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This paper studies the stability of the solution x ≡ 0 for a class of quasilinear implicit dynamic
equations on time scales of the form AtxΔ = f(t, x). We deal with an index concept to study the
solvability and use Lyapunov functions as a tool to approach the stability problem.

1. Introduction

The stability theory of quasilinear differential-algebraic equations (DAEs for short)

Atx
′(t) = f

(
t, x′(t), x(t)

)
, f(t, 0, 0) = 0 ∀t ∈ �, (1.1)

with A. being a given m × m-matrix function, has been an intensively discussed field in
both theory and practice. This problem can be seen in many real problems, such as in
electric circuits, chemical reactions, and vehicle systems. März in [1] has dealt with the
question whether the zero-solution of (1.1) is asymptotically stable in the Lyapunov sense
with f(t, x′(t), x(t)) = Bx(t) + g(t, x′(t), x(t)), with A being constant and small perturbation
g.

Together with the theory of DAEs, there has been a great interest in singular difference
equation (SDE) (also referred to as descriptor systems, implicit difference equations)

Anx(n + 1) = f(n, x(n + 1), x(n)), n ∈ �. (1.2)
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This model appears in many practical areas, such as the Leontiev dynamic model of
multisector economy, the Leslie population growth model, and singular discrete optimal
control problems. On the other hand, SDEs occur in a natural way of using discretization
techniques for solving DAEs and partial differential-algebraic equations, and so forth, which
have already attractedmuch attention from researchers (cf. [2–4]). When f(n, x(n+1), x(n)) =
Bnx(n)+g(n, x(n+1), x(n)), in [5], the authors considered the solvability of Cauchy problem
for (1.2); the question of stability of the zero-solution of (1.2) has been considered in [6]where
the nonlinear perturbation g(n, x(n + 1), x(n)) is small and does not depend on x(n + 1).

Further, in recent years, to unify the presentation of continuous and discrete analysis,
a new theory was born and is more and more extensively concerned, that is, the theory of the
analysis on time scales. The most popular examples of time scales are � = � and � = �.Using
“language” of time scales, we rewrite (1.1) and (1.2) under a unified form

Atx
Δ(t) = f

(
t, xΔ(t), x(t)

)
, (1.3)

with t in time scale � and Δ being the derivative operator on �. When � = �, (1.3) is (1.1); if
� = �, we have a similar equation to (1.2) if it is rewritten under the formAn(x(n+1)−x(n)) =
−Anx(n) + f(n, x(n + 1), x(n)); n ∈ �.

The purpose of this paper is to answer the question whether results of stability for
(1.1) and (1.2) can be extended and unified for the implicit dynamic equations of the form
(1.3). The main tool to study the stability of this implicit dynamic equation is a generalized
direct Lyapunov method, and the results of this paper can be considered as a generalization
of (1.1) and (1.2).

The organization of this paper is as follows. In Section 2, we present shortly some
basic notions of the analysis on time scales and give the solvability of Cauchy problem for
quasilinear implicit dynamic equations

Atx
Δ = Btx + f(t, x), (1.4)

with small perturbation f(t, x) and for quasilinear implicit dynamic equations of the style

Atx
Δ = f(t, x), (1.5)

with the assumption of differentiability for f(t, x). The main results of this paper are
established in Section 3 where we deal with the stability of (1.5). The technique we use in
this section is somewhat similar to the one in [6–8]. However, we need some improvements
because of the complicated structure of every time scale.

2. Nonlinear Implicit Dynamic Equations on Time Scales

2.1. Some Basic Notations of the Theory of the Analysis on Time Scales

A time scale is a nonempty closed subset of the real numbers �, and we usually denote it
by the symbol �. We assume throughout that a time scale � is endowed with the topology
inherited from the real numbers with the standard topology. We define the forward jump
operator and the backward jump operator σ, ρ : � → � by σ(t) = inf{s ∈ � : s > t}
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(supplemented by inf ∅ = sup�) and ρ(t) = sup{s ∈ � : s < t} (supplemented by
sup ∅ = inf�). The graininess μ : � → �+ ∪ {0} is given by μ(t) = σ(t) − t. A point t ∈ �

is said to be right-dense if σ(t) = t, right-scattered if σ(t) > t, left-dense if ρ(t) = t, left-scattered if
ρ(t) < t, and isolated if t is right-scattered and left-scattered. For every a, b ∈ �, by [a, b], we
mean the set {t ∈ � : a � t � b}. The set �k is defined to be� if � does not have a left-scattered
maximum; otherwise, it is �without this left-scatteredmaximum. Let f be a function defined
on �, valued in �m . We say that f is delta differentiable (or simply: differentiable) at t ∈ �k

