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Motivated by the work of B.-S. Lian and Q.-H. Yang (2010) we proved an Ostrowski inequality
associated with Carnot-Carathéodory distance in the Grushin plane. The procedure is based on
a representation formula. Using the same representation formula, we prove some Hardy type
inequalities associated with Carnot-Carathéodory distance in the Grushin plane.

1. Introduction

The classical Ostrowski inequality [1] is as follows:
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for f ∈ C1([a, b]), x ∈ [a, b], and it is a sharp inequality. Inequality (1.1) was extended from
intervals to rectangles and general domains in R

n (see [2–5]). Recently, it has been proved by
the same authors [6] that there exists an Ostrowski inequality on the 3-dimension Heisenberg
group associated with horizontal gradient and Carnot-Carathéodory distance, and it is also a
sharp inequality.

The aim of this note is to establish some Ostrowski type inequality in the Grushin
plane, known as the simplest example of sub-Riemannian metric associated with Grushin
operator (cf. [7–10]). Recall that in the Grushin plane, the sub-Riemannian metric is given by
the vectors

X1 =
∂

∂x
, X2 = x

∂

∂y
(1.2)
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and satisfies [X1, X2] = ∂/∂y. By Chow’s conditions, the Carnot-Carathéodory distance
dcc(u, v) between any two points u, v ∈ R

2 is finite (cf. [11]). We denote dcc(u) = dcc(o, u),
where o = (0, 0) is the origin. Define on R

2 the dilation δλ as

δλu = δλ
(

x, y
)

:=
(

λx, λ2y
)

, u =
(

x, y
) ∈ R

2. (1.3)

For simplicity, we will write it as λu = (λx, λ2y). It is not difficult to check that X1 and X2 are
homogeneous of degree one with respect to the dilation. The Jacobian determinant of δλ is
λQ, where Q = 1 + 2 = 3 is the homogeneous dimension. The Carnot-Carathéodory distance
dcc satisfies

dcc
(

λ
(

x, y
))

= λdcc
(

x, y
)

, λ > 0. (1.4)

Let BR be the Carnot-Carathéodory ball centered at the origin o and of radius R > 0.
Let Σ = ∂B1 be the corresponding unit sphere. Let dσ be the surface measure on Σ. Given any
o/=u = (x, y) ∈ R

2, set x∗ = x/dcc(u), y∗ = y/d2
cc(u), and u∗ = (x∗, y∗). For f ∈ C(BR(o)), let

f̃(r) =
1
|Σ|

∫

Σ
f(ru∗)dσ, 0 < r ≤ R, (1.5)

be the averages of f over the unit sphere, where |Σ| denote the volume of the Σ. Then, we can
state our result as follows.

Theorem 1.1. Let f ∈ C1(BR). Then for u = (x, y) = ru∗, there holds
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where
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f
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:= sup
u∈BR
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∞
, (1.7)

|BR| denote the volume of the BR, and ∇L is the gradient operator defined by ∇L = (X1, X2). The
constants in (1.6) are the best possible, equality that can be attained for nontrivial radial functions at
any r ∈ [0, R].

We also obtain the following Hardy type inequalities in the Grushin plane. We refer to
[12] the Hardy inequalities associated with nonisotropic gauge induced by the fundamental
solution.

Theorem 1.2. Let f ∈ C∞
0 (R2). There holds, for 1 < p < 3,
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2. Geodesics in the Grushin Plane

In this section, we will follow [13] to give a parametrization of Grushin plane using the
geodesics. Recall that the Grushin operator is given by

ΔL =
∂2

∂x2
+ x2 ∂2

∂y2
. (2.1)

The associated Hamiltonian function H(x, y, ξ, θ) is of the form

H
(

x, y, ξ, η
)

=
1
2

(

ξ2 + x2η2
)

. (2.2)

It is known that geodesics in the Grushin plane are solutions of the Hamiltonian system (cf.
[8])

ẋ(s) =
∂H

∂ξ
= ξ(s),

ξ̇(s) = −∂H
∂x

= −xη2(s),

ẏ(s) =
∂H

∂η
= x2η,

η̇(s) = −∂H
∂y

= 0, that is, η(s) = η(0).

