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We introduce nondifferentiable multiobjective programming problems involving the support
function of a compact convex set and linear functions. The concept of (properly) efficient solutions
are presented. We formulate Mond-Weir-type and Wolfe-type dual problems and establish weak
and strong duality theorems for efficient solutions by using suitable generalized convexity
conditions. Some special cases of our duality results are given.

1. Introduction and Preliminaries

The concept of efficiency has long played an important role in economics, game theory,
statistical decision theory, and in all optimal decision problems with noncomparable
criteria. In 1968, Geoffrion [1] proposed a slightly restricted definition of efficiency that
eliminates efficient points of a certain anomalous type and lended itself to more satisfactory
characterization. He called this new definition proper efficiency. Weir [2] has used proper
efficiency to establish some duality results between primal problem and Wolfe type dual
problem. He extended the duality results of Wolfe [3] for scalar convex programming
problems and some of the more duality results for scalar nonconvex programming problems
to vector valued programs.

In 1982, five characterizations of strongly convex sets were introduced by Vial [4].
Based on this, Vial [5] studied a class of functions depending on the sign of the constant ρ.
Characteristic properties of this class of sets and related it to strong and weakly convex sets
are provided.

Also, Egudo [6] and Weir [2] have used proper efficiency to obtain duality relations
between primal problem and Mond-Weir type dual problem. Further, Egudo [7] used the
concept of efficiency to formulate duality for multiobjective non-linear programs under
generalized ρ-convexity assumptions.
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Duality theorems for nondifferentiable programming problem with a square root
term were obtained by Lal et al. [8]. In 1996, Mond and Schechter [9] studied duality
and optimality for nondifferentiable multiobjective programming problems in which each
component of the objective function contains the support functions of a compact convex sets.
And Kuk et al. [10] defined the concept of (V, ρ)-invexity for vector-valued functions, which
is a generalization of the concept of V -invexity concept.

Recently, Yang et al. [11] introduced a class of nondifferentiable multiobjective
programming problems involving the support functions of compact convex sets. They
established only weak duality theorems for efficient solutions. Subsequently, Kim and Bae
[12] formulated nondifferentiable multiobjective programs involving the support functions
of a compact convex sets and linear functions.

In this paper, we introduce generalized convex duality for nondifferentiable multi-
objective program for efficient solutions. In Section 2 and Section 3, we formulate Mond-
Weir type dual and Wolfe type dual problems and establish weak and strong duality under
ρ-convexity assumptions. In addition, we obtain some special cases of our duality results in
Section 4. Our duality results extend and improve well known duality results.

We consider the following multiobjective programming problem:

minimize
(
f1(x) + s(x | C1), . . . , fp(x) + s

(
x | Cp

))

subject to gj(x) � 0, j = 1, . . . , m,

hl(x) = 0, l = 1, . . . , q.

(VOPE)

The functions fi : R
n → R, i = 1, . . . , p, gj : R

n → R, j = 1, . . . , m and hl : R
n → R, l =

1, . . . , q are assumed to be differentiable. And Ci, for each i ∈ P = {1, 2, . . . , p}, is a compact
convex set of R

n.

Definition 1.1. A feasible solution x0 for (VOPE) is efficient for (VOPE) if and only if there is
no other feasible x for (VOPE) such that

fi(x) + s(x | Ci) < fi
(
x0
)
+ s
(
x0 | Ci

)
for some i ∈ P,

fi0(x) + s(x | Ci0) � fi0

(
x0
)
+ s
(
x0 | Ci0

)
∀i0 ∈ P.

(1.1)

Definition 1.2. Let C be a compact convex set in IRn. The support function s(x | C) is defined
by

s(x | C) := max
{
xTy : y ∈ C

}
. (1.2)

The support function s(x | C), being convex and everywhere finite, has a subdifferential, that
is, there exists z such that

s
(
y | C) ≥ s(x | C) + zT

(
y − x

) ∀y ∈ C. (1.3)
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Equivalently,

zTx = s(x | C). (1.4)

The subdifferential of s(x | C) is given by

∂s(x | C) :=
{
z ∈ C : zTx = s(x | C)

}
. (1.5)

The following definition of ρ-convex function will be used to prove weak duality
theorems in Section 2 and Section 3.