provided there exists a vector fΔ(t) ∈ �m , called the derivative of f , such that for all ε > 0
there is a neighborhood V around t with ‖f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)‖ � ε|σ(t) − s|
for all s ∈ V . If f is differentiable for every t ∈ �k, then f is said to be differentiable on
�. If � = �, then delta derivative is f ′(t) from continuous calculus; if � = �, the delta
derivative is the forward difference, Δf , from discrete calculus. A function f defined on �
is rd-continuous if it is continuous at every right-dense point and if the left-sided limit exists
at every left-dense point. The set of all rd-continuous functions from � to a Banach space
X is denoted by Crd(�, X). A matrix function f from � to �m×m is said to be regressive if
det(I + μ(t)f(t))/= 0 for all t ∈ �k, and denote R the set of regressive functions from � to
�m×m . Moreover, denote R+ the set of positively regressive functions from � to �, that is, the set
{f : � → � : 1 + μ(t)f(t) > 0 ∀t ∈ �}.

Theorem 2.1 (see [9–11]). Let t ∈ � and let At be a rd-continuous m ×m-matrix function and qt
rd-continuous function. Then, for any t0 ∈ �k, the initial value problem (IVP)

xΔ = Atx + qt, x(t0) = x0 (2.1)

has a unique solution x(·) defined on t � t0. Further, if At is regressive, this solution exists on t ∈ �.

The solution of the corresponding matrix-valued IVP XΔ = AtX, X(s) = I always
exists for t � s, even At is not regressive. In this case, ΦA(t, s) is defined only with t � s
(see [12, 13]) and is called the Cauchy operator of the dynamic equation (2.1). If we suppose
further thatAt is regressive, the Cauchy operator ΦA(t, s) is defined for all s, t ∈ �.

We now recall the chain rule for multivariable functions on time scales, this result has
been proved in [14]. Let V : � × �m → � and g : � → �m be continuously differentiable.
Then V (·, g(·)) : � → � is delta differentiable and there holds

VΔ(t, g(t)
)
= VΔ

t

(
t, g(t)

)
+
∫1

0

〈
V ′
x

(
σ(t), g(t) + hμ(t)gΔ(t)

)
, gΔ(t)

〉
dh

= VΔ
t

(
t, g(σ(t))

)
+
∫1

0

〈
V ′
x

(
t, g(t) + hμ(t)gΔ(t)

)
, gΔ(t)

〉
dh,

(2.2)

where V ′
x is the derivative (in the second variable of the function V = V (t, x)) in normal

meaning and 〈·, ·〉 is the scalar product.
We refer to [12, 15] for more information on the analysis on time scales.
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2.2. Linear Equations with Small Nonlinear Perturbation

Let � be a time scale. We consider a class of nonlinear equations of the form

Atx
Δ = Btx + f(t, x). (2.3)

The homogeneous linear implicit dynamic equations (LIDEs) associated to (2.3) are

Atx
Δ = Btx, (2.4)

where A., B. ∈ Crd(�k,�m×m ) and f(t, x) is rd-continuous in (t, x) ∈ �×�m . In the case where
the matrices At are invertible for every t ∈ �, we can multiply both sides of (2.3) by A−1

t to
obtain an ordinary dynamic equation

xΔ = A−1
t Btx +A−1

t f(t, x), t ∈ �, (2.5)

which has been well studied. If there is at least a t such that At is singular, we cannot solve
explicitly the leading term xΔ. In fact, we are concerned with a so-called ill-posed problem
where the solutions of Cauchy problem may exist only on a submanifold or even they do not
exist. One of the ways to solve this equation is to impose some further assumptions stated
under the form of indices of the equation.

We introduce the so-called index-1 of (2.4). Suppose that rank At = r for all t ∈ �

and let Tt ∈ GL(�m ) such that Tt|kerAt
is an isomorphism between kerAt and kerAρ(t);

T. ∈ Crd(�k,�m×m ). Let Qt be a projector onto kerAt satisfying Q. ∈ Crd(�k,�m×m ). We can
find such operators Tt and Qt by the following way: let matrix At possess a singular value
decomposition

At = UtΣtV
�
t , (2.6)

where Ut, Vt are orthogonal matrices and Σt is a diagonal matrix with singular values σ1
t �

σ2
t � · · · � σrt > 0 on its main diagonal. SinceA. ∈ Crd(�k,�m×m ), on the above decomposition

of At, we can choose the matrix Vt to be in Crd(�k,�m×m ) (see [16]). Hence, by putting Qt =
Vt diag(O, Im−r)V �

t and Tt = Vρ(t)V −1
t , we obtain Qt and Vt as the requirement.

