity theories of nonlinear elliptic systems; see the recent monograph [4]
by Bensoussan and Frehse. Meyers and Elcrat [5] first considered the higher integrability for
weak solutions of (1.1) in 1975; see also [6]. Iwaniec and Sbordone [1] obtained the regularity
result for very weak solutions of the A-harmonic (1.1) by using the celebrated Gehring’s
Lemma. The local and global higher integrability of the derivatives in obstacle problem was
first considered by Li and Martio [7] in 1994 by using the so-called reverse Hölder inequality.
Gao et al. [2] gave the definition for very weak solutions of obstacle problem of A-harmonic
(1.1) and obtained the local and global higher integrability results. The local regularity results
for minima of functionals and solutions of elliptic equations have been obtained in [8]. For
some new results related to A-harmonic equation, we refer the reader to [9–11]. Gao and
Tian [12] gave the local regularity result for weak solutions of obstacle problem with the
obstacle function ψ ≥ 0. Li and Gao [13] generalized the result of [12] by obtaining the local
integrability result for very weak solutions of obstacle problem. The main result of [13] is the
following proposition.

Proposition 1.3. There exists r1 withmax{1, p − 1} < r1 < p, such that any very weak solution u to
the Kr

ψ,θ
-obstacle problem belongs to Ls

∗
loc(Ω), s∗ = 1/(1/s − 1/n), provided that 0 ≤ ψ ∈ W1,s

loc(Ω),
r < s < n, and r1 < r < min{p, n}.

Notice that in the above proposition we have restricted ourselves to the case r < n,
because when r ≥ n, every function in W1,r

loc(Ω) is trivially in Ltloc(Ω) for every t > 1 by the
classical Sobolev imbedding theorem.

In the first part of this paper, we continue to consider the local regularity theory
for very weak solutions of obstacle problem by showing that the condition ψ ≥ 0 in
Proposition 1.3 is not necessary.

Theorem 1.4. There exists r1 with max{1, p − 1} < r1 < p, such that any very weak solution
u to the Kr

ψ,θ
-obstacle problem belongs to Ls

∗
loc(Ω), provided that ψ ∈ W1,s

loc(Ω), r < s < n, and
r1 < r < min{p, n}.

As a corollary of the above theorem, if r = p, that is, if we consider weak solutions of
Kp

ψ,θ-obstacle problem, then we have the following local regularity result.

Corollary 1.5. Suppose that ψ ∈ W1,s
loc(Ω), 1 < p < s < n. Then a solution u to the Kp

ψ,θ-obstacle

problem belongs to Ls
∗
loc(Ω).

We omit the proof of this corollary. This corollary shows that the condition ψ ≥ 0 in the
main result of [12] is not necessary.

The second part of this paper considers local boundedness for very weak solutions
of Kr

ψ,θ
-obstacle problem. The local boundedness for solutions of obstacle problems plays

a central role in many aspects. Based on the local boundedness, we can further study the
regularity of the solutions. For the local boundedness results of weak solutions of nonlinear
elliptic equations, we refer the reader to [4]. In this paper we consider very weak solutions
and show that if the obstacle function is ψ ∈ W1,∞

loc (Ω), then a very weak solution u to the
Kr
ψ,θ

-obstacle problem is locally bounded.
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Theorem 1.6. There exists r1 with max{1, p − 1} < r1 < p, such that for any r with r1 < r <

min{p, n} and any ψ ∈ W1,∞
loc (Ω), a very weak solution u to the Kr

ψ,θ-obstacle problem is locally
bounded.

Remark 1.7. As far as we are aware, Theorem 1.6 is the first result concerning local
boundedness for very weak solutions of obstacle problems.

In the remaining part of this section, we give some symbols and preliminary lemmas
used in the proof of the main results. If x0 ∈ Ω and t > 0, then Bt denotes the ball of radius
t centered at x0. For a function u(x) and k > 0, let Ak = {x ∈ Ω : |u(x)| > k}, A+

k
= {x ∈ Ω :

u(x) > k}, Ak,t = Ak ∩ Bt, A+
k,t

= A+
k
∩ Bt. Moreover if s < n, s∗ is always the real number

satisfying 1/s∗ = 1/s − 1/n. Let Tk(u) be the usual truncation of u at level k > 0, that is,

Tk(u) = max{−k,min{k, u}}. (1.9)

Let tk(u) = min{u, k}.
We recall two lammas which will be used in the proof of Theorem 1.4.