(2.3)

Taking the initial date (x(0), y(0)) = (0, 0) and (ξ(0), η(0)) = (A,φ), one can find the solutions
(cf. [8])

x(s) = A
sinφs
φ

,

y(s) = A2 2φs − sin 2φs
4φ

,

(2.4)

where the time s is exactly the Carnot-Carathéodory distance. Letting φ → 0, we get the
Euclidean geodesics

(

x(s), y(s)
)

= (As, 0) (2.5)

and hence the correct normalization is A2 = 1.
Set

Ω =
{(

φ, ρ
) ∈ R

2 : −π ≤ φρ ≤ π, ρ ≥ 0
}

(2.6)
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and define Φ : Ω → R
2 by Φ(φ, ρ) = (x(φ, ρ), y(φ, ρ)), where

x
(

φ, ρ
)

= A
sinφρ

φ
,

y
(

φ, ρ
)

=
2φρ − sin 2φρ

4φ2

(2.7)

with A2 = 1. If A = 1, the range of Φ is [0,+∞) × R; if A = −1, the range of Φ is (−∞, 0] × R.
Furthermore, if one fixes ρ > 0, (2.7) with A = ±1 and −π/ρ ≤ φ ≤ π/ρ parameterize ∂Bρ.

On the other hand, the Carnot-Carathéodory distance dcc satisfies (cf. [10, Theorem
2.6]), for x /= 0,

dcc
(

x, y
)

=
θ

sin θ
|x|, (2.8)

where θ = μ−1(2y/x2)

μ(θ) =
θ

sin2θ
− cot θ =

2θ − sin 2θ

2sin2θ
: (−π,π) −→ R (2.9)

is a diffeomorphism of the interval (−π,π) onto R (cf. [14]), and μ−1 is the inverse function
of μ. From (2.7), we have

μ(θ) =
2y
x2

=
2φρ − sin 2φρ

2 sin2φρ
= μ

(

φρ
)

. (2.10)

Therefore,

θ = φρ (2.11)

since μ is a diffeomorphism.
We finally recall the polar coordinates in the Grushin plane associated with dcc. The

following coarea formula has been proved in [15]:

∫

R2
f(u)|∇Ldcc(u)|du =

∫+∞

−∞

∫

{dcc(u)=λ}
f(u)dP(Eλ)dλ, (2.12)

where Eλ = {u ∈ R
2 : dcc(u) > λ} and P(Eλ) is the perimeter-measure. Notice that |∇Ldcc(u)| =

1 a.e. (cf. [15]); and P(Eλ) = λ2P(E1) (cf. [9, Proposition 2.2]); we have the following polar
coordinates in the Grushin plane, for all f ∈ L1(R2):

∫

R2
f(u)du =

∫+∞

0

∫

Σ
f(λu∗)λ2dσdλ. (2.13)
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3. The Proofs

To prove the main result, we first need the following representation formula.

Lemma 3.1. Let R2 > R1 > 0 and f ∈ C1(BR2 \ BR1). There holds

∫

Σ
f(R2u

∗)dσ −
∫

Σ
f(R1u

∗)dσ =
∫

BR2\BR1

〈∇Lf,∇Ldcc
〉 · 1

d2
cc
du. (3.1)

Proof. Let u∗ be a point on the sphere, that is, u∗ = (x∗, y∗), where dcc(x∗, y∗) = 1. We consider
for 0 < R1 < R2 the following difference using the fundamental theorem of calculus:

∫

Σ
f(R2ξ
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∫

Σ
f(R1ξ

∗)dσ =
∫

Σ

∫R2

R1

d
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∫
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∫R2
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(
∂f(u)
∂x

· ∂x
∂ρ

+
∂f(u)
∂y

· ∂y
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)

dρdσ,

(3.2)

where u = (x, y) = ρu∗. Using (2.7), we have

∂f(u)
∂x

· ∂x
∂ρ

+
∂f(u)
∂y

· ∂y
∂ρ

= A cosφρ
∂f(u)
∂x

+
sin2φρ

φ

∂f(u)
∂y

= A cosφρ
∂f(u)
∂x

+A sinφρ · x∂f(u)
∂y

= A cosφρX1f(u) +A sinφρX2f(u).

(3.3)

Combining (3.2) and (3.3) and rewriting the expression into a solid integral using the polar
coordinates, we get

∫

Σ
f(R2ξ

∗)dσ −
∫

Σ
f(R1ξ

∗)dσ =
∫

BR2\BR1

A cosφρX1f(u) +A sinφρX2f(u)

d2
cc

du. (3.4)

To finish our proof, it is enough to show that

X1dcc(u) = A cosφρ, X2dcc(u) = A sinφρ (3.5)

in R \ {0} ×R. This is just the following Lemma 3.2. The proof of Lemma 3.1 is now complete.

Lemma 3.2. There hold, for x /= 0,

X1dcc(u) = A cosφρ, X2dcc(u) = A sinφρ. (3.6)
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Proof. Recall that if x /= 0, then

dcc(u) = dcc
(

x, y
)

=
θ

sin θ
|x|, (3.7)

where θ = μ−1(2y/x2). The simple calculation shows

μ′(θ) =
2 sin θ − 2θ cos θ

sin3θ
,

∂θ

∂x
=

1
μ′(θ)

· −4y
x3

,
∂θ

∂y
=

1
μ′(θ)

· −2
x2

.