Definition 1.3 (see [4, 5]). A function fi : R
n → R is said to be ρi-convex if there exists a real

number ρi such that for each x, u ∈ R
n and 0 � λi � 1,

fi(λix + (1 − λi)u) � λifi(x) + (1 − λi)fi(u) − ρiλi(1 − λi)‖x − u‖2. (1.6)

For a differentiable function fi : R
n → R, fi is ρi-convex if and only if for all x, u ∈ R

n,

fi(x) − fi(u) � (x − u)T∇fi(u) + ρi‖x − u‖2. (1.7)

If ρi is positive then fi is said to be strongly convex [4] and if ρi is negative then fi is
said to be weakly convex [5].

In this paper, the proofs of strong duality theorems will invoke the following.

Lemma 1.4. (Chankong and Haimes [13, Theorem 4.1]) x0 is an efficient solution for (VOPE) if and
only if x0 solves the following:

(
Pk

(
ε0
))

minimize fk(x) + s(x | Ck)

subject to fi(x) + s(x | Ci)

� fi
(
x0
)
+ s
(
x0 | Ci

)
, ∀i /= k,

gj(x) � 0, j = 1, . . . , m,

hl(x) = 0, l = 1, . . . , q

(1.8)

for each k = 1, . . . , p.
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2. Mond-Weir-Type Duality

We introduce a Mond-Weir type dual programming problem and establish weak and strong
duality theorems.

Maximize f(u) + uTw =
(
f1(u) + uTw1, . . . , fp(u) + uTwp

)
(MVODE)

subject to

p∑

i=1

τi
(∇fi(u) +wi

)
+∇yTg(u) +∇zTh(u) = 0,

(2.1)

yTg(u) + zTh(u) � 0,

yj � 0, j = 1, . . . , m, wi ∈ Ci, i = 1, . . . , p,

τi � 0, i = 1, . . . , p,
p∑

i=1

τi = 1.

(2.2)

Theorem 2.1 (Weak Duality). Assume that for all feasible x for (VOPE) and all feasible
(u, τ,w, y, z) for (MVODE), fi(·) + (·)Twi, i = 1, . . . , p, are ρi−convex, gj(·), j = 1, . . . , m, are
σj-convex and hl(·), l = 1, . . . , q, are affine. If also any of the following conditions holds

(a) τi > 0, forall i ∈ P and
∑p

i=1 τiρi +
∑m

j=1 yjσj � 0;
(b)
∑p

i=1 τiρi +
∑m

j=1 yjσj > 0,

then the following cannot hold:

fi(x) + s(x | Ci) < fi(u) + uTwi, for some i ∈ P

fi0(x) + s(x | Ci0) � fi0(u) + uTwi0 , ∀i0 ∈ P.
(2.3)

Proof. Suppose contrary to the result that (2.3) hold; then for τi > 0 for each i = 1, . . . , p, (2.3)
imply

p∑

i=1

τi
(
fi(x) + s(x | Ci)

)
<

p∑

i=1

τi
(
fi(u) + uTwi

)
for some i ∈ P (2.4)

and for τi � 0, i = 1, . . . , p, (2.3) imply

p∑

i=1

τi
(
fi0(x) + s(x | Ci0)

)
�

p∑

i=1

τi
(
fi0(u) + uTwi0

)
∀i0 ∈ P. (2.5)

Since xTwi � s(x | Ci), i = 1, . . . , p, then (2.4) and (2.5) imply
p∑

i=1

τi
(
fi(x) + xTwi

)
<

p∑

i=1

τi
(
fi(u) + uTwi

)
,

p∑

i=1

τi
(
fi0(x) + xTwi0

)
�

p∑

i=1

τi
(
fi0(u) + uTwi0

)
.