Lemma 1.8 (see [8]). Let u ∈W1,r
loc(Ω), ϕ0 ∈ Lqloc(Ω), where 1 < r < n and q satisfies

1 < q <
n

r
. (1.10)

Assume that the following integral estimate holds:

∫

Ak,t

|∇u|rdx ≤ c0
[∫

Ak,t

ϕ0dx + (t − τ)−α
∫

Ak,t

|u|rdx
]
, (1.11)

for every k ∈ N and R0 ≤ τ < t ≤ R1, where c0 is a real positive constant that depends only on

N, q, r, R0, R1, |Ω| and α is a real positive constant. Then u ∈ L(qr)∗

loc (Ω).

Lemma 1.9 (see [14]). Let f(τ) be a nonnegative bounded function defined for 0 ≤ R0 ≤ t ≤ R1.
Suppose that for R0 ≤ τ < t ≤ R1 one has

f(τ) ≤ A(t − τ)−α + B + θf(t), (1.12)

where A,B, α, θ are nonnegative constants and θ < 1. Then there exists a constant c2 = c2(α, θ),
depending only on α and θ, such that for every ρ, R, R0 ≤ ρ < R ≤ R1 one has

f
(
ρ
) ≤ c2

[
A
(
R − ρ)−α + B

]
. (1.13)

We need the following definition.
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Definition 1.10 (see [15]). A function u(x) ∈W1,m
loc (Ω) belongs to the class B(Ω, γ,m, k0), if for

all k > k0, k0 > 0 and all Bρ = Bρ(x0), Bρ−ρσ = Bρ−ρσ(x0), BR = BR(x0), one has

∫

A+
k,ρ−ρσ

|∇u|mdx ≤ γ
{
σ−mρ−m

∫

A+
k,ρ

(u − k)mdx +
∣∣∣A+

k,ρ

∣∣∣
}
, (1.14)

for R/2 ≤ ρ − ρσ < ρ < R, m < n, where |A+
k,ρ| is the n-dimensional Lebesgue measure of the

set A+
k,ρ

.

We recall a lemma from [15] which will be used in the proof of Theorem 1.6.

Lemma 1.11 (see [15]). Suppose that u(x) is an arbitrary function belonging to the class
B(Ω, γ,m, k0) and BR ⊂⊂ Ω. Then one has

max
BR/2

u(x) ≤ c, (1.15)

in which the constant c is determined only by the quantities γ,m, k0, R, ‖∇u‖m1
.

2. Local Regularity

Proof of Theorem 1.4. Let u be a very weak solution to the Kr
ψ,θ

-obstacle problem. By
Lemma 1.8, it is sufficient to prove that u satisfies the inequality (1.11) with α = r. Let
BR1 ⊂⊂ Ω and 0 < R0 ≤ τ < t ≤ R1 be arbitrarily fixed. Fix a cut-off function φ ∈ C∞

0 (BR1) such
that

suppφ ⊂ Bt, 0 ≤ φ ≤ 1, φ = 1 in Bτ ,
∣∣∇φ∣∣ ≤ 2(t − τ)−1. (2.1)

Consider the function

v = u − Tk(u) − φr
(
u − ψk

)
, (2.2)

where Tk(u) is the usual truncation of u at level k ≥ 0 defined in (1.9) and ψk = max{ψ, Tk(u)}.
Now v ∈ Kr

ψ−Tk(u),θ−Tk(u)(Ω); indeed, since u ∈ Kr
ψ,θ(Ω) and φ ∈ C∞

0 (Ω), then

v − (θ − Tk(u)) = u − θ − φr(u − ψk
) ∈W1,r

0 (Ω),

v − (
ψ − Tk(u)

)
= u − ψ − φr(u − ψk

) ≥ (
1 − φr)(u − ψ) ≥ 0,

(2.3)
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a.e. in Ω. Let

E(v, u) =
∣∣φr∇u∣∣r−pφr∇u + |∇(v − u + Tk(u))|r−p∇(v − u + Tk(u)), (2.4)

By an elementary inequality [16, Page 271, (4.1)],

∣∣|X|−εX − |Y |−εY ∣∣ ≤ 2ε
1 + ε
1 − ε |X − Y |1−ε, X, Y ∈ Rn, 0 ≤ ε < 1,

∇v = ∇(u − Tk(u)) − φr∇
(
u − ψk

) − rφr−1∇φ(u − ψk
)
,

(2.5)

one can derive that

|E(v, u)| ≤ 2p−r
p − r + 1
r − p + 1

∣∣∣φr∇ψk − rφr−1∇φ
(
u − ψk

)∣∣∣
r−p+1

. (2.6)

