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A new class of generalized V-type I invex functions is introduced for nonsmooth multiobjective
programming problem. Based upon these generalized invex functions, we establish sufficient
optimality conditions for a feasible point to be an efficient or a weakly efficient solution. Weak,
strong, and strict converse duality theorems are proved for Mond-Weir type dual program in order
to relate the weakly efficient solutions of primal and dual programs.

1. Introduction

There is a vital role of convexity in many aspects of mathematical programming including
optimality conditions, duality theorems, and alternative theorems, but, due to insufficiency
of convexity notion in many mathematical models used in decision science, economics,
engineering, and so forth, there has been an increasing interest in relaxing convexity
assumptions in connection with sufficiency and duality theorems. One of the most lively
generalizations of convexity is owed to Hanson [1], which was named as invexity by Craven
[2]. Later, Hanson and Mond [3] defined two new classes of functions, called type I and
type II functions, which have been further generalized by many researchers and applied to
nonlinear programming problems in different settings. This concept was further generalized
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to pseudo-type I and quasi-type I functions by Rueda and Hanson [4] and to pseudo-
quasi-type I, quasi-pseudo-type I, and strictly quasi-pseudo-type I functions by Kaul et al.
[5].

Since many practical problems encountered in economics, engineering design,
and management science, and so forth can be described only by nonsmooth functions,
consequently, the theory of nonsmooth optimization using locally Lipschitz functions was
put forward by Clarke in 1980’s (see [6]). He extended the properties of convex functions
to the case of locally Lipschitz functions by suitably defining a generalized derivative
and a subdifferential. Later on, the notion of invexity was extended to locally Lipschitz
functions by Craven [7], by replacing the derivative with Clarke’s generalized gradient.
Reiland [8] pointed out that under the invexity assumption, the Kuhn-Tucker conditions
also assure the optimality in nondifferentiable programming involving locally Lipschitz
functions. Recent development of optimality conditions and duality relations for nonsmooth
multiobjective programming problems involving locally Lipschitz functions can be seen in
[9–17].

In order to resolve the difficulty of demanding same function η for objective
and constraint functions in problems dealing with invexity, Jeyakumar and Mond [18]
introduced the concept of V-invexity and its generalization for differentiable multiobjective
programming problems. However, the extension of their studies to nonsmooth case was
discussed by Egudo and Hanson [9]. Further development in this direction can be found
in [14, 17]. Zhao [19] established optimality conditions and duality results in nonsmooth
scalar programming assuming Clarke’s generalized subgradients under type I functions [6].
Kuk and Tanino [15] obtained Karush-Kuhn-Tucker type necessary and sufficient optimality
conditions and duality theorems for nonsmooth multiobjective programming problems
involving generalized type I vector-valued functions.

In this paper, we are motivated by Kuk and Tanino [15] to introduce generalized
type I invex functions, called generalized V-type I invex functions, an extension of V-
type I functions introduced by Hanson et al. [20] to nonsmooth cases. By utilizing these
new concepts, we obtain Karush-Kuhn-Tucker type sufficient optimality conditions and
Mond-Weir type duality relations for nonsmoothmultiobjective programming problems. Our
results generalize a variety of previously known results in this area.

2. Notations and Preliminaries

Throughout the paper, we use the following conventions of vectors in R
n. For any x, y ∈ R

n,
x � y ⇔ xi � yi, i = 1, 2, . . . , n, x ≥ y ⇔ x � y, x /=y, and x > y ⇔ xi > yi, i =
1, 2, . . . , n.

A function f : R
n → R is said to be locally Lipschitz at a point x ∈ R

n if there exist
scalars ζ > 0 and ε > 0 such that

∣
∣
∣f
(

x1
)

− f
(

x2
)∣
∣
∣ � ζ

∥
∥
∥x1 − x2

∥
∥
∥ , ∀x1, x2 ∈ x + εB, (2.1)

where x + εB is the open ball of radius ε around x and ‖ · ‖ is any norm in R
n.
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The Clarke generalized directional derivative [6] of a locally Lipschitz function f : R
n →

R at x in the direction v ∈ R
n, denoted by f◦(x;v), is defined as

f◦(x;v) = lim sup
y→x

t↓0

f
(

y + tv
) − f

(

y
)

t
, (2.2)

where y is a vector in R
n.