Let

St = {x ∈ �m, Btx ∈ imAt}, (2.7)

and Pt := I −Qt.
Under these notations, we have the following Lemma.

Lemma 2.2. The following assertions are equivalent

(i) kerAρ(t) ∩ St = {0};
(ii) the matrix Gt = At − BtTtQt is nonsingular;

(iii) �m = kerAρ(t) ⊕ St, for all t ∈ �.
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Proof. (i)⇒(ii) Let t ∈ � and x ∈ �m such that (At − BtTtQt)x = 0 ⇔ Bt(TtQtx) = Ax. This
equation implies TtQtx ∈ St. Since kerAρ(t) ∩ St = {0} and TtQtx ∈ kerAρ(t), it follows that
TtQtx = 0. Hence,Qtx = 0 which impliesAtx = 0. This means that x ∈ kerAt. Thus, x = Qtx =
0, that is, the matrix Gt = At − BtTtQt is nonsingular.

(ii)⇒(iii) It is obvious that x = (I+TtQtG
−1
t Bt)x−TtQtG

−1
t Btx. We see that TtQtG

−1
t Btx ∈

kerAρ(t) and Bt(I + TtQtG
−1
t Bt)x = Btx − (At − BtTtQt)G−1

t Btx +AtG
−1
t Btx = AtG

−1
t Btx ∈ imAt.

Thus, (I + TtQtG
−1
t Bt)x ∈ St and we have �m = St + kerAρ(t).

Let x ∈ kerAρ(t) ∩ St, that is, x ∈ St and x ∈ kerAρ(t). Since x ∈ St, there is a z ∈ �m
such that Btx = Atz = AtPtz and since x ∈ kerAρ(t), T−1

t x ∈ kerAt. Therefore, T−1
t x = QtT

−1
t x.

Hence, (At −BtTtQt)T−1
t x = −(At −BtTtQt)Ptzwhich follows that T−1

t x = −Ptz. Thus, T−1
t x = 0

and then x = 0. So, we have that (iii). (iii)⇒(i) is obvious.
Lemma 2.2 is proved.

Lemma 2.3. Suppose that the matrix Gt is nonsingular. Then, there hold the following assertions:

(1) Pt = G−1
t At, (2.8)

(2) Qt = −G−1
t BtTtQt, (2.9)

(3) Q̃t := −TtQtG
−1
t Bt is the projector onto ker Aρ(t) along St, (2.10)

(4) (a) PtGt
−1Bt = PtG−1

t BtPρ(t), (2.11)

(b) QtGt
−1Bt = QtG

−1
t BtPρ(t) − Tt−1Qρ(t), (2.12)

(5) TtQtG
−1
t does not depend on the choice of Tt and Qt. (2.13)

Proof. (1)Noting that GtPt = (At − BtTtQt)Pt = AtPt = At, we get (2.8).
(2) From BtTtQt = At −Gt, it follows G−1

t BtTtQt = Pt − I = −Qt. Thus, we have (2.9).

(3) Q̃2
t = TtQtG

−1
t BtTtQtG

−1
t Bt

(2.9)
= −TtQtQtG

−1
t Bt = −TtQtG

−1
t Bt = Q̃t and Aρ(t)Q̃t =

−Aρ(t)TtQtG
−1
t Bt = 0. This means that Q̃t is a projector onto kerAρ(t). From the proof of (iii),

Lemma 2.2, we see that Q̃t is the projector onto kerAρ(t) along St.
(4) Since T−1

t Qρ(t)x ∈ kerAt for any x,

PtG
−1
t BtQρ(t) = PtG−1

t BtTtT
−1
t Qρ(t) = −PtG−1

t (At − BtTtQt)QtT
−1
t Qρ(t) = 0. (2.14)

Therefore, PtG−1
t Bt = PtG

−1
t BtPρ(t) so we have (2.11). Finally,

QtG
−1
t Bt = QtG

−1
t BtPρ(t) +QtG

−1
t BtTtQtT

−1
t Qρ(t)

= QtG
−1
t BtPρ(t) −QtG

−1
t (At − BtTtQt)QtT

−1
t Qρ(t)

= QtG
−1
t BtPρ(t) −QtT

−1
t Qρ(t) = QtG

−1
t BtPρ(t) − T−1

t Qρ(t).

