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We first define a new Laplacian spectrum based on Estrada index, namely, Laplacian Estrada-like
invariant, LEEL, and two new Estrada index-like quantities, denoted by S and EEX , respectively, that
are generalized versions of the Estrada index. After that, we obtain some lower and upper bounds
for LEEL, S, and EEX .

1. Introduction and Preliminaries

It is known that, for an (n,m)-graph G (i.e., an undirected graph with no loops and multiple
edges), the numbers of vertices and edges of G are denoted by n and m, respectively.
Throughout this paper, all graphs will be concerned as an (n,m)-graph.

Let A = A(G) be the adjacency matrix of G, and let λ1, λ2, . . . , λn be its eigenvalues. By
[1], it is known that these eigenvalues form the spectrum of the graph G. Let G be connected
graph on the vertex set V = {v1, v2, . . . , vn}. Then the distance matrix D = D(G) of G is
defined as its (i, j)-entry is equal to dG(vi, vj), denoted by dij , the distance (in other words,
the length of the shortest path) between the vertices vi and vj of G. Let the eigenvalues of
D(G) be ρ1, ρ2, . . . , ρn. Moreover let L = L(G) be the Laplacian matrix of G (formally it is
denoted by L(G) = D(G) −A(G)), and let μ1, μ2, . . . , μn be its eigenvalues. These eigenvalues
form the Laplacian spectrum of the graph G (see [2–4]). Since A(G), L(G), andD(G) are real
symmetric matrices, their eigenvalues are real numbers and so we can order them as λ1 ≥
λ2 ≥ · · · ≥ λn, μ1 ≥ μ2 ≥ · · · ≥ μn, and ρ1 ≥ ρ2 ≥ · · · ≥ ρn. These eigenvalues are shortly called
A-eigenvalues, L-eigenvalues, and D-eigenvalues, respectively. The fundamental properties
of graph eigenvalues can be found in the study in [1].

Now we recall that the Estrada index of a simple connected graph G is defined by

EE = EE(G) =
n∑

i=1

eλi , (1.1)
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where, as depicted above, λ1 ≥ λ2 ≥ · · · ≥ λn are the A-eigenvalues (see [5–8]). Denoting by
Mk = Mk(G) the kth moment of the graph G, we getMk = Mk(G) =

∑n
i=1(λi)

k, and recalling
the power-series expansion of ex, we have

EE =
∞∑

k=0

Mk

k!
. (1.2)

The Estrada index EE has an important role in Chemistry, since it is a proposed molecular
structure descriptor, used in the modeling of certain features of the 3D structure of organic
molecules, in particular of the degree of folding of proteins and other long-chain biopolymers.
There exists a vast literature that studies Estrada index. For example, in [9] it has been
examined Estrada index in the case of benzenoid hydrocarbons with a fixed number of carbon
atoms and a fixed number of carbon-carbon bonds. Also, in [10], Gutman et al. determined its
relation with the spectral radius (i.e., the greatest graph eigenvalue). In addition to Estrada’s
and Gutman’s papers depicted above, we may also refer the reader [11–17] for more detail
investigation about this special index and its lower and upper bounds, and some inequalities
betweenEE and the energy of some graphG. Recently, there have been found two newpapers
[18, 19] that are concerned with the bounds of distance Estrada index and Harary Estrada
index of the graph G, respectively.

As an additional preliminary material for this paper, we should recall that a graph-
spectrum-based invariant, namely, the graph energy,is defined by

E = E(G) =
n∑

i=1

|λi|, (1.3)

where each of λi is as above (see [20, 21]). Depending on this, a Laplacian-spectral of the
graph energy, namely, Laplacian energy, is defined (see [22, 23]) by

LE = LE(G) =
n∑

i=1

∣∣∣∣μi − 2m
n

∣∣∣∣. (1.4)

It is known that LE and E have a number of common properties. As depicted in [24],
Laplacian energy is currently much investigated and so many chemical applications can be
found for it. Furthermore, in [25], it has been proposed another Laplacian spectrum based on
“energy”, and it has been called Laplacian-energy-like invariant, LEL, which is defined as

LEL = LEL(G) =
n∑

i=1

√
μi, (1.5)

where μ1 ≥ μ2 ≥ · · · ≥ μn = 0 are the L-eigenvalues. (We should note that, since one of the
L-eigenvalues is necessarily equal to zero, μn is chosen as zero).
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In the light of the above material, in this paper, we did propose another Laplacian
spectrum based on “Estrada index”, and called it Laplacian Estrada-like invariant, denoted by
LEEL. In fact it is defined as

LEEL = LEEL(G) =
n∑

i=1

e
√
μi , (1.6)

where each of μi is defined as in LEL.
For a well understanding of the definition and properties of LEEL, and of the

dependence of it with the graph structure, in this paper, we mainly establish lower and upper
bounds for LEEL in terms of n, m, and LEL. Moreover we also present Nordhaus-Gaddum-
type bounds for LEEL. Finally, by considering an arbitrary quantity defined from the graph
G, we also generalize some of the known results on lower and upper bounds that are obtained
previously (see [12, 17, 18]) and our results that will be given in the second section.

