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Utilizing the Schauder fixed point theorem to study existence on positive solutions of an integral
equation, we obtain an upper bound of the critical value β∗ involved in the Blasius problem, in
particular, β∗ < −18733/105 = −0.18733. Previous results only presented a lower bound β∗ ≥ −1/2
and numerical investigations β∗ .= −0.3541.

1. Introduction

The following third-order nonlinear differential equation arising in the boundary-layer
problems

f ′′′(η
)
+ f

(
η
)
f ′′(η

)
= 0 on [0,∞) (1.1)

subject to the boundary conditions

f(0) = 0, f ′(0) = β, f ′(∞) = 1, (1.2)

called the Blasius problem [1], has been used to describe the steady two-dimensional flow of
a slightly viscous incompressible fluid past a flat plate, where η is the similarity boundary-
layer ordinate, f(η) is the similarity stream function, and f ′(η) and f ′′(η) are the velocity and
the shear stress functions, respectively.

Problem (1.1)-(1.2) also arises in the study of the mixed convection in porous media
[2]. The mixed convection parameter is given by β = 1 + ε, with ε = Ra/Pe where Ra is the
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Rayleigh number and Pe the Péclet number. The case of β < 0 corresponds to a flat plate
moving at steady speed opposite to that of a uniform mainstream [3].

The boundary value problem (1.1)-(1.2) has been widely studied analytically. Weyl [4]
proved that (1.1)-(1.2) has one and only one solution for β = 0; Coppel [5] studied the case
of β > 0; the cases of 0 < β < 1 [6] and β > 1 [7] were also investigated, respectively. Also, see
[8]. Blasius problem is a special case of the Falkner-Skan equation, for β = 0; we may refer to
[9–13] for some recent results on the Falkner-Skan equation.

Very recently, Brighi et al. [14] summarized historical study on the Blasius problem
and analyzed the case β < 0 in details, in which the shape and the number of solutions were
determined. We may refer to [14] and the references therein for more recent results.

However, up to today, we know only that there exists a critical value β∗ ∈ [−1/2, 0)
such that (1.1)-(1.2) has at least a solution for β ≥ β∗, no solution for β < β∗ [15]. Numerical
results showed that β∗ .= −0.3541 [15].

An open question is what is exactly β∗? To our knowledge, there is little study on it.
In this paper, we will study the open question mentioned above by studying the

existence on positive solutions of an integral equation and present an upper bound of β∗,
in particular, β∗ < −18733/105 = −0.18733.

2. An Upper Bound of β∗

By the basic fact in [14], we know easily that if f is a solution of (1.1)-(1.2), then f ′′ > 0 for
η ∈ [0,∞). In this case, the most powerful method is the so-called Crocco transformation (see
[14, 15]), which consists of choosing t = f ′ as independent variable and expressing z = f ′′ as
a function of t. Differentiating z(f ′) = f ′′ (the variable t is omitted for simplicity), we obtain
z′(f ′)f ′′ = f ′′′ = −ff ′′; hence z′(f ′) = −f . Differentiating once again, we obtain z′′(f ′)f ′′ = −f ′.
Then (1.1)-(1.2) becomes the Crocco equation [14]

d2z

dt2
= − t

z
, β ≤ t < 1 (2.1)

with the boundary conditions

z′
(
β
)
= 0, z(1) = 0. (2.2)

Integrating (2.1) from β to t, we have

z′(t) = −
∫ t

β

s

z(s)
ds on

[
β, 1

)
. (2.3)

Integrating this equality from t to 1, we obtain the following integral equation that is
equivalent to (2.1)-(2.2):

z(t) =
∫1

t

s(1 − s)
z(s)

ds + (1 − t)
∫ t

β

s

z(s)
ds for t ∈ [

β, 1
)
. (2.4)
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Let g(β) = 1/3 − 8(1 − β)β2 for β ∈ [−1/2, 0], then g ′(β) = −8(2β − 3β2) > 0 for β ∈
[−1/2, 0]. By direct computation

g

(
−1
5

)
< 0, g

(
−18733

105

)
> 0. (2.5)

