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This paper studies some normality criteria for a family of meromorphic functions, which improve
some results of Lahiri, Lu and Gu, as well as Charak and Rieppo.

1. Introduction and Main Results

Let f be a nonconstant meromorphic function in the complex plane C. We shall use the
standard notations in Nevanlinna’s value distribution theory of meromorphic functions such
as T(r, f), N(r, f), and m(r, f) (see, e.g., [1, 2]). The notation S(r, f) is defined to be any
quantity satisfying S(r, f) = o(T(r, f)) as r → ∞ possibly outside a set of E of finite linear
measure.

Let F be a family of meromorphic functions on a domain D ⊂ C. We say that F
is normal in D if every sequence of functions {fn} ⊂ F contains either a subsequence
which converges to a meromorphic function f uniformly on each compact subset of D or
a subsequence which converges to∞ uniformly on each compact subset of D. (See [1, 3].)

The Bloch principle [3] is the hypothesis that a family of analytic (meromorphic)
functions which have a common property P in a domainDwill in general be a normal family
if P reduces an analytic (meromorphic) function in the open complex plane C to a constant.
Unfortunately the Bloch principle is not universally true. But it is also very difficult to find
some counterexamples about the converse of the Bloch principle, and hence it is interesting
to study the problem.

In 2005, Lahiri [4] proved the following criterion for the normality, and gave a
counterexample to the converse of the Bloch principle by using the result.

Theorem A. Let F be a family of meromorphic functions in a domain D, and let a(/= 0), b be two
finite constants. Define
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Ef =
{
z : z ∈ D, f ′(z) +

a

f(z)
= b

}
. (1.1)

If there exists a positive number M such that for every f ∈ F, one has |f(z)| ≥ M whenever z ∈ Ef ,
then F is normal.

In this direction, Lahiri and Dewan [5] as well as Xu and Zhang [6] proved the
following result.

Theorem B. Let F be a family of meromorphic functions in a domain D, and let a(/= 0), b be two
finite constants. Suppose that

Ef =
{
z : z ∈ D, f (k) − af−n = b

}
, (1.2)

where k and n are positive integers.
If for every f ∈ F
(i) all zeros of f have multiplicity at least k,

(ii) there exists a positive number M such that for every f ∈ F one has |f(z)| ≥ M whenever
z ∈ Ef ,

then F is normal in D so long as (A)n ≥ 2; or (B)n = 1 and k = 1.

Here, we also give a counterexample to the converse of the Bloch principle by
considering Theorem B, which is similar to an example in [7].

Example 1.1. Let f(z) = cot z, then f ′(z) = 1 + cot2z/= 0 for all z ∈ C. Now we can see that

f ′(z) + f−2(z) + 1 =

(
1 + cot2z

)2
cot2z

=
4

sin22z
/= 0, (1.3)

but Theorem B is true especially when Ef is an empty set for every f in the family.

In the following, we continue to study the normal family when n = 1 and k ≥ 2 in
Theorem B.

Theorem 1.2. Let F be a family of meromorphic functions in a domain D, and a(/= 0), b be two finite
constants. Suppose that

Ef =
{
z : z ∈ D, f (k) − af−1 = b

}
, (1.4)

where k ≥ 2 is a positive integer.
If for every f ∈ F
(i) all zeros of f have multiplicity at least k + 1,

(ii) there exists a positive number M such that for every f ∈ F, one has |f(z)| ≥ M whenever
z ∈ Ef , then F is normal in D.
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Corollary 1.3. Let F be a family of meromorphic functions in a domain D, all of whose zeros have
multiplicity at least k+1, and let a(/= 0), b be two finite constants. Suppose that f (k)−af−1 /= b, where
k ≥ 2 is a positive integer. Then F is normal in D.

Recently, Lu and Gu [8] considered two related normal families.

Theorem C. Let F be a family of meromorphic functions in a domain D; all of whose zeros have
multiplicity at least k+2. Suppose that, for each f ∈ F, ff (k) /=a for z ∈ D, then F is a normal family
on D, where a is a nonzero finite complex number and k ≥ 1 is an integer number.