(2.6)



Journal of Inequalities and Applications 5

From ρi-convexity of fi(·) + (·)Twi, i = 1, . . . , p, we have

(x − u)T
(

p∑

i=1

τi
(∇fi(u) +wi

)
)

+

(
p∑

i=1

τiρi

)

‖x − u‖2 < 0 for some i ∈ P, (2.7)

(x − u)T
(

p∑

i=1

τi
(∇fi0(u) +wi0

)
)

+

(
p∑

i=1

τiρi

)

‖x − u‖2 � 0 ∀i0 ∈ P (2.8)

respectively. Also, since (u, τ,w, y, z) is feasible for (MVODE) and x is feasible for (VOPE),
we have

⎛

⎝
m∑

j=1

yjgj(x) +
q∑

l=1

zlhl(x)

⎞

⎠ −
⎛

⎝
m∑

j=1

yjgj(u) +
q∑

l=1

zlhl(u)

⎞

⎠ � 0. (2.9)

Since gj(·), j = 1, . . . , m are σj -convex and hl(·), l = 1, . . . , q are affine, then (2.9) imply

(x − u)T
⎛

⎝
m∑

j=1

yj∇gj(u) +
q∑

l=1

zl∇hl(u)

⎞

⎠ +

⎛

⎝
m∑

j=1

yjσj

⎞

⎠‖x − u‖2 � 0. (2.10)

Adding (2.7), (2.10) and then applying hypothesis (a), we get

(x − u)T
⎛

⎝
p∑

i=1

τi
(∇fi(u) +wi

)
+

m∑

j=1

yj∇gj(u) +
q∑

l=1

zl∇hl(u)

⎞

⎠ < 0, (2.11)

which contradicts (2.1). Also, adding (2.8) and (2.10) and then applying hypothesis (b), we
get (2.11). This contradicts to (2.1). Hence (2.3) cannot hold.

It is easy to derive the following result from the corresponding one by Egudo [7].

Corollary 2.2. Assume that the conclusion of Theorem 2.1 holds between (VOPE) and (MVODE). If
(u0, τ0, w0, y0, z0) is feasible for (MVODE) such that u0 is feasible for (VOPE) and u0Tw0

i = s(u0 |
Ci), i = 1, . . . , p, then u0 is efficient for (VOPE) and (u0, τ0, w0, y0, z0) is efficient for (MVODE).

Theorem 2.3 (Strong Duality). If x0 be efficient for (VOPE) and assume that x0 satisfies a
constraint qualification [14, pages 102-103] for (1.8) for at least one k = 1, . . . , p. Then there exist
τ0 ∈ R

p, y0 ∈ R
m, z0 ∈ R

q and w0
i ∈ Ci, i = 1, . . . , p such that (x0, τ0, w0, y0, z0) is feasible for

(MVODE) and (x0)Tw0
i = s(x0 | Ci), i = 1, . . . , p. If also weak duality (Theorem 2.1) holds between

(VOPE) and (MVODE), then (x0, τ0, w0, y0, z0) is efficient for (MVODE).
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Proof. Since x0 is an efficient solution of (VOPE), by Lemma 1.4, x0 solves (1.8) for each k =
1, . . . , p. By hypothesis there exists at least one k = 1, . . . , p such that x0 satisfies a constraint
qualification [14, pages 102,103] for (1.8). From the Kuhn-Tucker necessary conditions [14],
we obtain τi � 0 for all i /= k, 0 � y ∈ R

m, z ∈ R
q and w0

i ∈ Ci, i = 1, . . . , p such that

∇fk
(
x0
)
+wk +

∑

i /= k

τi
(
∇fi
(
x0
)
+wi

)
+

m∑

j=1

yj∇gj
(
x0
)
+

q∑

l=1

zl∇hl

(
x0
)
= 0, (2.12)

wT
i x

0 = s
(
x0 | Ci

)
, i = 1, . . . , p, (2.13)

m∑

j=1

yjgj
(
x0
)
= 0. (2.14)

Now dividing (2.12) and (2.14) by 1 +
∑

i /= k τi and defining

τ0k =
1

1 +
∑

i /= k τi
> 0, τ0i =

τi
1 +
∑

i /= k τi
� 0,

y0 =
y

1 +
∑

i /= k τi
� 0, z0 =

z

1 +
∑

i /= k τi
,

(2.15)

we conclude that (x0, τ0, w0, y0, z0) is feasible for (MVODE). The efficiency of
(x0, τ0, w0, y0, z0) for (MVODE) now follows from Corollary 2.2.

3. Wolfe Type Duality

We introduce aWolfe type dual programming problem and establish weak and strong duality
theorems.

