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The initial boundary value problem for a class of hyperbolic equation with nonlinear dissipative
term utt −

∑n
i=1(∂/∂xi)(|∂u/∂xi|p−2(∂u/∂xi))+a|ut|q−2ut = b|u|r−2u in a bounded domain is studied.

The existence of global solutions for this problem is proved by constructing a stable set inW
1,p
0 (Ω)

and show the asymptotic behavior of the global solutions through the use of an important lemma
of Komornik.

1. Introduction

We are concerned with the global solvability and asymptotic stability for the following
hyperbolic equation in a bounded domain

utt −
n∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

p−2 ∂u
∂xi

)

+ a|ut|q−2ut = b|u|r−2u, x ∈ Ω, t > 0 (1.1)

with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω (1.2)

and boundary condition

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.3)
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whereΩ is a bounded domain in Rn with a smooth boundary ∂Ω, a, b > 0 and q, r > 2 are real
numbers, and Δp = −∑n

i=1(∂/∂xi)(|∂/∂xi|p−2(∂/∂xi)) is a divergence operator (degenerate
Laplace operator) with p > 2, which is called a p-Laplace operator.

Equations of type (1.1) are used to describe longitudinal motion in viscoelasticity
mechanics and can also be seen as field equations governing the longitudinal motion of a
viscoelastic configuration obeying the nonlinear Voight model [1–4].

For b = 0, it is well known that the damping term assures global existence and decay
of the solution energy for arbitrary initial data [4–6]. For a = 0, the source term causes finite
time blow-up of solutions with negative initial energy if r > p [7].

The interaction between the damping and the source terms was first considered
by Levine [8, 9] in the case p = q = 2. He showed that solutions with negative initial
energy blow up in finite time. Georgiev and Todorova [10] extended Levine’s result to
the nonlinear damping case q > 2. In their work, the authors considered (1.1)–(1.3) with
p = 2 and introduced a method different from the one known as the concavity method.
They determined suitable relations between q and r, for which there is global existence or
alternatively finite time blow-up. Precisely, they showed that solutions with negative energy
continue to exist globally in time t if q ≥ r and blow up in finite time if q < r and the initial
energy is sufficiently negative. Vitillaro [11] extended these results to situations where the
damping is nonlinear and the solution has positive initial energy. For the Cauchy problem of
(1.1), Todorova [12] has also established similar results.

Zhijian in [13–15] studied the problem (1.1)–(1.3) and obtained global existence results
under the growth assumptions on the nonlinear terms and initial data. These global existence
results have been improved by Liu and Zhao [16] by using a new method. As for the
nonexistence of global solutions, Yang [17] obtained the blow-up properties for the problem
(1.1)–(1.3) with the following restriction on the initial energy E(0) < min{−((rk1 + pk2)/(r −
p))1/δ,−1}, where r > p and k1, k2, and δ are some positive constants.

Because the p-Laplace operator Δp is nonlinear operator, the reasoning of proof and
computation is greatly different from the Laplace operator Δ =

∑n
i=1 ∂

2/∂x2
i . By mean of the

Galerkin method and compactness criteria and a difference inequality introduced by Nakao
[18], the author [19, 20] has proved the existence and decay estimate of global solutions for
the problem (1.1)–(1.3)with inhomogeneous term f(x, t) and p ≥ r.

In this paper we are going to investigate the global existence for the problem (1.1)–
(1.3) by applying the potential well theory introduced by Sattinger [21], and we show the
asymptotic behavior of global solutions through the use of the lemma of Komornik [22].

We adopt the usual notation and convention. Let Wk,p(Ω) denote the Sobolev space
with the norm ‖u‖Wk,p(Ω) = (

∑
|α|≤k ‖Dαu‖p

Lp(Ω))
1/p, and let Wk,p

0 (Ω) denote the closure in
Wk,p(Ω) of C∞

0 (Ω). For simplicity of notation, hereafter we denote by ‖ · ‖p the Lebesgue
space Lp(Ω) norm, and ‖ · ‖ denotes L2(Ω) norm and write equivalent norm ‖∇ · ‖p instead of
W

1,p
0 (Ω) norm ‖ · ‖

W
1,p
0 (Ω). Moreover, M denotes various positive constants depending on the

known constants and it may be different at each appearance.