Theorem D. Let F be a family of meromorphic functions in a domain D; all of whose zeros have
multiplicity at least k + 1, and all of whose poles are multiple. Suppose that, for each f ∈ F, ff (k) /=a
for z ∈ D, then F is a normal family on D, where a is a nonzero finite complex number and k ≥ 1 is
an integer number.

In this paper, we give a simple proof and improve the above results.

Theorem 1.4. Let F be a family of meromorphic functions in a domain D; all of whose zeros have
multiplicity at least k+1. Suppose that, for each f ∈ F, ff (k) /=a for z ∈ D, then F is a normal family
on D, where a is a nonzero finite complex number and k ≥ 1 is an integer number.

In 2009, Charak and Rieppo [7] generalized Theorem A and obtained two normality
criteria of Lahiri’s type.

Theorem E. Let F be a family of meromorphic functions in a complex domain D. Let a, b ∈ C such
that a/= 0. Letm1,m2, n1, n2 be nonnegative integers such thatm1n2 −m2n1 > 0,m1 +m2 ≥ 1, and
n1 + n2 ≥ 2, and put

Ef =

{
z ∈ D :

(
f(z)
)n1
(
f ′(z)

)m1 +
a(

f(z)
)n2
(
f ′(z)

)m2
= b

}
. (1.5)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

Theorem F. Let F be a family of meromorphic functions in a complex domain D. Let a, b ∈ C such
that a/= 0. Letm1,m2, n1, n2 be nonnegative integers such thatm1n2 = m2n1 > 0, and put

Ef =

{
z ∈ D :

(
f(z)
)n1
(
f ′(z)

)m1 +
a(

f(z)
)n2
(
f ′(z)

)m2
= b

}
. (1.6)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

Naturally, we ask whether the above results are still true when f ′ is replaced by f (k) in
Theorems E and F. We obtain the following results.
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Theorem 1.5. Let F be a family of meromorphic functions in a complex domain D; all of whose zeros
have multiplicity at least k. Let a, b ∈ C such that a/= 0. Let m1, m2, n1, n2 be nonnegative integers
such that m1n2 −m2n1 > 0, m1 +m2 ≥ 1, and n1 + n2 ≥ 2 (if n1 = n2 = 1, k ≥ 5), and put

Ef =

{
z ∈ D :

(
f(z)
)n1
(
f (k)(z)

)m1
+

a(
f(z)
)n2
(
f (k)(z)

)m2
= b

}
. (1.7)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

Theorem 1.6. Let F be a family of meromorphic functions in a complex domain D; all of whose zeros
have multiplicity at least k. Let a, b ∈ C such that a/= 0. Let m1 ≥ 2, m2, n1, n2 be nonnegative
integers such thatm1n2 = m2n1, and put

Ef =

{
z ∈ D :

(
f(z)
)n1
(
f (k)(z)

)m1
+

a(
f(z)
)n2
(
f (k)(z)

)m2
= b

}
. (1.8)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

2. Some Lemmas

Lemma 2.1 (see [9]). Let F be a family of functions meromorphic on the unit disc, all of whose zeros
have multiplicity at least k, then if F is not normal, there exist, for each 0 ≤ α < k,

(a) a number 0 < r < 1,

(b) points zn, zn < 1,

(c) functions fn ∈ ζ,

(d) positive number ρn → ∞ such that ρ−αn fn(zn + ρnξ) = gn(ξ) → g(ξ) locally uniformly,
where g is a nonconstant meromorphic on C, all of whose zeros have multiplicity at least k,
such that g#(ξ) ≤ g#(0).

Here, as usual, g#(ξ) = |g ′(ξ)|/(1 + |g(ξ)|2) is the spherical derivative.

Lemma 2.2. Let f be rational in the complex plane andm,n positive integers. If f has only zero with
multiplicity at least k, then fn(f (k))m takes on each nonzero value a ∈ C.

Proof. In Lemma6 of [7], the case of k = 1 is proved. We just consider the case of k ≥ 2 by a
different way which comes from [10].