2. Bounds for Laplacian Estrada-Like Invariant in terms of
Laplacian Energy-Like Invariant

As a new derivation for obtaining bounds in indexes, we will at first determine some lower
and upper bounds for Laplacian Estrada-like invariant, LEEL. So the following theorem is
the first main result of this section.

Theorem 2.1. For an (n,m)-graph G, one has

√
n
[
(n − 1)e2LEL/n + 1

]
+ 2LEL + 4m ≤ LEEL ≤ n − 1 + e

√
2m. (2.1)

Moreover equality holds in (2.1) if and only if G ∼= Kn.

Proof.

The Lower Bound

By a direct calculation from (1.6), we have

LEEL2 =
n∑

i=1

e2
√
μi + 2

∑

i<j

e
√
μie

√
μj . (2.2)
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By the arithmetic-geometric mean inequality, we get

2
∑

i<j

e
√
μie

√
μj ≥ n(n − 1)

⎡

⎣
∏

i<j

e
√
μie

√
μj

⎤

⎦
2/n(n−1)

= n(n − 1)

⎡

⎣
(

n∏

i=1

e
√
μi

)n−1⎤

⎦
2/n(n−1)

= n(n − 1)e2LEL/n.

(2.3)

By means of a power-series expansion and M0 = n, M1 = 2LEL, and M2 = 4m, and using a
multiplier γ ∈ [0, 8] (since we require a lower bound as good as possible, it looks reasonable
to use such a multiplier), we obtain

n∑

i=1

e2
√
μi =

n∑

i=1

∑

k≥0

(
2√μi

)k

k!
= n + 2LEL + 4m +

n∑

i=1

∑

k≥3
+

(
2√μi

)k

k!

≥ n + 2LEL + 4m + γ
n∑

i=1

∑

k≥3

(√
μi

)k

k!

= n + 2LEL + 4m − γn − γLEL − γm + γ
n∑

i=1

∑

k≥0

(√
μi

)k

k!

=
(
1 − γ

)
n +
(
2 − γ

)
LEL +

(
4 − γ

)
m + γLEEL.

(2.4)

By substituting (2.3) and (2.4) back into (2.2), and then solving it for LEEL, we get

LEEL ≥ γ

2
+

√
γ2

4
+ n
[
(n − 1)e2LEL/n + 1 − γ

]
+
(
2 − γ

)
LEL +

(
4 − γ

)
m. (2.5)

Meanwhile, for n ≥ 2 and m ≥ 1, it is easy to check that the function

f(x) :=
x

2
+

√
x2

4
+ n
[
(n − 1)e2LEL/n + 1 − x

]
+ (2 − x)LEL + (4 − x)m (2.6)

monotonically decreases in the interval [0, 8]. As a result, the best lower bound for LEEL is
attained for γ = 0. This gives us the validity of the left-hand side of the inequality in (2.1).
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The Upper Bound

By (1.6), we clearly have

LEEL =
∑

k≥0

Mk

k!
, where Mk =

n∑

i=1

(√
μi

)k
. (2.7)

After this, we also have

LEEL = n +
n∑

i=1

∑

k≥1

(√
μi

)k

k!

= n +
∑

k≥1

1
k!

n∑

i=1

[(√
μi

)2]k/2

≤ n +
∑

k≥1

1
k!

[
n∑

i=1

(√
μi

)2
]k/2

= n +
∑

k≥1

1
k!
(2m)k/2 = n − 1 +

∑

k≥0

(√
2m
)k

k!

= n − 1 + e
√
2m,

(2.8)

as required by the right-hand side of the inequality in (2.1).
Let us consider again inequality given in (2.1). For this, it is easy to check that equality

will be held if and only if the graph G has no nonzero eigenvalues. Actually this situation can
happen only in the case of the edgeless graph Kn, that is, in the case of G ∼= Kn.

Hence the result is mentioned.

In the following, we will determine two upper bounds for Laplacian Estrada like
invariant, LEEL, in terms of Laplacian energy-like invariant , LEL.