Hence there exists β̃ ∈ (−1/5,−18733/105) such that g(β̃) = 0 and g(β) > 0 for β ∈ (β̃, 0).
We shall prove that (1.1)-(1.2) has at least a solution for β ∈ [β̃, 0).
Let β ∈ [β̃, 0) and C[β, 1] be the Banach space of continuous functions on [β, 1] with

the norm ‖z‖ = max{|z(t)| : t ∈ [β, 1]} and S : C[β, 1] → C[β, 1]with Sz(t) = max{z(t), c(t)},
where c(t) = cβ(1 − t) for t ∈ [β, 1] and

cβ =

√
3/3 −

√
g
(
β
)

4
(
1 − β

) . (2.6)

Clearly, Sz(t) ≥ c(t) for z ∈ C[β, 1] and 0 < cβ ≤
√
3/12.

Notation. One has

Az(t) =
∫1

t

s(1 − s)
Sz(s)

ds, Bz(t) =
∫ t

β

s

Sz(s)
ds for β ≤ t < 1. (2.7)

We consider the following integral equation of the form

z(t) = Az(t) + (1 − t)Bz(t) for β ≤ t < 1. (2.8)

Lemma 2.1. The integral equation (2.8) has a solution z ∈ C[β, 1].

Proof. Let C = {z ∈ C[β, 1] : ‖z‖ ≤ 2M}withM =
∫1
β((1− s)|s|/c(s)ds). We define an operator

T on C by setting

Tz(t) =

⎧
⎨

⎩

Az(t) + (1 − t)Bz(t) if t ∈ [
β, 1

)
,

0 if t = 1.
(2.9)

Since

Az(t) =
∫1

t

s(1 − s)
Sz(s)

ds ≤
∫1

t

s

cβ
ds =

1 − t2

2cβ
for t ∈ (0, 1),

∫ t

0

s

Sz(s)
ds ≤

∫ t

0

1
cβ(1 − s)

ds = − ln(1 − t)
cβ

for t ∈ (0, 1),

lim
t→ 1−

(1 − t) ln (1 − t) = 0,

(2.10)
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we know that limt→ 1−Tz(t) = 0 and then T maps C into C[β, 1]. We show that T is continuous
and compact from C into C.

Let zn ∈ C, z ∈ C, and limn→+∞‖zn −z‖ = 0. Since 1− t ≤ 1−s for β ≤ s ≤ t ≤ 1, we have

|Tzn(t) − Tz(t)| ≤ |Azn(t) −Az(t)| + (1 − t)|Bzn(t) − Bz(t)|

≤
∫1

β

∣
∣
∣∣
s(1 − s)
Szn(s)

− s(1 − s)
Sz(s)

∣
∣
∣∣ ds

+
∫1

β

∣
∣
∣
∣

(
s(1 − s)
Szn(s)

− s(1 − s)
Sz(s)

)
1 − t

1 − s

∣
∣
∣
∣ ds

≤ 2
∫1

β

∣
∣
∣
∣
s(1 − s)
Szn(s)

− s(1 − s)
Sz(s)

∣
∣
∣
∣ ds.

(2.11)

Since

lim
n→+∞

s(1 − s)
Szn(s)

=
(1 − s)s
Sz(s)

for s ∈ [
β, 1

)
(2.12)

and Sz(t) ≥ c(t), the Lebesgue dominated convergence theorem, the dominated function
F(s) = 1/cβ for s ∈ [β, 1] implies that ‖Tzn − Tz‖ → 0, that is, T is continuous.