If f is a polynomial, obviously the conclusion holds. If f is a nonpolynomial rational
function, then we can set

fn
(
f (k)
)m

= A
(z − α1)m1(z − α2)m2 · · · (z − αs)ms(
z − β1

)n1
(
z − β2

)n2 · · · (z − βt
)nt

, (2.1)
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where A is a nonzero constant. Since f has only zero with multiplicity at least k, we find that

mi ≥ kn (i = 1, 2, . . . , s), nj ≥ k + 1 + n
(
j = 1, 2, . . . , t

)
. (2.2)

For convenience, we denote

M = m1 +m2 + · · · +ms ≥ kns,

N = n1 + n2 + · · · + nt ≥ (k + 1 + n)t.
(2.3)

Differentiating (2.1), we obtain

[
fn
(
f (k)
)m]′

=
(z − α1)m1−1(z − α2)m2−1 · · · (z − αs)ms−1
(
z − β1

)n1+1(z − β2
)n2+1 · · · (z − βt

)nt+1
g(z), (2.4)

where g(z) is a polynomial with deg(g) ≤ s + t − 1.
Suppose that fn(f (k))m − a has no zero, then we can write

fn
(
f (k)
)m − a = A

B(
z − β1

)n1
(
z − β2

)n2 · · · (z − βt
)nt

, (2.5)

where B is a nonzero constant.
Differentiating (2.5), we obtain

[
fn
(
f (k)
)m]′

=
Bg1(z)(

z − β1
)n1+1(z − β2

)n2+1 · · · (z − βt
)nt+1 , (2.6)

where g1(z) is a polynomial of the form −BNzt−1 +Bt−2zt−2 + · · ·+B0, in which B0, . . ., Bt−2 are
constants.

Comparing (2.1) and (2.5), we can obtain M = N. From (2.4) and (2.6), we have

s∑
i=1

(mi − 1) = M − s ≤ deg
(
g1(z)

)
= t − 1,

M ≤ s + t − 1

≤ M

kn
+

N

k + 1 + n
− 1

=
M

kn
+

M

k + 1 + n
− 1

=
(

1
kn

+
1

k + 1 + n

)
M − 1.

(2.7)

It is a contradiction with n ≥ 1 and k ≥ 2. This proves the lemma.
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Lemma 2.3 (see [11]). Let f be a transcendental meromorphic function all of whose zeros have
multiplicity at least t, then ff (k) assumes every finite nonzero value infinitely often, where t = k + 1
if k ≤ 4, and t = 5 if k ≥ 5.

Remark 2.4. The lemma was first proved by Wang as t = 5 if k = 5 and t = 6 if k ≥ 6 in [12].
Recently, the result is improved by [11].

Lemma 2.5. Let f be a meromorphic function all of whose zeros have multiplicity with at least k + 1
in the complex plane, then ff (k) − a must have zeros for any constant a/= 0,∞.

Proof. If f is rational, then by Lemma 2.2 the conclusion holds.
If f is transcendental, supposing that ff (k) − a has no zeros, then by Lemma 2.3, we

can get a contradiction. This completes the proof of the lemma.

Lemma 2.6. Let f be meromorphic in the complex plane, and let a/= 0 be a constant, for any positive
integer k; if ff (k) ≡ a, then f is a constant.

Proof. If f is not a constant, and from a/= 0, we know that f /= 0, then with the identity ff (k) ≡
a, we can get that, if r → ∞,

T

(
r,

1
f

)
= m

(
r,

1
f

)
≤ log+

1
|a| +m

(
r,
f (k)

f

)
= o
(
T
(
r, f
))
, (2.8)

and r /∈E with E being a set of r values of finite linear measure. It is a contradiction.

Lemma 2.7 (see [13]). Let f be a transcendental meromorphic function, and let n ≥ 2, nk ≥ 1 be
two integers. Then for any nonzero value c, the function fn(f (k))nk − c has infinitely many zeros.

Lemma 2.8 (see [14]). Let f be a transcendental meromorphic function, and let n ≥ 2 be an integer.
Then for any nonzero value c, the function f(f (k))n − c has infinitely many zeros.

Lemma 2.9. Let F be a family of meromorphic functions in a complex domain D. Let a, b ∈ C such
that a/= 0. Letm1 ≥ 2, m2, n1, n2 be nonnegative integers such thatm1n2 = m2n1, and put

Ef =

⎧⎨
⎩z ∈ D :

(
f(z)
)n1
(
f (k)(z)

)m1
+

a[(
f(z)
)n2
(
f (k)(z)

)m2
]n2/n1

= b

⎫⎬
⎭. (2.9)

has a finite zero.