We get from the definition of E(v, u) that

∫

Ak,t

〈
A(x,∇u), ∣∣φr∇u∣∣r−pφr∇u

〉
dx

=
∫

Ak,t

〈A(x,∇u), E(v, u)〉dx

−
∫

Ak,t

〈A(x,∇u), |∇(v − u + Tk(u))|r−p∇(v − u + Tk(u))
〉
dx

=
∫

Ak,t

〈A(x,∇u), E(v, u)〉dx

−
∫

Ak,t

〈A(x,∇u), |∇(v − u)|r−p∇(v − u)〉dx.

(2.7)

Now we estimate the left-hand side of (2.7). By condition (a) we have

∫

Ak,t

〈A(x,∇u), ∣∣φr∇u∣∣r−pφr∇u〉d ≥
∫

Ak,τ

〈A(x,∇u), |∇u|r−p∇u〉dx ≥ α
∫

Ak,τ

|∇u|rdx. (2.8)

Since u − Tk(u), v ∈ Kr
ψ−Tk(u),θ−Tk(u)(Ω), then using the Hodge decomposition (1.4), we get

|∇(v − u + Tk(u))|r−p∇(v − u + Tk(u)) = ∇φ + h, (2.9)

and by (1.6) we have

‖h‖r/(r−p+1) ≤ c1
(
p − r)‖∇(v − u + Tk(u))‖r−p+1r . (2.10)
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Thus we derive, by Definition 1.1, that

∫

Ω

〈A(x,∇(u − Tk(u))), |∇(v − u + Tk(u))|r−p∇(v − u + Tk(u))
〉
dx

≥
∫

Ω
〈A(x,∇(u − Tk(u))), h〉dx.

(2.11)

This means, by condition (c), that

∫

Ak,t

〈A(x,∇u), |∇(v − u)|r−p∇(v − u)〉dx ≥
∫

Ak,t

〈A(x,∇u), h〉dx. (2.12)

Combining the inequalities (2.7), (2.8), and (2.12), and using Hölder’s inequality and
condition (b), we obtain

α

∫

Ak,τ

|∇u|rdx ≤
∫

Ak,t

〈A(x,∇u), E(v, u)〉dx −
∫

Ak,t

〈A(x,∇u), h〉dx

≤ β2
p−r(p − r + 1

)

r − p + 1

∫

Ak,t

|∇u|p−1
∣∣∣φr∇ψk − rφr−1∇φ

(
u − ψk

)∣∣∣
r−p+1

dx

+ β
∫

Ak,t

|∇u|p−1|h|dx

≤ β2
p−r(p − r + 1

)

r − p + 1

∫

Ak,t

|∇u|p−1∣∣φr∇ψk
∣∣r−p+1dx

+ β
2p−r

(
p − r + 1

)

r − p + 1

∫

Ak,t

|∇u|p−1
∣∣∣rφr−1∇φ(u − ψk

)∣∣∣
r−p+1

dx

+ β
∫

Ak,t

|∇u|p−1|h|dx

≤ β2
p−r(p − r + 1

)

r − p + 1

(∫

Ak,t

|∇u|rdx
)(p−1)/r(∫

Ak,t

∣∣∇ψk
∣∣rdx

)(r−p+1)/r

+ β
2p−r

(
p − r + 1

)

r − p + 1

(∫

Ak,t

|∇u|rdx
)(p−1)/r

×
(∫

Ak,t

∣∣∣rφr−1∇φ(u − ψk
)∣∣∣
r
dx

)(r−p+1)/r

+ β

(∫

Ak,t

|∇u|rdx
)(p−1)/r(∫

Ak,t

|h|r/(r−p+1)dx
)(r−p+1)/r

.