The Clarke generalized gradient [6] of f : R
n → R at x, denoted by ∂cf(x), is defined as

∂cf(x) =
{

ξ ∈ R
n : f◦(x;v) � ξ
v, ∀v ∈ R

n
}

. (2.3)

It follows that for any v ∈ Rn, f◦(x;v) = max{ξTv : ξ ∈ ∂cf(x)}.
We consider the following nonlinear multiobjective programming problem:

Minimize f(x) =
(

f1(x), f2(x), . . . , fk(x)
)

,

subject to x ∈ S =
{

x ∈ X : g(x) � 0
}

,
(MP)

where X ⊆ R
n is an open set and the functions f = (f1, f2, . . . , fk) : X → R

k and g =
(g1, g2, . . . , gm) : X → R

m are locally Lipschitz on X.
Since the objectives in multiobjective programming problems generally conflict with

one another, an optimal solution is chosen from the set of efficient (weakly efficient) solutions
in the following sense (see [21]).

Definition 2.1. A point x ∈ S is said to be an efficient solution of (MP) if there exists no x ∈ S
such that f(x) ≤ f(x).

Definition 2.2. A point x ∈ S is said to be a weakly efficient solution of (MP) if there exists no
x ∈ S such that f(x) < f(x).

Let K = {1, 2, . . . , k}, and let M = {1, 2, . . . , m} be any index set. For x ∈ S, J(x) = {j ∈
M : gj(x) = 0} and gJ denotes the vector of active constraints at x.

We define the following generalized V-type I invex functions. Let f and g be locally
Lipschitz functions at a given point u ∈ X.

Definition 2.3. The pair (f, g) is said to be V-type I invex at u ∈ X if for each x ∈ S and for any
ξi ∈ ∂cfi(u), ζj ∈ ∂cgj(u), there exist vectors αi and βj , where αi, βj : X ×X → R+ \ {0}, and a
function η : S ×X → R

n such that for all i ∈ K, j ∈ M

fi(x) − fi(u) � αi(x, u)ξiη(x, u),

−gj(u) � βj(x, u)ζjη(x, u).
(2.4)

Remark 2.4. If αi(x, u) = βj(x, u) = 1, for i ∈ K, j ∈ M, we obtain the definition of type I
function given by Kuk and Tanino [15].
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Definition 2.5. The pair (f, g) is said to be V-pseudo-quasi-type I invex at u ∈ X if for each
x ∈ S and for any ξi ∈ ∂cfi(u), ζj ∈ ∂cgj(u), there exist vectors α̃i and β̃j , where α̃i, β̃j :
X ×X → R+ \ {0}, and a function η : S ×X → R

n such that

k∑

i=1

α̃ifi(x) <
k∑

i=1

α̃ifi(u) =⇒
k∑

i=1

ξiη(x, u) < 0,

−
m∑

j=1

β̃jgj(u) � 0 =⇒
m∑

j=1

ζjη(x, u) � 0.

(2.5)

If in the above definition first inequality is satisfied as

k∑

i=1

α̃ifi(x) �
k∑

i=1

α̃ifi(u) =⇒
k∑

i=1

ξiη(x, u) < 0, (2.6)

then we say that (f, g) is V-strictly pseudo-quasi-type I invex at u.

Definition 2.6. The pair (f, g) is said to be V-quasi-pseudo-type I invex at u ∈ X if for each
x ∈ S and for any ξi ∈ ∂cfi(u), ζj ∈ ∂cgj(u), there exist vectors α̂i and β̂j , where α̂i, β̂j : X×X →
R+ \ {0}, and a function η : S ×X → R

n such that

k∑

i=1

ξiη(x, u) > 0 =⇒
k∑

i=1

α̂ifi(x) >
k∑

i=1

α̂ifi(u),

−
m∑

j=1

β̂jgj(u) < 0 =⇒
m∑

j=1

ζjη(x, u) < 0.

(2.7)

If in the above definition second inequality is satisfied as

−
m∑

j=1

β̂jgj(u) � 0 =⇒
m∑

j=1

ζjη(x, u) < 0, (2.8)

then we say that (f, g) is V-quasistrictly pseudo-type I invex at u.
We will need the following result.