Proof. The algebraic complex equation

x +
a

xn2/n1
− b = 0 (2.10)

has always a nonzero solution; say x0 ∈ C. By [14, Corollary 3] or [15], Lemmas 2.2, 2.7, and
2.8, the meromorphic function fn1(f (k))m1 cannot avoid it and thus there exists z0 ∈ C such
that (f(z0))

n1(f (k)(z0))
m1 = x0.
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By assumption, we may writem2 = (n2/n1)m1 and n2 = (n2/n1)n1. Consequently

Ψ(z0) =
[(
f(z0)

)n1
(
f (k)(z0)

)m1
]
+

a[(
f(z0)

)n1
(
f (k)(z0)

)m1
]n2/n1

− b (2.11)

and we complete the proof of the lemma.

Remark 2.10. If m1 = 1, we need k ≥ 5 when n1 = 1 by Lemma 2.3. We can get a similar result.

3. Proof of Theorems

Proof of Theorem 1.2. Let α = k/2 < k. Suppose that F is not normal at z0 ∈ D. Then by
Lemma 2.1, there exist a sequence of functions fj ∈ F (j = 1, 2, . . .), a sequence of complex
numbers zj → z0, and ρj(>0) → 0 such that

gj(ζ) = ρ−αj fj
(
zj + ρjζ

)
(3.1)

converges spherically and locally uniformly to a nonconstant meromorphic function g(ζ) in
C. Also the zeros of g(z) are of multiplicity at least ≥ k + 1. So g(k) /≡ 0. Applying Lemma 2.5
to the function g(z), we know that

g(ζ0)g(k)(ζ0) − a = 0,

g(k)(ζ0) − a

g(ζ0)
= 0

(3.2)

for some ζ0 ∈ C. Clearly ζ0 is neither a zero nor a pole of g. So in some neighborhood of
ζ0, gj(ζ) converges uniformly to g(ζ). Now in some neighborhood of ζ0 we see that g(k)(ζ) −
ag(ζ)−1 is the uniform limit of

g
(k)
j (ζ0) − agj(ζ0)

−1 − ραj b = ρk/2j

{
f
(k)
j

(
zj + ρjζ0

) − af−1
j

(
zj + ρjζ0

) − b
}
. (3.3)

By (3.2) and Hurwitz’s theorem, there exists a sequence ζj → ζ0 such that for all large values
of j

f
(k)
j

(
zj + ρjζj

) − af−1
j

(
zj + ρjζj

)
= b. (3.4)

Therefore for all large values of j, it follows from the given condition that |gj(ζj)| ≥ |fj(zj +
ρjζj)|/ραj ≥ M/ραj .

Since ζ0 is not a pole of g, there exists a positive number K such that in some
neighborhood of ζ0 we get |g(ζ)| ≤ K.
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Since gj(ζ) converges uniformly to g(ζ) in some neighborhood of ζ0, we get for all
large values of j and for all ζ in that neighborhood of ζ0

∣∣gj(ζ) − g(ζ)
∣∣ < 1. (3.5)

Since ζj → ζ, we get for all large values of j

K ≥ ∣∣g(ζj)∣∣ ≥ ∣∣gj(ζj)∣∣ − ∣∣g(ζj) − gj
(
ζj
)∣∣ > M

ραj
− 1, (3.6)

which is a contradiction. This proves the theorem.

Proof of Theorem 1.4. If F is not normal at z0 ∈ D. We assume without loss of generality that
z0 = 0, then by Lemma 2.1, for α = k/2, there exist a sequence of points zn → z0, a sequence
of positive numbers ρn → 0+, and a sequence of functions {fn} of F such that

gj(ζ) = ρ−αj fj
(
zj + ρjζ

) −→ g(z) (3.7)

spherically uniformly on compact subsets of C, where g(z) is a nonconstant meromorphic
function on C; all of whose zeros have multiplicity k + 1 at least. By (3.7),

gj(ζ)g
(k)
j (ζ) − a = fj(ζ)f

(k)
j (ζ) − a/= 0. (3.8)

It follows that g(ζ)g(k)(ζ)/=a or g(ζ)g(k)(ζ) ≡ a by Hurwitz’s theorem. From Lemma 2.6, we
obtain that gg(k) /=a. By Lemma 2.5, we get a contradiction. This completes the proof of the
theorem.