Maximize f(u) + uTw +
(
yTg(u)

)
e +
(
zTh(u)

)
e

=
(
f1(u) + uTw1 + yTg(u) + zTh(u), . . . , fp(u) + uTwp + yTg(u) + zTh(u)

)

(WVODE)

subject to

p∑

i=1

τi
(∇fi(u) +wi

)
+∇yTg(u) +∇zTh(u) = 0,

(3.1)

yj � 0, j = 1, . . . , m, wi ∈ Ci, i = 1, . . . , p,

τi � 0, i = 1, . . . , p,
p∑

i=1

τi = 1.
(3.2)
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Theorem 3.1 (Weak Duality). Assume that for all feasible x for (VOPE) and all feasible
(u, τ,w, y, z) for (WVODE), fi(·) + (·)Twi, i = 1, . . . , p, are ρi-convex, gj(·), j = 1, . . . , m, are
σj−convex and hl(·), l = 1, . . . , q, are affine. If also any of the following conditions holds:

(a) τi > 0, forall i ∈ P and
∑p

i=1 τiρi +
∑m

j=1 yjσj � 0;

(a)
∑p

i=1 τiρi +
∑m

j=1 yjσj > 0,

then the following cannot hold:

fi(x) + s(x | Ci) < fi(u) + uTwi + yTg(u) + zTh(u), for some i ∈ P,

fi0(x) + s(x | Ci0) � fi0(u) + uTwi0 + yTg(u) + zTh(u), ∀i0 ∈ P.
(3.3)

Proof. Suppose contrary to the result that (3.3) hold. Then since x is feasible for (VOPE) and
0 � y ∈ R

m, z ∈ R
q, (3.3) imply

fi(x) + s(x | Ci) + yTg(x) + zTh(x) < fi(u) + uTwi + yTg(u) + zTh(u), for some i ∈ P,

fi0(x) + s(x | Ci0) + yTg(x) + zTh(x) � fi0(u) + uTwi0 + yTg(u) + zTh(u), ∀i0 ∈ P.

(3.4)

Since xTwi � s(x | Ci), i = 1, . . . , p, (3.4) yield

fi(x) + xTwi + yTg(x) + zTh(x) < fi(u) + uTwi + yTg(u) + zTh(u), for some i ∈ P

fi0(x) + xTwi0 + yTg(x) + zTh(x) � fi0(u) + uTwi0 + yTg(u) + zTh(u), ∀i0 ∈ P.
(3.5)

Now if hypothesis (a) holds, then from τi > 0 for all i ∈ P , (3.5)we obtain

p∑

i=1

τi
(
fi(x) + xTwi

)
+ yTg(x)

p∑

i=1

τi + zTh(x)
p∑

i=1

τi

<
p∑

i=1

τi
(
fi(u) + uTwi

)
+ yTg(u)

p∑

i=1

τi + zTh(u)
p∑

i=1

τi,

(3.6)

and since
∑p

i=1 τi = 1, this inequality reduces to

p∑

i=1

τi
(
fi(x) + xTwi − fi(u) − uTwi

)
+ yTg(x) + zTh(x) − yTg(u) − zTh(u) < 0. (3.7)
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Now from (3.7), ρi-convexity of fi(·) + (·)Twi, i = 1, . . . , p, σj-convexity of gj(·), j = 1, . . . , m
and hl(·), l = 1, . . . , q, is affine, we obtain

(x − u)T
(

p∑

i=1

τi
(∇fi(u) +wi

)
+∇yTg(u) +∇zTh(u)

)

+

⎛

⎝
p∑

i=1

τiρi +
m∑

j=1

yjσj

⎞

⎠‖x − u‖2 < 0

(3.8)

and since by hypothesis (a),
∑p

i=1 τiρi +
∑m

j=1 yjσj � 0, this implies

(x − u)T
(

p∑

i=1

τi
(∇fi(u) +wi

)
+∇yTg(u) +∇zTh(u)

)

< 0 (3.9)

which contradicts (3.1). Also from (3.5), τi � 0, i = 1, . . . , p, and
∑p

i=1 τi = 1, we obtain

p∑

i=1

τi
(
fi(x) + xTwi − fi(u) − uTwi

)
+ yTg(x) + zTh(x) − yTg(u) − zTh(u) � 0, (3.10)

and since fi(·) + (·)Twi, i = 1, · · · , p, are ρi-convex, gj(·), j = 1, . . . , m, are σj -convex and
hl(·), l = 1, . . . , q, are affine, (3.10) implies

(x − u)T
(

p∑

i=1

τi
(∇fi(u) +wi

)
+∇yTg(u) +∇zTh(u)

)

+

⎛

⎝
p∑

i=1

τiρi +
m∑

j=1

yjσj

⎞

⎠‖x − u‖2 � 0.