Theorem 2.7 (see [21, page 45]). Let the functions fi : R
n → R (i = 1, 2, · · · , k) be locally

Lipschitzian at a point x∗ ∈ R
n. Then, for weights wi ∈ R, one has

∂c
(

k∑

i=1

wifi

)

(x∗) ⊂
k∑

i=1

wi∂
cfi(x∗). (2.9)
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3. Karush-Kuhn-Tucker Type Sufficient Optimality Conditions

In this section, we derive some sufficient optimality conditions for a feasible solution to be
an efficient or a weakly efficient solution for (MP). Throughout this section, and in Section 4,
fλ denotes the vector (λ1f1, λ2f2, . . . , λkfk) and g

μ

J denotes the vector whose components are
μjgj , j ∈ J(x).

Theorem 3.1. Suppose that there exist a feasible solution x for (MP) and scalars λi > 0, i ∈ K,μj �
0, j ∈ J(x) such that

(i) 0 ∈∑k
i=1 λi∂

cfi(x) +
∑

j∈J(x) μj∂
cgj(x),

(ii) (f, gJ) is V-type I invex at x.

Then, x is an efficient solution for (MP).

Proof. Hypothesis (i) implies that there exist ξi ∈ ∂cfi(x), i ∈ K and ζj ∈ ∂cgj(x), j ∈ J(x)
satisfying

0 =
k∑

i=1

λiξi +
∑

j∈J(x)
μjζj . (3.1)

Since (f, gJ) is V-type I invex at x, we have for all x ∈ S

fi(x) − fi(x) � αi(x, x)ξiη(x, x), for any ξi ∈ ∂cfi(x), i ∈ K,

0 = −gj(x) � βj(x, x)ζjη(x, x), for any ζj ∈ ∂cgj(x), j ∈ J(x).
(3.2)

By using αi(x, x) > 0, i ∈ K and βj(x, x) > 0, j ∈ J(x), we get

1
αi(x, x)

fi(x) − 1
αi(x, x)

fi(x) � ξiη(x, x), for any ξi ∈ ∂cfi(x), i ∈ K,

0 � ζjη(x, x) for any ζj ∈ ∂cgj(x), j ∈ J(x).

(3.3)

As λi > 0, i ∈ K and μj � 0, j ∈ J(x), using (3.3), we obtain

k∑

i=1

λi
αi(x, x)

fi(x) −
k∑

i=1

λi
αi(x, x)

fi(x) �

⎛

⎝

k∑

i=1

λiξi +
∑

j∈J(x)
μjζj

⎞

⎠η(x, x), (3.4)
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which on using (3.1) yields

k∑

i=1

λi
αi(x, x)

fi(x) �
k∑

i=1

λi
αi(x, x)

fi(x). (3.5)

Suppose that x is not an efficient solution for (MP). Then, there exist a feasible solution x for
(MP) and an index r such that

fr(x) < fr(x),

fi(x) � fi(x), ∀i /= r.
(3.6)

Because λi > 0, and αi(x, x) > 0, i ∈ K, we have

k∑

i=1

λi
αi(x, x)

fi(x) <
k∑

i=1

λi
αi(x, x)

fi(x). (3.7)

This contradicts inequality (3.5), and x is thus an efficient solution for (MP).

Theorem 3.2. Suppose that there exist a feasible solution x for (MP) and scalars λi > 0, i ∈ K,μj �
0, j ∈ J(x) such that

(i) 0 ∈∑k
i=1 λi∂

cfi(x) +
∑

j∈J(x) μj∂
cgj(x),

(ii) (fλ, g
μ

J ) is V-pseudo-quasi-type I invex at x.

Then, x is an efficient solution for (MP).

Proof. Suppose that x is not an efficient solution for (MP). Then, there exist a feasible solution
x for (MP) and an index r such that

fr(x) < fr(x),

fi(x) � fi(x), ∀i /= r.
(3.8)

Since λi > 0 and α̃i(x, x) > 0, i ∈ K, above inequalities give

k∑

i=1

λiα̃i(x, x)fi(x) <
k∑

i=1

λiα̃i(x, x)fi(x). (3.9)

Also gj(x) = 0, j ∈ J(x) yields

∑

j∈J(x)
β̃j(x, x)μjgj(x) = 0. (3.10)
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The hypothesis (ii) and inequalities (3.9) and (3.10) imply

k∑

i=1

ξ′iη(x, x) < 0, for any ξ′i ∈ ∂c
(

λifi
)

(x),

∑

j∈J(x)
ζ′jη(x, x) � 0, for any ζ′j ∈ ∂c

(

μjgj
)

(x).
(3.11)