(2.13)
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Denote c3 = c3(p, r) = 2p−r(p − r + 1)/(r − p + 1). It is obvious that if r is sufficiently close to p,
then c3(p, r) ≤ 2. By (2.10) and Young’s inequality

ab ≤ εap′ + c4
(
ε, p

)
bp,

1
p
+

1
p′

= 1, a, b ≥ 0, ε ≥ 0, p ≥ 1, (2.14)

we can derive that

α

∫

Ak,τ

|∇u|rdx ≤ βc3
(
p, r

)
ε

∫

Ak,t

|∇u|rdx + βc3
(
p, r

)
c4
(
ε, p

) ∫

Ak,t

∣∣∇ψk
∣∣rdx

+ βc3
(
p, r

)
ε

∫

Ak,t

|∇u|rdx + βc3
(
p, r

)
c4
(
ε, p

) ∫

Ak,t

∣∣∣rφr−1∇φ(u − ψk
)∣∣∣
r
dx

+ βc1ε
(
p − r)

∫

Ak,t

|∇u|rdx + βc1c4
(
ε, p

)(
p − r)

∫

Ω
|∇(v − u + Tk(u))|rdx

≤ βε(2c3
(
p, r

)
+ c1

(
p − r))

∫

Ak,t

|∇u|rdx + βc3
(
p, r

)
c4
(
ε, p

) ∫

Ak,t

∣∣∇ψk
∣∣rdx

+ βc3
(
p, r

)
c4
(
ε, p

) ∫

Ak,t

∣∣∣rφr−1∇φ(u − ψk
)∣∣∣
r
dx

+ βc1c4
(
ε, p

)(
p − r)

∫

Ω
|∇(v − u + Tk(u))|rdx.

(2.15)

By the equality

∇v = ∇(u − Tk(u)) − φr∇
(
u − ψk

) − rφr−1∇φ(u − ψk
)
, (2.16)

and v − u + Tk(u) = 0 for x ∈ Ω \Ak,t, then we have

∫

Ω
|∇(v − u + Tk(u))|rdx =

∫

Ak,t

∣∣∣φr∇(
u − ψk

)
+ rφr−1∇φ(u − ψk

)∣∣∣
r
dx

≤ 2r−1
[∫

Ak,t

|∇u|rdx +
∫

Ak,t

∣∣∇ψk
∣∣rdx +

∫

Ak,t

∣∣∣rφr−1∇φ(u − ψk
)∣∣∣
r
dx

]
.

(2.17)
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Finally we obtain that

∫

Ak,τ

|∇u|rdx ≤ βε(2c3
(
p, r

)
+ c1

(
p − r) + 2r−1βc1c4

(
ε, p

)(
p − r)

α

∫

Ak,t

|∇u|rdx

+
βc3

(
p, r

)
c4
(
ε, p

)
+ 2r−1βc1c4

(
ε, p

)(
p − r)

α

∫

Ak,t

∣∣∇ψk
∣∣rdx

+
βc3

(
p, r

)
c4
(
ε, p

)
+ 2r−1βc1c4

(
ε, p

)(
p − r)

α

∫

Ak,t

∣∣∣rφr−1∇φ(u − ψk
)∣∣∣
r
dx

≤ βε(2c3
(
p, r

)
+ c1

(
p − r) + 2p−1βc1c4

(
ε, p

)(
p − r)

α

∫

Ak,t

|∇u|rdx

+
βc3

(
p, r

)
c4
(
ε, p

)
+ 2p−1βc1c4

(
ε, p

)(
p − r)

α

∫

Ak,t

∣∣∇ψ∣∣rdx

+
βc3

(
p, r

)
c4
(
ε, p

)
+ 2p−1βc1c4

(
ε, p

)(
p − r)

α

2pp
(t − τ)r

∫

Ak,t

|u|rdx.
(2.18)

The last inequality holds since |u − ψk| ≤ |u| a.e. in Ak,t. Now we want to eliminate the first
term in the right-hand side containing ∇u. Choose ε small enough and r sufficiently close to
p such that

θ =
βε(2c3

(
p, r

)
+ c1

(
p − r) + 2p−1βc1c4

(
ε, p

)(
p − r)

α
< 1, (2.19)

and let ρ, R be arbitrarily fixed with R0 ≤ ρ < R ≤ R1. Thus, from (2.18), we deduce that for
every τ and t such that ρ ≤ τ < t ≤ R, we have

∫

Ak,τ

|∇u|rdx ≤ θ
∫

Ak,t

|∇u|rdx +
c5
α

∫

Ak,R

∣∣∇ψ∣∣rdx +
c6

α(t − τ)r
∫

Ak,R

|u|rdx, (2.20)

where c5 = βc3(p, r)c4(ε, p) + 2p−1βc1c4(ε, p)(p − r) with ε and r fixed to satisfy (2.19), and
c6 = 2ppc5. Applying Lemma 1.9 in (2.20)we conclude that