Theorem 2.2. Let G be a connected (n,m)-graph, and let LEL and LEEL be as defined in (1.5) and
(1.6), respectively. Then

LEEL − LEL ≤ n − 1 −
√
2m + e

√
2m, (2.9)

or

LEEL ≤ n − 1 + eLEL. (2.10)

Equality holds for both (2.9) and (2.10) if and only if G ∼= Kn.
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Proof. In (2.8) in the proof of Theorem 2.1

LEEL = n +
n∑

i=1

∑

k≥1

(√
μi

)k

k!
. (2.11)

Taking into account the definition of LEL given in (1.5), we may also have the inequality

LEEL ≤ n + LEL +
n∑

i=1

∑

k≥2

(√
μi

)k

k!
(2.12)

which leads to

LEEL − LEL ≤ n +
n∑

i=1

∑

k≥2

(√
μi

)k

k!
= n − 1 −

√
2m + e2m, (2.13)

as required in (2.9). In fact this inequality holds for all (n,m)-graphs. Additionally, a similar
thought as in the proof of Theorem 2.1 gives that equality is attained in (2.9) if and only if
G ∼= Kn.

Furthermore, again by considering (2.8) as in the above, there exists another route to
connect LEEL and LEL as in the following:

LEEL = n +
n∑

i=1

∑

k≥1

(√
μi

)k

k!
≤ n +

∑

k≥1

1
k!

[
n∑

i=1

(√
μi

)
]k

= n +
∑

k≥1

(LEL)k

k!
= n − 1 +

∑

k≥0

(LEL)k

k!
,

(2.14)

and then, by considering the definition of LEL in (1.5), this implies that

LEEL ≤ n − 1 + eLEL, (2.15)

as claimed in (2.10).
As in the other upper bound case defined in (2.9), equality also occurs in (2.10) if and

only if G ∼= Kn.

In [26], it has been given bounds for the sum of the chromatic numbers of a graph
G and its complement G. After that, in general meanings, so many people investigated a
number of graph invariants in terms of G and G, and collected these studies in the literature
under the name of “Nordhaus-Gaddum-type results”. For example, in a recent paper [24],
Gutman et al. have studied the Nordhaus-Gaddum-type results and then they transferred
the Nordhaus-Gaddum-type results for graph energy E (which was obtained in [27]) into
Nordhaus-Gaddum-type results for Laplacian energy-like invariant , LEL.

In the followingwewill give a theorem that considers Nordhaus-Gaddum-type results
for Laplacian Estrada energy like , LEEL.



Journal of Inequalities and Applications 7

Theorem 2.3. LetG be a connected graph on n ≥ 2 vertices andm edges with a connected component
G. Then

n
√
2e

√
n ≤ LEEL(G) + LEEL

(
G
)
≤ 2(n − 1) + e

√
2m + e

√
n(n−1)−2m. (2.16)

Proof.

The Lower Bound

Let μ1, μ2, . . . , μn be the Laplacian eigenvalues of G arranged in a nonincreasing order. Then,
for i = 1, 2, . . . , n − 1, μi = n − μn−i. By considering (1.6), a direct calculation gives that

LEEL(G) + LEEL
(
G
)
=

n∑

i=1

(
e
√
μi + e

√
n−μi

)
≥

n∑

i=1

√
2e

√
n = n

√
2e

√
n. (2.17)

The Upper Bound

By (2.1) in Theorem 2.1, we did obtain an upper bound n − 1 + e
√
2m for LEEL(G). Now

recalling thatm = (n(n − 1) − 2m)/2, again a direct calculation shows that

LEEL(G) + LEEL
(
G
)
≤ 2(n − 1) + e

√
2m + e

√
n(n−1)−2m. (2.18)

Hence the result is attained.

2.1. Laplacian Estrada-Like Invariant is Estrada Like

As depicted in [24], starting with the work of McClelland (in [28]), the basic results over
bounds for graph energy could be deduced by relying to a limited number of simple
properties of the graph eigenvalues (see, for instance, [29]).

Let us suppose that G is a molecular (n,m)-graph. Also let N and M be two positive
integers. Consider an auxiliary quantity S, defined as

S = S(G) =
N∑

i=1

esi , (2.19)

where si’s are some numbers (for i = 1, 2, . . . ,N) which somehow can be computed from the
graph G, for which we only need to know that they satisfy the conditions

N∑

i=1

si = F, (2.20)

N∑

i=1

(si)2 = 2M. (2.21)
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Actually, from (2.20) and (2.21), it is possible to deduce both lower and upper bounds
for S as in the following.