(3.8)

Therefore, if x /= 0, then

X1dcc(u) =
∂dcc(u)

∂x
=

∂

∂x

(
θ

sin θ
|x|

)

=
x

|x| ·
θ

sin θ
+ |x| · sin θ − θ cos θ

sin2θ
· ∂θ
∂x

=
x

|x| ·
θ

sin θ
− |x| sin θ · −2y

x3
=

x

|x| ·
θ

sin θ
− |x|

x
· sin θ · μ(θ)

= A
θ

sin θ
−A sin θ ·

(
θ

sin2θ
− cot θ

)

,

= A cos θ.

(3.9)

On the other hand,

X2dcc(u) = x
∂dcc(u)

∂y
= x

∂

∂y

(
θ

sin θ
|x|

)

= x|x| · sin θ − θ cos θ

sin2θ
· ∂θ
∂y

=
|x|
x

· sin θ = A sin θ.

(3.10)

Therefore, we obtain, by (2.11),

X1dcc(u) = A cosφρ, X2dcc(u) = A sinφρ. (3.11)

This completes the proof of Lemma 3.2.

Proof of Theorem 1.1. We have, by Lemma 3.1, since |BR| =
∫R

0
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where

(∗) =
∣
∣
∣
∣
∣

1
|Σ|

∫

Σ
f(ru∗)dσ − 3

|Σ|R3

∫R

0

∫

Σ
f(su∗)s2dσds

∣
∣
∣
∣
∣

=
3

|Σ|R3

∣
∣
∣
∣
∣

∫R

0

(∫

Σ
f(ru∗)dσ −

∫

Σ
f(su∗)dσ

)

s2ds

∣
∣
∣
∣
∣

≤ 3
|Σ|R3

∫R

0

∣
∣
∣
∣

∫

Σ′
f(ru∗)dσ −

∫

Σ′
f(sξ∗)dσ

∣
∣
∣
∣
s2ds

≤ 3
R3

·
∫R

0
|r − s|s2ds · ∥∥∇Lf

∥
∥
∞

=

(

3
4
R − r +

r4

2R3

)

∥
∥∇Lf

∥
∥
∞.

(3.13)

To see that the estimate in (1.8) is sharp, we consider the function f(u) = f(dcc(u)) =
|r − dcc(u)| and that r is fixed in [0, R]. Notice that |∇Lf(u)| = 1 a.e.; we have |∇Lf(u)|∞ = 1.
We look at inequality (1.6) evaluating the function at r. Since f(r) = 0, the left-hand side of
(1.6) is

L.H.S. (1.6) =
3
R3

·
∫R

0
|r − s|s2ds =

3
4
R − r +

r4

2R3
(3.14)

and the right-hand side of (1.8) is

R.H.S. (1.8) =
3
4
R − r +

r4

2R3
. (3.15)

Thus the equality holds in (1.6). This completes the proof of the sharpness of inequality (1.6).
The proof of the theorem is now complete.

Proof of Theorem 1.2. Let ε > 0. Then 0 ≤ fε := (|f |2 + ε2)p/2 − εp ∈ C∞
0 (R2). In fact, fε has the

same support as f . Putting fεd
3−p
cc (u) in Lemma 3.1 and letting R2 → ∞ and R1 → 0+, we

get, since dcc(o) = 0,

∫

R2
〈∇Lfε,∇Ldcc〉 · 1

d
p−1
cc

+
(

3 − p
)
∫

R2

fε

d
p
cc

= 0. (3.16)
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Here we use the fact |∇Ldcc(u)| = 1 a.e. Therefore,
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∣f
∣
∣
2 + ε2

)(p−2)/2
f
〈∇Lf,∇Ldcc

〉 · 1

d
p−1
cc

≤ p
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By dominated convergence, letting ε → 0+, we have
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≤ p
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d
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By Hölder’s inequality,

(

3 − p
)
∫

R2

∣
∣f
∣
∣
p

d
p
cc

≤ p

(∫

R2

∣
∣f
∣
∣
p

d
p
cc

)(p−1)/p(∫

R2

∣
∣∇Lf

∣
∣
p
)1/p

. (3.19)

Canceling and raising both sides to the power p, we get (1.8).
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groups,” Journal de Mathématiques Pures et Appliquées, vol. 79, no. 7, pp. 633–689, 2000.
[15] R. Monti and F. Serra Cassano, “Surface measures in carnot-carathéodory spaces,” Calculus of
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