(2.15)

Thus, we get (2.12).
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(5) Let T ′
t be another linear transformation from �m onto �m satisfying T ′

t |kerAt to be
an isomorphism from kerAt onto kerAρ(t) and Q′

t a projector onto kerAt. Denote G′
t = At −

BtT
′
tQ

′
t. It is easy to see that

TtQtG
−1
t G

′
t = TtQtG

−1
t

(
At − BtT ′

tQ
′
t

)
= TtQtPt − TtQtG

−1
t BtT

′
tQ

′
t = TtQtT

′
tQ

′
t = T

′
tQ

′
t. (2.16)

Therefore, TtQtG
−1
t = T ′

tQ
′
tG

′−1
t . The proof of Lemma 2.3 is complete.

Definition 2.4. The LIDE (2.4) is said to be index-1 if for all t ∈ �, the following conditions
hold:

(i) rank At = r = constant (1 � r � m − 1),

(ii) kerAρ(t) ∩ St = {0}.

Now, we add the following assumptions.

Hypothesis 2.5. (1) The homogeneous LIDE (2.4) is of index-1.
(2) f(t, x) is rd-continuous and satisfies the Lipschitz condition,

∥∥f(t, w) − f(t, w′)∥∥ � Lt
∥∥w −w′∥∥, ∀w,w′ ∈ �m, (2.17)

where

γt: = Lt
∥∥
∥TtQtG

−1
t

∥∥
∥ < 1 ∀t ∈ �k. (2.18)

Remark 2.6. By the item (2.13) of Lemma 2.3, the condition (2.18) is independent from the
choice of Tt and Qt.

We assume further that we can choose the projector function Qt onto kerAt such that
Qρ(t) = Qt for all right-dense and left-scattered t; Qρ(t) is differentiable at every t ∈ �k and
(Qρ(t))Δ is rd-continuous. For each t ∈ �k, we have (Pρ(t)x(t))Δ = Pρ(σ(t))xΔ(t) + (Pρ(t))Δx(t).
Therefore,

Atx
Δ(t) = AtPtx

Δ(t) = At

((
Pρ(t)x(t)

)Δ − (Pρ(t)
)Δ
x(t)
)
, (2.19)

and the implicit equation (2.3) can be rewritten as

At

(
Pρ(t)x

)Δ =
(
At

(
Pρ(t)

)Δ + Bt
)
x + f(t, x), t ∈ �k. (2.20)

Thus, we should look for solutions of (2.3) from the space C1
N :

C1
N

(
�
k,�m

)
=
{
x(·) ∈ Crd

(
�
k,�m

)
: Pρ(t)x(t) is differentiable at every t ∈ �k

}
. (2.21)

Note that C1
N does not depend on the choice of the projector function since the relations

PtP t = Pt and PtPt = Pt are true for each two projectors Pt and Pt along the space kerAt.
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We now describe shortly the decomposition technique for (2.3) as follows.
Since (2.3) has index-1 and by virtue of Lemma 2.2, we see that the matrices Gt are

nonsingular for all t ∈ �k. Multiplying (2.3) by PtG−1
t and QtG

−1
t , respectively, it yields

Ptx
Δ = PtG−1

t Btx + PtG−1
t f(t, x),

0 = QtG
−1
t Btx +QtG

−1
t f(t, x).

(2.22)

Therefore, by using the results of Lemma 2.3, we get

(
Pρ(t)x

)Δ =
(
Pρ(t)

)Δ(
I + TtQtG

−1
t Bt
)
Pρ(t)x + PtG−1

t BtPρ(t)x

+
((
Pρ(t)

)Δ
TtQtG

−1
t + PtG−1

t

)
f(t, x),

Qρ(t)x = TtQtG
−1
t BtPρ(t)x + TtQtG

−1
t f(t, x).

(2.23)

By denoting u = Pρ(t)x, v = Qρ(t)x, (2.23) becomes a dynamic equation on time scale

uΔ =
(
Pρ(t)

)Δ(
I + TtQtG

−1
t Bt
)
u + PtG−1

t Btu +
((
Pρ(t)

)Δ
TtQtG

−1
t + PtG−1

t

)
f(t, u + v), (2.24)

and an algebraic relation

v = TtQtG
−1
t Btu + TtQtG

−1
t f(t, u + v). (2.25)

For fixed u ∈ �m and t ∈ �k, we consider a mapping Ct : im Qρ(t) → im Qρ(t) given by

Ct(v) := TtQtG
−1
t Btu + TtQtG

−1
t f(t, u + v). (2.26)