2. Main Results

In order to state and study our main results, we first define the following functionals:

K(u) = ‖∇u‖pp − b‖u‖rr , J(u) =
1
p
‖∇u‖pp −

b

r
‖u‖rr (2.1)
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for u ∈ W
1,p
0 (Ω). Then we define the stable set H by

H =
{
u ∈ W

1,p
0 (Ω), K(u) > 0

}
∪ {0}. (2.2)

We denote the total energy associated with (1.1)–(1.3) by

E(t) =
1
2
‖ut‖2 + 1

p
‖∇u‖pp −

b

r
‖u‖rr =

1
2
‖ut‖2 + J(u) (2.3)

for u ∈ W
1,p
0 (Ω), t ≥ 0, and E(0) = (1/2)‖u1‖2 + J(u0) is the total energy of the initial data.

For latter applications, we list up some lemmas.

Lemma 2.1. Let u ∈ W
1,p
0 (Ω), then u ∈ Lr(Ω) and the inequality ‖u‖r ≤ C‖u‖

W
1,p
0 (Ω) holds with a

constant C > 0 depending on Ω, p, and r, provided that (i) 2 ≤ r < +∞ if 2 ≤ n ≤ p; (ii) 2 ≤ r ≤
np/(n − p), 2 < p < n.

Lemma 2.2 (see [22]). Let y(t) : R+ → R+ be a nonincreasing function and assume that there are
two constants β ≥ 1 and A > 0 such that

∫+∞

s

y(t)(β+1)/2dt ≤ Ay(s), 0 ≤ s < +∞, (2.4)

then y(t) ≤ Cy(0)(1 + t)−2/(β−1), for all t ≥ 0, if β > 1, and y(t) ≤ Cy(0)e−ωt, for all t ≥ 0, if β = 1,
where C and ω are positive constants independent of y(0).

Lemma 2.3. Let u(t, x) be a solutions to problem (1.1)–(1.3). Then E(t) is a nonincreasing function
for t > 0 and

d

dt
E(t) = −a‖ut(t)‖qq. (2.5)

Proof. By multiplying (1.1) by ut and integrating over Ω, we get

d

dt
E(u(t)) = −a‖ut(t)‖qq ≤ 0. (2.6)

Therefore, E(t) is a nonincreasing function on t.

We need the following local existence result, which is known as a standard one (see
[13–15]).

Theorem 2.4. Suppose that 2 < p < r < np/(n − p), n > p and 2 < p < r < ∞, n ≤ p. If
u0 ∈ W

1,p
0 (Ω), u1 ∈ L2(Ω), then there exists T > 0 such that the problem (1.1)–(1.3) has a unique

local solution u(t) in the class

u ∈ L∞
(
[0, T);W1,p

0 (Ω)
)
, ut ∈ L∞

(
[0, T);L2(Ω)

)
∩ Lq([0, T);Lq(Ω)). (2.7)
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Lemma 2.5. Assume that the hypotheses in Theorem 2.4 hold, then

r − p

rp
‖∇u‖pp ≤ J(u), (2.8)

for u ∈ H.

Proof. By the definition of K(u) and J(u), we have the following identity:

rJ(u) = K(u) +
r − p

p
‖∇u‖pp. (2.9)

Since u ∈ H, so we have K(u) ≥ 0. Therefore, we obtain from (2.9) that

r − p

rp
‖∇u‖pp ≤ J(u). (2.10)

Lemma 2.6. Suppose that 2 < p < r < np/(n − p), n > p and 2 < p < r < ∞, n ≤ p. If u0 ∈ H
and u1 ∈ L2(Ω) such that

θ = bCr

(
rp

r − p
E(0)

)(r−p)/p
< 1, (2.11)

then u(t) ∈ H, for each t ∈ [0, T).

Proof. Since u0 ∈ H, so K(u0) > 0. Then there exists tm ≤ T such that K(u(t)) ≥ 0 for all
t ∈ [0, tm). Thus, we get from (2.3) and (2.8) that

r − p

rp
‖∇u‖pp ≤ J(u) ≤ E(t), (2.12)

and it follows from Lemma 2.3 that

‖∇u‖pp ≤ rp

r − p
E(0). (2.13)

Next, we easily arrive at from Lemma 2.1, (2.11), and (2.13) that

b‖u‖rr ≤ bCr‖∇u‖rp = bCr‖∇u‖r−pp ‖∇u‖pp

≤ bCr

(
rp

r − p
E(0)

)(r−p)/p
‖∇u‖pp

= θ‖∇u‖pp < ‖∇u‖pp, ∀t ∈ [0, tm).