Proof of Theorem 1.5. Suppose that F is not normal at z0 ∈ D. Then by Lemma 2.1, for 0 ≤ α <
k, there exist a sequence of functions fj ∈ F (j = 1, 2, . . .), a sequence of complex number
zj → z0, and ρj(>0) → 0 such that

gj(ζ) = ρ−αj fj
(
zj + ρjζ

)
(3.9)

converges spherically and locally uniformly to a nonconstant meromorphic function g(ζ) in
C. Also the zeros of g(z) are of multiplicity at least ≥ k. So g(k) /≡ 0. By Lemmas 2.2, 2.3, 2.7,
and 2.8, we get

(
g(ζ0)

)n1
(
g(k)(ζ0)

)m1
+

a(
g(ζ0)

)n2
(
g(k)(ζ0)

)m2
= 0, (3.10)
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for some ζ0 ∈ C. Clearly ζ0 is neither a zero nor a pole of g. So in some neighborhood of ζ0,
gj(ζ) converges uniformly to g(ζ). Now in some neighborhood of ζ0 we have

(
gj(ζ)

)n1
(
g
(k)
j (ζ)

)m1
+

a(
gj(ζ)

)n2
(
g
(k)
j (ζ)

)m2
− ραk2−km2

j b

= ρ−αk1+km1
j

(
fj
)n1
(
f
(k)
j

)m1
+

a

ρ−αk2+km2
j

(
fj
)n2
(
f
(k)
j

)m2
− ραk2−km2

j b

= ραk2−km2
j

⎛
⎜⎝ρ

−α(k1+k2)+k(m1+m2)
j

(
fj
)n1
(
f
(k)
j

)m1
+

a(
fj
)n2
(
f
(k)
j

)m2
− b

⎞
⎟⎠,

(3.11)

where fj(zj + ρjζ) is replaced by fj and kj = nj +mj , j = 1, 2.
Taking α = (m1 + m2)k/(k1 + k2) and using the assumption m1n2 − n1m2 > 0, we see

that

gn1
(
g(k)
)m1

+
a

gn2
(
g(k)
)m2 (3.12)

is the uniform limit of

ρ
((m1n2−n1m2)/k1+k2)k
j

⎛
⎜⎝fn1

j

(
f
(k)
j

)m1
+

a

fn2
j

(
f
(k)
j

)m2
− b

⎞
⎟⎠ (3.13)

in some neighborhood of ζ0. By (3.10) andHurwitz’s theorem, there exists a sequence ζj → ζ0
such that for all large values of j

(
fj
(
zj + ρjζj

))n1
(
f
(k)
j

(
zj + ρjζj

))m1
+

a(
fj
(
zj + ρjζj

))n2
(
f
(k)
j

(
zj + ρjζj

))m2
− b. (3.14)

Hence, for all large j, it follows from the given condition that

∣∣gj(ζj)∣∣ ≥
∣∣fj(zj + ρjζj

)∣∣
ραj

=
M

ραj
. (3.15)

In the following, we can get a contradiction in a similar way with the proof of the last
part of Theorem 1.2. This completes the proof of the theorem.

Proof of Theorem 1.6. Suppose that F is not normal at z0 ∈ D. Then by Lemma 2.1, for 0 ≤ α <
k, there exist a sequence of functions fj ∈ F (j = 1, 2, . . .), a sequence of complex numbers
zj → z0, and ρj(>0) → 0 such that

gj(ζ) = ρ−αj fj
(
zj + ρjζ

)
(3.16)
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converges spherically and locally uniformly to a nonconstant meromorphic function g(ζ) in
C. Also the zeros of g(z) are of multiplicity at least ≥ k. So g(k) /≡ 0. By Lemma 2.9, we get

(
g(ζ0)

)n1
(
g(k)(ζ0)

)m1
+

a(
g(ζ0)

)n2
(
g(k)(ζ0)

)m2
− b = 0, (3.17)

for some ζ0 ∈ C.
In the following, we can get a contradiction in a similar way with the proof of the last

part of Theorem 1.5. This completes the proof of the theorem.
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