What now needs to be observed is that if we choose N = n, M = m, and si = λi
(for i = 1, 2, . . . , n), then the auxiliary quantity S will be turned out to the Estrada index, as
defined in (1.1). Now, all of the two conditions (2.20) and (2.21) are obeyed for the choice
N = n, M = m, and si = √

μi (where i = 1, 2, . . . , n), in which case the quantity S will be
thought as LEEL, as defined in (1.6).

Keeping the above in mind, in other words, if all of the two conditions (2.20) and
(2.21) are taken into account, then, as a generalization, we have the following three results
for S similar to results for LEEL (given in the previous section) and results for Estrada index
deduced previously by some other authors (see [12, 17, 18]):

(1) N − 1 + e
√
2M ≤ S ≤

√
N + 2F +N(N − 1)e2F/N ,

(2) S − F ≤ N − 1 −
√
2M + e

√
2M,

(3) S ≤ N − 1 + eF .

In detail, the following are considered.

(i) If we take N = n, M = m, and si = λi (where i = 1, 2, . . . , n), then results presented
in (1), (2), and (3) correspond to the bounds (6), (14), and (15) in [12], respectively.

(ii) If we take N = n, M = m, and si = ρi (where i = 1, 2, . . . , n), then results presented
in (1), (2), and (3) correspond to the bounds (11), (15), and (16) in [18], respectively.

(iii) If we take N = n, M = m, and si = μi − 2m/n (where i = 1, 2, . . . , n), then results
presented in (1), (2), and (3) correspond to the bounds (11), (17), and (18) in [17],
respectively.

(iv) If we takeN = n,M = m, and si =
√
μi (where i = 1, 2, . . . , n), then results presented

in (1), (2), and (3) correspond to the bounds obtained in this paper in Theorems 2.1
and 2.2.

3. On the Estrada Index-Like Quantity

It is a well known fact that there are so many papers in the literature that study indexes
and energies. In [28], McClelland obtained lower and upper bounds for the total π-electron
energy. In [30, Theorems 1 and 2], Gutman et al. formulated the generalized version of these
bounds, applicable to the energy-like expression EX and defined this by

EX =
n∑

i=1

|xi − x|, (3.1)

where x1, x2, . . . , xn are any real numbers, and x is their arithmetic mean. As depicted in the
same paper, if x1, x2, . . . , xn are the eigenvalues of the adjacency, Laplacian, or distance matrix
of some graph G, then graph energy, Laplacian energy, and distance energy are the special cases
of EX . (We note that, in [19, Theorem 2.3], as another special case of EX , it has been recently
shown a lower bound and an upper bound for the Harary energy).
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By considering the Estrada index defined in (1.1), the other Estrada index-like quantity
can be defined as

EEX =
n∑

i=1

exi−x, (3.2)

where x1, x2, . . . , xn are arbitrary real numbers, and x is their arithmetic mean. In particular,
as similarly in EX , if x1, x2, . . . , xn are the eigenvalues of the adjacency, Laplacian, or distance
matrix of some ofG, then EEX is the Estrada index (see [5, 8, 14, 15]), Laplacian Estrada index
(see [17]), or distance Estrada index (see [18]), respectively, of some graph G.

Let

N ′
k =

n∑

i=1

(xi − x)k. (3.3)

Then

EEX =
∞∑

k=0

N ′
k

k!
. (3.4)

We remind two basic facts in the statistics that, for arbitrary real numbers x1, x2, . . . , xn,
the arithmetic mean and variance are defined by

x =
1
n

n∑

i=1

xi, (3.5)

Var(x) =
1
n

n∑

i=1

(xi − x)2. (3.6)

By considering (3.2), (3.3), and (3.6), one can show the following results as proved in
Theorems 2.1 and 2.2.

Theorem 3.1. Let EEX be the Estrada index-like expression as defined in (1.6). Then

√
n2 + 2nVar(x) ≤ EEX ≤ n − 1 + e

√
nVar(x). (3.7)

Equality holds if and only if x1 = x2 = · · · = xn.

Theorem 3.2. Let EX and EEX be as defined in (1.5) and (1.6), respectively. Then

EEX − EX ≤ n − 1 −
√
nVar(x) + e

√
nVar(x), (3.8)

or

EEX ≤ n − 1 + eEX . (3.9)
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In Theorem 3.2, equality holds in both inequalities if and only if x1 = x2 = · · · = xn (or,
equivalently, Var(x) = 0), as given in the proof of Theorem 3.1.
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