(2.14)
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Hence

‖∇u‖pp − b‖u‖rr > 0, ∀t ∈ [0, tm), (2.15)

which implies that u(t) ∈ H, for all t ∈ [0, tm). By noting that

bCr

(
rp

r − p
E(tm)

)(r−p)/p
< bCr

(
rp

r − p
E(0)

)(r−p)/p
< 1, (2.16)

we repeat the steps (2.12)–(2.14) to extend tm to 2tm. By continuing the procedure, the
assertion of Lemma 2.6 is proved.

Theorem 2.7. Assume that 2 < p < r < np/(n − p), n > p and 2 < p < r < ∞, n ≤ p. u(t) is a local
solution of problem (1.1)–(1.3) on [0, T). If u0 ∈ H and u1 ∈ L2(Ω) satisfy (2.11), then the solution
u(t) is a global solution of the problem (1.1)–(1.3).

Proof. It suffices to show that ‖ut‖2 + ‖∇u‖pp is bounded independently of t.
Under the hypotheses in Theorem 2.7, we get from Lemma 2.6 that u(t) ∈ H on

[0, T). So the formula (2.8) in Lemma 2.5 holds on [0, T). Therefore, we have from (2.8) and
Lemma 2.3 that

1
2
‖ut‖2 +

r − p

rp
‖∇u‖pp ≤ 1

2
‖ut‖2 + J(u) = E(t) ≤ E(0). (2.17)

Hence, we get

‖ut‖2 + ‖∇u‖pp ≤ max
(

2,
rp

r − p

)

E(0) < +∞. (2.18)

The above inequality and the continuation principle lead to the global existence of the
solution, that is, T = +∞. Thus, the solution u(t) is a global solution of the problem (1.1)–
(1.3).

The following theorem shows the asymptotic behavior of global solutions of problem
(1.1)–(1.3).

Theorem 2.8. If the hypotheses in Theorem 2.7 are valid, and 2 < q < np/(n − p), n > p and
2 < q < ∞, n ≤ p, then the global solutions of problem (1.1)–(1.3) have the following asymptotic
behavior:

lim
t→+∞

‖ut(t)‖ = 0, lim
t→+∞

‖∇u(t)‖p = 0. (2.19)
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Proof. Multiplying by E(t)(q−2)/2u on both sides of (1.1) and integrating over Ω × [S, T], we
obtain that

0 =
∫T

S

∫

Ω
E(t)(q−2)/2u

[
utt + Δpu + a|ut|q−2ut − bu|u|r−2

]
dx dt, (2.20)

where 0 ≤ S < T < +∞.
Since

∫T

S

∫

Ω
E(t)(q−2)/2uuttdx dt =

∫

Ω
E(t)(q−2)/2uutdx

∣
∣
∣
∣

T

S

−
∫T

S

∫

Ω
E(t)(q−2)/2|ut|2dx dt

− q − 2
2

∫T

S

∫

Ω
E(t)(q−4)/2E′(t)uutdx dt,

(2.21)

so, substituting the formula (2.21) into the right-hand side of (2.20), we get that

0 =
∫T

S

∫

Ω
E(t)(q−2)/2

(

|ut|2 + 2
p
|∇u|pp −

2b
r
|u|r

)

dx dt

−
∫T

S

∫

Ω
E(t)(q−2)/2

[
2|ut|2 − a|ut|q−2utu

]
dx dt

− q − 2
2

∫T

S

∫

Ω
E(t)(q−4)/2E′(t)uutdx dt +

∫

Ω
E(t)(q−2)/2uutdx

∣
∣
∣
∣

T

S

+ b

(
2
r
− 1

)∫T

S

E(t)(q−2)/2‖u‖rrdt +
p − 2
p

∫T

S

E(t)(q−2)/2‖∇u‖ppdt.