∫

Ak,ρ

|∇u|rdx ≤ c2c5
α

∫

Ak,R

∣∣∇ψ∣∣rdx +
c2c6

α
(
R − ρ)r

∫

Ak,R

|u|rdx, (2.21)

where c2 is the constant given by Lemma 1.9. Thus u satisfies inequality (1.11)with ϕ0 = |∇ψ|r
and α = r. Theorem 1.4 follows from Lemma 1.8.
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3. Local Boundedness

Proof of Theorem 1.6. Let u be a very weak solution to theKr
ψ,θ

-obstacle problem. Let BR1 ⊂⊂ Ω
and R1/2 ≤ τ < t ≤ R1 be arbitrarily fixed. Fix a cut-off function φ ∈ C∞

0 (BR1) such that

suppφ ⊂ Bt, 0 ≤ φ ≤ 1, φ = 1 in Bτ ,
∣∣∇φ∣∣ ≤ 2(t − τ)−1. (3.1)

Consider the function

v = u − tk(u) − φr
(
u −max

{
ψ, tk(u)

})
, (3.2)

where tk(u) = min{u, k}. Now v ∈ Kr
ψ−tk(u),θ−tk(u); indeed, since u ∈ Kr

ψ,θ
(Ω) and φ ∈ C∞

0 (Ω),
then

v − (θ − tk(u)) = u − θ − φr(u −max
{
ψ, tk(u)

}) ∈W1,r
0 (Ω),

v − (
ψ − tk(u)

)
= u − ψ − φr(u −max

{
ψ, tk(u)

}) ≥ (
1 − φr)(u − ψ) ≥ 0

(3.3)

a.e. in Ω.
As in the proof of Theorem 1.4, we obtain

∫

A+
k,τ

|∇u|rdx ≤ βε(2c3
(
p, r

)
+ c1

(
p − r) + 2r−1βc1c4

(
ε, p

)(
p − r)

α

∫

A+
k,t

|∇u|rdx

+
βc3c4

(
ε, p

)
+ 2r−1βc1c4

(
ε, p

)(
p − r)

α

∫

A+
k,t

∣∣∇max
{
ψ, tk(u)

}∣∣rdx

+
βc3

(
p, r

)
c4
(
ε, p

)
+ 2r−1βc1c4

(
ε, p

)(
p − r)

α

×
∫

A+
k,t

∣∣∣rφr−1∇φ(u −max{ψ, tk(u)}
∣∣∣
r
dx

≤ βε(2c3
(
p, r

)
+ c1

(
p − r) + 2r−1βc1c4

(
ε, p

)(
p − r)

α

∫

A+
k,t

|∇u|rdx

+
βc3c4

(
ε, p

)
+ 2r−1βc1c4

(
ε, p

)(
p − r)

α

∫

A+
k,t

∣∣∇ψ∣∣rdx

+
βc3

(
p, r

)
c4
(
ε, p

)
+ 2r−1βc1c4

(
ε, p

)(
p − r)

α

2pp
(t − τ)r

∫

A+
k,t

|u − k|rdx.

(3.4)

Choose ε small enough and r1 sufficiently close to p such that (2.19) holds. Let ρ, R be
arbitrarily fixed with R1/2 ≤ ρ < R ≤ R1. Thus from (3.4) we deduce that for every τ and
t such that R1/2 ≤ τ < t ≤ R1, we have

∫

A+
k,τ

|∇u|rdx ≤ θ
∫

A+
k,t

|∇u|rdx +
c5
α

∫

A+
k,R

∣∣∇ψ∣∣rdx +
c6

α(t − τ)r
∫

A+
k,R

|u − k|rdx. (3.5)
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Applying Lemma 1.9, we conclude that

∫

A+
k,ρ

|∇u|rdx ≤ c2c6

α
(
R − ρ)r

∫

A+
k,R

|u − k|rdx +
c2c5
α

∫

A+
k,R

∣∣∇ψ∣∣rdx

≤ c2c6

α
(
R − ρ)r

∫

A+
k,R

|u − k|rdx +
c2c5c7
α

∣∣∣A+
k,R

∣∣∣,
(3.6)

where c2 is the constant given by Lemma 1.9 and c7 = ‖∇ψ‖p
L∞(Ω). Thus u belongs to the class

Bwith γ = max{c2c6/α, c2c5c7/α} andm = r. Lemma 1.11 yields

max
BR/2

u(x) ≤ c. (3.7)

This result together with the assumptions u ≥ ψ and ψ ∈ W1,∞
loc (Ω) yields the desired result.
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