Adding these inequalities, we obtain

⎛

⎝

k∑

i=1

ξ′i +
∑

j∈J(x)
ζ′j

⎞

⎠η(x, x) < 0, (3.12)

but, by Theorem 2.7, for some ξ′i ∈ ∂c(λifi)(x) and ζ′j ∈ ∂c(μjgj)(x), there exist ξi ∈ ∂cfi(x)
and ζj ∈ ∂cgj(x) such that

ξ′i = λiξi, i ∈ K and ζ′j = μjζj , j ∈ J(x). (3.13)

Hence, the above inequality becomes

⎛

⎝

k∑

i=1

λiξi +
∑

j∈J(x)
μjζj

⎞

⎠η(x, x) < 0. (3.14)

This contradicts (i), as for ξi ∈ ∂cfi(x), ζj ∈ ∂cgj(x),
∑k

i=1 λiξi +
∑

j∈J(x) μjζj = 0. Hence, x is an
efficient solution for (MP).

Remark 3.3. If we take λi � 0, i ∈ K,
∑k

i=1 λi = 1, then the above theorem still holds under the
assumption that (fλ, g

μ

J ) is V-strictly pseudo-quasi-type I invex at x.

Theorem 3.4. Suppose that there exist a feasible solution x for (MP) and scalars λi � 0, i ∈ K,
∑k

i=1 λi = 1, μj � 0, j ∈ J(x) such that

(i) 0 ∈∑k
i=1 λi∂

cfi(x) +
∑

j∈J(x) μj∂
cgj(x),

(ii) (f, gJ) is V-type I invex at x.

Then, x is a weakly efficient solution for (MP).

Proof. Following the proof of Theorem 3.1, we obtain

k∑

i=1

λi
αi(x, x)

fi(x) �
k∑

i=1

λi
αi(x, x)

fi(x). (3.15)
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Suppose that x is not a weakly efficient solution for (MP). Then, there exists a feasible solution
x(x /=x) for (MP) such that

fi(x) < fi(x), i ∈ K. (3.16)

Because λi � 0, i ∈ K,
∑k

i=1 λi = 1, and αi(x, x) > 0, i ∈ K, we have

k∑

i=1

λi
αi(x, x)

fi(x) <
k∑

i=1

λi
αi(x, x)

fi(x). (3.17)

This contradicts inequality (3.15), and x is thus a weakly efficient solution for (MP).

Theorem 3.5. Suppose that there exist a feasible solution x for (MP) and scalars λi � 0, i ∈
K,
∑k

i=1 λi = 1 and μj � 0, j ∈ J(x) such that

(i) 0 ∈∑k
i=1 λi∂

cfi(x) +
∑

j∈J(x) μj∂
cgj(x),

(ii) (fλ, g
μ

J ) is V-pseudo-quasi-type I invex at x.

Then, x is a weakly efficient solution for (MP).

Proof. Suppose that x is not a weakly efficient solution for (MP). Then, there exists a feasible
solution x (x /=x) for (MP) such that

fi(x) < fi(x), i ∈ K. (3.18)

Since λi � 0, i ∈ K,
∑k

i=1 λi = 1, and α̃i(x, x) > 0, i ∈ K, the above inequality gives

k∑

i=1

λiα̃i(x, x)fi(x) <
k∑

i=1

λiα̃i(x, x)fi(x). (3.19)

The remaining part of the proof is similar to that of Theorem 3.2.

Theorem 3.6. Suppose that there exist a feasible solution x for (MP) and scalars λi � 0, i ∈
K,
∑k

i=1 λi = 1 and μj � 0, j ∈ J(x) such that

(i) 0 ∈∑k
i=1 λi∂

cfi(x) +
∑

j∈J(x) μj∂
cgj(x),

(ii) (fλ, g
μ

J ) is V-quasistrictly pseudo-type I invex at x.

Then, x is a weakly efficient solution for (MP).