By d(Tz(t))/dt = − ∫ t
β(s/Sz(s))ds, we have

∣∣∣∣
d(Tz(t))

dt

∣∣∣∣ ≤
∫ t

β

|s|
Sz(s)

ds ≤
∫ t

β

|s|
c(s)

ds for β ≤ t < 1. (2.13)

Noticing that

∫1

β

∫ t

β

|s|
c(s)

dsdt =
∫1

β

∫1

s

|s|
c(s)

dt ds =
∫1

β

(1 − s)|s|
c(s)

ds = M < ∞, (2.14)

we have
∫1
β |d(Tz(s))/ds|ds ≤ M. This, together with the absolute continuity of the Lebesgue

integral, implies that T(C) = {Tz(t) : z ∈ C} is equicontinuous.
On the other hand,

|Tz(t)| ≤
∫1

t

|s|(1 − s)
Sz(s)

ds +
∫ t

β

|s|(1 − t)
Sz(s)

ds

≤
∫1

β

|s|(1 − s)
c(s)

ds +
∫1

β

|s|(1 − s)
c(s)

ds = 2M.

(2.15)

It follows from the Schauder fixed point theorem that there exists z ∈ C such that (2.8) holds.
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Theorem 2.2. The problem (1.1)-(1.2) has at least a solution for β ∈ [β̃, 0) and then β∗ <
−18733/105 = −0.18733.

Proof. We first prove that the function z obtained in Lemma 2.1 is a solution of (2.4) for β ∈
[β̃, 0). Clearly, we have only to prove Sz(t) = z(t) for t ∈ [β, 1], that is, z(t) ≥ c(t) for t ∈ [β, 1].

First of all, we prove that there exists t ∈ (β, 1) such that z(t) > c(t). In fact, if z(t) ≤ c(t)
for t ∈ (β, 1), then by Sz(t) = cβ(1 − t)

cβ
(
1 − β

) ≥ z
(
β
)
=
∫1

β

s(1 − s)
Sz(s)

ds =
∫1

β

s(1 − s)
c(s)

ds =
1
2cβ

(
1 − β2

)
. (2.16)

This implies that c2
β
≥ (1 + β)/2 ≥ (1 − 1/5)/2 = 2/5, which contradicts cβ ≤

√
3/12.

From the relations

z′(t) = −
∫ t

β

s

Sz(s)
ds, z′′(t) = − t

Sz(t)
, (2.17)

we know that z is convex and increasing on [β, 0] and concave on [0, 1]. Moreover, since
z(1) = 0, there exists t̃ ∈ (0, 1) such that z(t̃) = max{z(t) : t ∈ [β, 1]}.

For t ∈ [t̃, 1), we have Bz(t) ≥ Bz(t̃) = −z′(t̃) = 0. Then, from (2.8) we deduce that
Az(t) ≤ z(t) ≤ Sz(t) for t ∈ [t̃, 1) and hence

Az(t)(−Az(t))′ ≤ t(1 − t) for t ∈
[
t̃, 1

)
. (2.18)

Integrating the last inequality for t̃ to 1 and using Az(1) = 0, we know that

[
Az

(
t̃
)]2

2
≤
∫1

t̃

s(1 − s)ds ≤
∫1

0
s(1 − s)ds =

1
6
. (2.19)

And then z(t̃) = Az(t̃) ≤ √
3/3. This, together with c(t) ≤ cβ ≤ √

3/12 for t ∈ [0, 1], implies
that Sz(t) ≤ √

3/3 for t ∈ [0, 1]. Hence

∫1

0

s(1 − s)
Sz(s)

ds ≥
∫1

0

s(1 − s)√
3/3

ds =
√
3
6

. (2.20)

Noticing that Sz(t) ≥ c(t) and t(1 − t) < 0 for t ∈ (β, 0), we obtain

∫0

β

s(1 − s)
Sz(s)

ds ≥
∫0

β

s(1 − s)
c(s)

ds = − β2

2cβ
. (2.21)

Then

z
(
β
)
=
∫1

β

s(1 − s)
Sz(s)

ds =
∫0

β

s(1 − s)
Sz(s)

ds +
∫1

0

s(1 − s)
Sz(s)

ds ≥
√
3
6

− β2

2cβ
. (2.22)
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By direct computation, we have
√
3/6 − β2/2cβ = cβ(1 − β) and then z(β) ≥ c(β). Since z

is convex and increasing on [β, 0] and concave on [0, 1] with z(1) = 0, we immediately get
z(t) ≥ c(t) for t ∈ [β, 1]. Hence Sz = z and z is a positive solution of (2.4).