(3.11)

Now by hypothesis (b),
∑p

i=1 τiρi +
∑m

j=1 yjσj > 0, hence (3.11) implies (3.9), again
contradicting (3.1).

The following result can be easily driven from the corresponding one by Egudo [7].

Corollary 3.2. Assume that the conclusion of Theorem 3.1 holds between (VOPE) and (WVODE).
If (u0, τ0, w0, y0, z0) is feasible for (WVODE) such that u0 is feasible for (VOPE), y0Tg(u0) = 0 and
(u0)Tw0

i = s(u0 | Ci), i = 1, . . . , p, then u0 is efficient for (VOPE) and (u0, τ0, w0, y0, z0) is efficient
for (WVODE).

Theorem 3.3 (Strong Duality). If x0 be efficient for (VOPE) and assume that x0 satisfies a
constraint qualification [14, pages 102,103] for (1.8) for at least one k = 1, . . . , p. Then there
exist τ0 ∈ R

p, y0 ∈ R
m, z0 ∈ R

q and w0
i ∈ Ci, i = 1, . . . , p such that (x0, τ0, w0, y0, z0) is

feasible for (WVODE) and (y0)Tg(x0) = 0, (x0)Tw0
i = s(x0 | Ci), i = 1, . . . , p. If also weak

duality (Theorem 3.1) holds between (VOPE) and (WVODE), then (x0, τ0, w0, y0, z0) is efficient for
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(WVODE).

Proof. Since x0 is an efficient solution of (VOPE), from Lemma 1.4, x0 solves (1.8) for all k =
1, . . . , p. By hypothesis there exists a k ∈ P = {1, . . . , p} for which x0 satisfies a constraint
qualification [14, pages 102-103] for (1.8). Now from the Kuhn-Tucker necessary conditions
[14], there exist τi � 0 for all i /= k, 0 � y ∈ R

m, z ∈ R
q and w0

i ∈ Ci, i = 1, . . . , p such that

∇fk
(
x0
)
+wk +

∑

i /= k

τi
(
∇fi
(
x0
)
+wi

)
+

m∑

j=1

yj∇gj
(
x0
)
+

q∑

l=1

zl∇hl

(
x0
)
= 0, (3.12)

wT
i x

0 = s
(
x0 | Ci

)
, i = 1, . . . , p, (3.13)

m∑

j=1

yjgj
(
x0
)
= 0 (3.14)

Now dividing (3.12) and (3.14) by 1 +
∑

i /= k τi and defining

τ0k =
1

1 +
∑

i /= k τi
> 0, τ0i =

τi
1 +
∑

i /= k τi
� 0,

y0 =
y

1 +
∑

i /= k τi
� 0, z0 =

z

1 +
∑

i /= k τi
,

(3.15)

we conclude that (x0, τ0, w0, y0, z0) is feasible for (WVODE).
The efficiency of (x0, τ0, w0, y0, z0) for (WVODE) now follows from Corollary 3.2.

4. Special Cases

We give some special cases of our duality results.

(1) If support functions are excepted and h = 0, then our dual programs are reduced to
the duals in Egudo [7].

(2) Let Ci = {Biw : wTBiw � 1}. Then s(x | Ci) = (xTBix)
1/2 and the sets Ci, i =

1, . . . , p, are compact and convex. If h = 0, then (VOPE), (MVODE) and (WVODE)
reduce to the corresponding (VP), (VDP)2 and (VDP)1 in Lal et al. [8], respectively.

(3) If we replace ρ-convexity by generalized (F, ρ)-convexity, then our weak duality
theorems reduce to the corresponding ones in Yang et al. [11].
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