Proof. Suppose that x is not a weakly efficient solution for (MP). Then, there exists a feasible
solution x (x /=x) for (MP) such that

fi(x) < fi(x), i ∈ K. (3.20)
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Since λi � 0, i ∈ K,
∑k

i=1 λi = 1, and α̂i(x, x) > 0, i ∈ K, the above inequality gives

k∑

i=1

λiα̂i(x, x)fi(x) <
k∑

i=1

λiα̂i(x, x)fi(x). (3.21)

Also gj(x) = 0, j ∈ J(x) yields

∑

j∈J(x)
β̂j(x, x)μjgj(x) = 0. (3.22)

If hypothesis (ii) holds, we have

k∑

i=1

ξ′iη(x, x) > 0 =⇒
k∑

i=1

λiα̂i(x, x)fi(x) >
k∑

i=1

λiα̂i(x, x)fi(x), for any ξ′i ∈ ∂c
(

λifi
)

(x),

(3.23)

−
∑

j∈J(x)
β̂j(x, x)μjgj(x) � 0 =⇒

∑

j∈J(x)
ζ′jη(x, x) < 0, for any ζ′j ∈ ∂c

(

μjgj
)

(x). (3.24)

In view of (3.22), (3.24) implies

∑

j∈J(x)
ζ′jη(x, x) < 0, for any ζ′j ∈ ∂c

(

μjgj
)

(x). (3.25)

Also, by assumption (i) and Theorem 2.7, we have

k∑

i=1

ξ′i +
∑

j∈J(x)
ζ′j = 0. (3.26)

Therefore, (3.25) becomes

k∑

i=1

ξ′iη(x, x) > 0, for any ξ′i ∈ ∂c
(

λifi
)

(x). (3.27)

In view of (3.27), (3.23) yields

k∑

i=1

λiα̂i(x, x)fi(x) >
k∑

i=1

λiα̂i(x, x)fi(x), (3.28)

which contradicts (3.21). Hence, x is a weakly efficient solution for (MP).
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4. Mond-Weir Type Duality

We now consider the following Mond-Weir type dual for (MP):

(MWD) Maximize f
(

y
)

subject to
(4.1)

0 ∈
k∑

i=1

λi∂
cfi
(

y
)

+
m∑

j=1

μj∂
cgj
(

y
)

, (4.2)

μjgj
(

y
)

� 0, j ∈ M, (4.3)

λi � 0, i ∈ K, (4.4)

μj � 0, j ∈ M, (4.5)

k∑

i=1

λi = 1. (4.6)

Let T be the set of all feasible solutions of (MWD).

Theorem 4.1 (weak duality). Let x ∈ S and (y, λ, μ) ∈ T such that (fλ, gμ) is V-pseudo-quasi-type
I invex at y. Then the following cannot hold

f(x) < f
(

y
)

. (4.7)

Proof. Suppose the contrary to the result that (4.7) holds, that is, f(x) < f(y).Using α̃i(x, y) >
0, λi � 0, i ∈ K and

∑k
i=1 λi = 1, we get

k∑

i=1

α̃i

(

x, y
)

λifi(x) <
k∑

i=1

α̃i

(

x, y
)

λifi
(

y
)

. (4.8)

Also, as β̃j(x, y) > 0, j ∈ M, inequality (4.3) yields

−
m∑

j=1

β̃j
(

x, y
)

μjgj
(

y
)

� 0. (4.9)

By V-pseudo-quasi-type I invexity of (fλ, gμ) at y, (4.8) and (4.9) give

k∑

i=1

ξ′iη
(

x, y
)

< 0, for any ξ′i ∈ ∂c
(

λifi
)(

y
)

,

m∑

j=1

ζ′jη
(

x, y
)

� 0, for any ζ′j ∈ ∂c
(

μjgj
)(

y
)

.

(4.10)
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Adding the above inequalities, we get

⎛

⎝

k∑

i=1

ξ′i +
m∑

j=1

ζ′j

⎞

⎠η
(

x, y
)

< 0. (4.11)

However, by Theorem 2.7, for some ξ′i ∈ ∂c(λifi)(y) and ζ′j ∈ ∂c(μjgj)(y), there exist ξi ∈
∂cfi(y) and ζj ∈ ∂cgj(y) such that

ξ′i = λiξi, i ∈ K and ζ′j = μjζj , j ∈ M. (4.12)

Hence, the above inequality changes to

⎛

⎝

k∑

i=1

λiξi +
m∑

j=1

μjζj

⎞

⎠η
(

x, y
)

< 0, (4.13)

which contradicts the dual constraint (4.2), because ξi ∈ ∂cfi(y) and ζj ∈ ∂cgj(y) imply
∑k

i=1 λiξi +
∑m

j=1 μjζj = 0. Hence, (4.7) cannot hold.