Since any positive solution of (2.1)-(2.2) is a solution of (1.1)-(1.2) [14] and (2.1)-(2.2)
is equivalent to (2.4), hence (1.1)-(1.2) has at least a solution for β ∈ [β̃, 0) and we obtain the
desired result β∗ ≤ β̃ < −18733/105 = −0.18733.

Acknowledgments

The author would like to thank very much Professors C. K. Zhong and W. T. Li in Lanzhou
University, China, for their guidance and the referees for their valuable comments and
suggestions. This research is supported in part by the Training Fund of Sichuan Provincial
Academic and Technology Leaders.

References

[1] H. Blasius, “Grenzschichten in Flüssigkeiten mit kleiner Reibung,” Zeitschrift für angewandte
Mathematik und Physik, vol. 56, pp. 1–37, 1908.

[2] E. H. Aly, L. Elliott, and D. B. Ingham, “Mixed convection boundary-layer flow over a vertical surface
embedded in a porous medium,” European Journal of Mechanics. B, vol. 22, no. 6, pp. 529–543, 2003.

[3] P. D. Weidman, “New solutions for laminar boundary layers with cross flow,” Zeitschrift für
Angewandte Mathematik und Physik, vol. 48, no. 2, pp. 341–356, 1997.

[4] H. Weyl, “On the differential equations of the simplest boundary-layer problems,” Annals of
Mathematics, vol. 43, pp. 381–407, 1942.

[5] W. A. Coppel, “On a differential equation of boundary-layer theory,” Philosophical Transactions of the
Royal Society of London. Series A, vol. 253, pp. 101–136, 1960.

[6] P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, NY, USA, 1964.
[7] Z. Belhachmi, B. Brighi, and K. Taous, “On the concave solutions of the Blasius equation,” Acta

Mathematica Universitatis Comenianae, vol. 69, no. 2, pp. 199–214, 2000.
[8] O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory, vol. 15 of Applied

Mathematics and Mathematical Computation, Chapman & Hall/CRC Press, Boca Raton, Fla, USA, 1999.
[9] J. Wang, W. Gao, and Z. Zhang, “Singular nonlinear boundary value problems arising in boundary

layer theory,” Journal of Mathematical Analysis and Applications, vol. 233, no. 1, pp. 246–256, 1999.
[10] R. P. Agarwal and D. O’Regan, “Singular integral equations arising in Homann flow,” Dynamics of

Continuous, Discrete & Impulsive Systems. Series B, vol. 9, no. 4, pp. 481–488, 2002.
[11] G. C. Yang and K. Q. Lan, “The velocity and shear stress functions of the Falkner-Skan equation

arising in boundary layer theory,” Journal of Mathematical Analysis and Applications, vol. 328, no. 2, pp.
1297–1308, 2007.

[12] G. C. Yang, “New results of Falkner-Skan equation arising in boundary layer theory,” Applied
Mathematics and Computation, vol. 202, no. 1, pp. 406–412, 2008.

[13] K. Q. Lan and G. C. Yang, “Positive solutions of the Falkner-Skan equation arising in the boundary
layer theory,” Canadian Mathematical Bulletin, vol. 51, no. 3, pp. 386–398, 2008.

[14] B. Brighi, A. Fruchard, and T. Sari, “On the Blasius problem,” Advances in Differential Equations, vol.
13, no. 5-6, pp. 509–600, 2008.

[15] M. Y. Hussaini andW. D. Lakin, “Existence and nonuniqueness of similarity solutions of a boundary-
layer problem,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 39, no. 1, pp. 15–24,
1986.