(2.22)

We obtain from (2.14) and (2.12) that

b

(

1 − 2
r

)∫T

S

E(t)(q−2)/2‖u‖rrdt ≤ θ
r − 2
r

∫T

S

E(t)(q−2)/2‖∇u‖ppdt

≤ p(r − 2)
r − p

θ

∫T

S

E(t)q/2dt,

(2.23)

p − 2
p

∫T

S

E(t)(q−2)/2‖∇u‖ppdx dt ≤ r
(
p − 2

)

r − p

∫T

S

E(t)q/2dt. (2.24)
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It follows from (2.22), (2.23), and (2.24) that

4r − p[(r − 2)θ + r + 2]
r − p

∫T

S

E(t)q/2dt

≤
∫T

S

∫

Ω
E(t)(q−2)/2

[
2|ut|2 − a|ut|q−2utu

]
dx dt

+
q − 2
2

∫T

S

∫

Ω
E(t)(q−4)/2E′(t)uutdx dt −

∫

Ω
E(t)(q−2)/2uutdx

∣
∣
∣
∣

T

S

.

(2.25)

We have from Hölder inequality, Lemma 2.1, and (2.17) that

∣
∣
∣
∣
∣

q − 2
2

∫T

S

∫

Ω
E(t)(q−4)/2E′(t)uutdx dt

∣
∣
∣
∣
∣

≤ q − 2
2

∫T

S

E(t)(q−4)/2
∣
∣E′(t)

∣
∣
(
Cprp

r − p
· r − p

rp
‖∇u‖pp +

1
2
‖ut‖2

)

dt

≤ −q − 2
2

max
(
Cprp

r − p
, 1
)∫T

S

E(t)(q−2)/2E′(t)dt

= −q − 2
q

max
(
Cprp

r − p
, 1
)

E(t)q/2
∣
∣
∣
∣

T

S

≤ ME(S)q/2,

(2.26)

and similarly, we have

∣
∣
∣
∣
∣
−
∫

Ω
E(t)(q−2)/2uutdx

∣
∣
∣
∣

T

S

∣
∣
∣
∣
∣
≤ max

(
Cprp

r − p
, 1
)

E(t)q/2
∣
∣
∣
∣

T

S

≤ ME(S)q/2. (2.27)

Substituting the estimates (2.26) and (2.27) into (2.25), we conclude that

4r − p[(r − 2)θ + r + 2]
r − p

∫T

S

E(t)q/2dt

≤
∫T

S

∫

Ω
E(t)(q−2)/2

[
2|ut|2 − a|ut|q−2utu

]
dx dt +ME(S)q/2.

(2.28)

It follows from 0 < θ < 1 that (4r − p[(r − 2)θ + r + 2])/(r − p) > 0.
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We get from Young inequality and Lemma 2.3 that

2
∫T

S

∫

Ω
E(t)(q−2)/2|ut|2dx dt ≤

∫T

S

∫

Ω

(
ε1E(t)q/2 +M(ε1)|ut|q

)
dx dt

≤ Mε1

∫T

S

E(t)q/2dt +M(ε1)
∫T

S

‖ut‖qqdt

= Mε1

∫T

S

E(t)q/2dt − M(ε1)
a

(E(T) − E(S))

≤ Mε1

∫T

S

E(t)q/2dt +ME(S).

(2.29)

From Young inequality, Lemmas 2.1 and 2.3, and (2.17), We receive that

− a

∫T

S

∫

Ω
E(t)(q−2)/2uut|ut|q−2dx dt

≤ a

∫T

S

E(t)(q−2)/2
(
ε2‖u‖qq +M(ε2)‖ut‖qq

)
dt

≤ aCqε2E(0)(q−2)/2
∫T

S

‖∇u‖qpdt + aM(ε2)E(S)(q−2)/2
∫T

S

‖ut‖qqdt

≤ aCqε2E(0)(q−2)/2
(

rp

r − p

)q/p ∫T

S

E(t)q/2dt +M(ε2)E(S)q/2.

(2.30)

Choosing small enough ε1 and ε2, such that

Mε1 + aCqE(0)(q−2)/2
(

rp

r − p

)q/p

ε2 <
4r − p[(r − 2)θ + r + 2]

r − p
, (2.31)

then, substituting (2.29) and (2.30) into (2.28), we get

∫T

S

E(t)q/2dt ≤ ME(S) +ME(S)q/2 ≤ M(1 + E(0))(q−2)/2E(S). (2.32)

Therefore, we have from Lemma 2.2 that

E(t) ≤ M(E(0))(1 + t)−(q−2)/2, t ∈ [0,+∞), (2.33)

where M(E(0)) is a positive constant depending on E(0).
We conclude from (2.17) and (2.33) that limt→+∞‖ut(t)‖ = 0 and limt→+∞‖∇u(t)‖p = 0.
The proof of Theorem 2.8 is thus finished.
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