Definition 4.2 (Cottle’s constraint qualification [21, page 48]). Let fi, i ∈ K and gj , j ∈ M
be locally Lipschitz functions at a point u ∈ X. The problem (MP) is said to satisfy Cottle’s
constraint qualification at u if either gj(u) < 0 for all j ∈ M or 0 ∈ conv{∂cgj(u) : gj(u) = 0},
where convZ denotes the convex hull of the set Z.

Theorem 4.3 (Karush-Kuhn-Tucker type necessary conditions [21, page 50]). Assume that x is
a weakly efficient solution for (MP) at which Cottle’s constraint qualification is satisfied. Then, there
exist scalars λi � 0, i ∈ K,

∑k
i=1 λi = 1 and μj � 0, j ∈ M such that

0 ∈
k∑

i=1

λi∂
cfi(x) +

m∑

j=1

μj∂
cgj(x),

μjgj(x) = 0, j ∈ M.

(4.14)

Theorem 4.4 (strong duality). Let x be a weakly efficient solution for (MP) at which Cottle’s
constraint qualification is satisfied. Then, there exist λ ∈ R

k, μ ∈ R
m such that (x, λ, μ) is feasible for

(MWD) and the objective values of (MP) and (MWD) are equal. Further, if the hypotheses of weak
duality (Theorem 4.1) hold for all feasible solutions (y, λ, μ) for (MWD), then (x, λ, μ) is a weakly
efficient solution of (MWD).



12 Journal of Inequalities and Applications

Proof. Since x is a weakly efficient solution of (MP) and the Cottle’s constraint qualification is
satisfied at x, from Theorem 4.3, there exist λi � 0, i ∈ K,

∑k
i=1 λi = 1, and μj � 0, j ∈ M such

that

0 ∈
k∑

i=1

λi∂
cfi(x) +

m∑

j=1

μj∂
cgj(x),

μjgj(x) = 0, j ∈ M,

(4.15)

which yields that (x, λ, μ)is feasible for (MWD) and the corresponding objective values are
equal. If (x, λ, μ) is not a weakly efficient solution for (MWD), then there exists a feasible
solution (y, λ, μ) for (MWD) such that

f(x) < f
(

y
)

, (4.16)

which contradicts the weak duality (Theorem 4.1). Hence, (x, λ, μ) is a weakly efficient
solution for (MWD).

Theorem 4.5 (strict converse duality). Let x ∈ S and (y, λ, μ) ∈ T such that

k∑

i=1

λifi(x) �
k∑

i=1

λifi
(

y
)

. (4.17)

If

(i) (fλ, gμ) is V-strictly pseudo-quasi-type I invex at y,

(ii) α̃1
i (x, y) = 1, i ∈ K,

then x = y.

Proof. We assume that x /=y and exhibit a contradiction. Since (y, λ, μ) ∈ T , from (4.2), there
exist ξi ∈ ∂cfi(y), i ∈ K and ζj ∈ ∂cgj(y), j ∈ M such that

k∑

i=1

λiξi +
m∑

j=1

μjζj = 0. (4.18)

The hypothesis (i) along with (4.3) and β̃j(x, y) > 0, j ∈ M yields

m∑

j=1

ζ′jη
(

x, y
)

� 0, for any ζ′j ∈ ∂c
(

μjgj
)(

y
)

. (4.19)

Also by Theorem 2.7, for some ξi ∈ ∂cfi(y), i ∈ K and ζj ∈ ∂cgj(y), j ∈ M, there exist

ξ′i ∈ ∂c(λifi)(y) and ζ′j ∈ ∂c(μjgj)(y) such that ξ′i = λiξi and ζ′j = μjζj .



Journal of Inequalities and Applications 13

Hence, (4.18) gives

⎛

⎝

k∑

i=1

ξ′i +
m∑

j=1

ζ′j

⎞

⎠η
(

x, y
)

= 0, (4.20)

which with (4.19) gives

k∑

i=1

ξ′iη
(

x, y
)

� 0, for any ξ′i ∈ ∂c
(

λifi
)(

y
)

. (4.21)

Therefore the hypothesis (i) again yields

k∑

i=1

α̃i

(

x, y
)

λifi(x) >
k∑

i=1

α̃i

(

x, y
)

λifi
(

y
)

. (4.22)

Since α̃i(x, y) = 1, i ∈ K, we have

k∑

i=1

λifi(x) >
k∑

i=1

λifi
(

y
)

, (4.23)

which contradicts (4.17). This completes the proof.
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