We see that

∥∥Ct(v) − Ct

(
v′
)∥∥ =

∥∥
∥TtQtG

−1
t

∥∥
∥
∥∥f(t, u + v) − f(t, u + v′

)∥∥ � γt
∥∥v − v′∥∥, (2.27)

for any v, v′ ∈ im Qρ(t). Since γt < 1, Ct is a contractive mapping. Hence, by the fixed point
theorem, there exists a mapping gt : im Pρ(t) → im Qρ(t) satisfying

gt(u) = TtQtG
−1
t Btu + TtQtG

−1
t f
(
t, u + gt(u)

)
, (2.28)

and it is easy to see that gt(u) is rd-continuous in t.
Moreover,

∥∥gt(u) − gt
(
u′
)∥∥ �

∥∥
∥TtQtG

−1
t Bt
∥∥
∥
∥∥u − u′∥∥ +

∥∥
∥TtQtG

−1
t

∥∥
∥
∥∥f
(
t, u + gt(u)

) − f(t, u′ + gt
(
u′
))∥∥

�

∥∥∥TtQtG
−1
t Bt
∥∥∥
∥
∥u − u′∥∥ + Lt

∥∥∥TtQtG
−1
t

∥∥∥
(∥∥u − u′∥∥ + ∥∥gt(u) − gt

(
u′
)∥∥).

(2.29)
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This deduces

∥∥gt(u) − gt
(
u′
)∥∥ � γt

(
1 − γt

)−1
L−1
t (Lt + ‖Bt‖)

∥∥u − u′∥∥. (2.30)

Thus, gt is Lipschitz continuous with the Lipschitz constant δt := γt(1 − γt)−1L−1
t (Lt + ‖Bt‖).

Substituting gt into (2.24), we obtain

uΔ =
(
Pρ(t)

)Δ(
I + TtQtG

−1
t Bt
)
u + PtG−1

t Btu +
((
Pρ(t)

)Δ
TtQtG

−1
t + PtG−1

t

)
f
(
t, u + gt(u)

)
.

(2.31)

It is easy to see that the right-hand side of (2.31) satisfies the Lipschitz condition with the
Lipschitz constant

ωt =
∥∥∥
(
Pρ(t)

)Δ(
I + TtQtG

−1
t Bt
)
+ PtG−1

t Bt
∥∥∥ + Lt(1 + δt)

∥∥∥
(
Pρ(t)

)Δ
TtQtG

−1
t + PtG−1

t

∥∥∥. (2.32)

Applying the global existence theorem (see [12]), we see that (2.31), with the initial
condition u(t0) = Pρ(t0)x0 has a unique solution u(t) = u(t; t0, x0), (t � t0).

Thus, we get the following theorem.

Theorem 2.7. Let Hypothesis 2.5 and the assumptions on the projector Qt be satisfied. Then, (2.3)
with the initial condition

Pρ(t0)(x(t0) − x0) = 0 (2.33)

has a unique solution. This solution is expressed by

x(t) = x(t; t0, x0) = u(t; t0, x0) + gt(u(t; t0, x0)), t � t0, t ∈ �k, (2.34)

where u(t) = u(t; t0, x0) is the solution of (2.31) with u(t0) = Pρ(t0)x0.

We now describe the solution space of the implicit dynamic equation (2.3). Denote

Łt =
{
x ∈ �m : Qρ(t)x = TtQtG

−1
t BtPρ(t)x + TtQtG

−1
t f(t, x)

}
,

Ωt =
{
x ∈ �m : Btx + f(t, x) ∈ im At

}
.

(2.35)

Lemma 2.8. There hold the following statements:

(i) Łt = Ωt,

(ii) If f(t, 0) = 0 for all t ∈ � thenΩt ∩ kerAρ(t) = {0}.

Proof. (i) Let y ∈ Łt, that is, Qρ(t)y = TtQtG
−1
t BtPρ(t)y + TtQtG

−1
t f(t, y). We have

y = Pρ(t)y +Qρ(t)y =
(
I + TtQtG

−1
t Bt
)
Pρ(t)y + TtQtG

−1
t f
(
t, y
)
. (2.36)
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Hence,

Bty + f
(
t, y
)
= Bt

(
I + TtQtG

−1
t Bt
)
Pρ(t)y +

(
I + BtTtQtG

−1
t

)
f
(
t, y
)

=
(
I + BtTtQtG

−1
t

)
BtPρ(t)y +

(
I + BtTtQtG

−1
t

)
f
(
t, y
)

=
(
I + BtTtQtG

−1
t

)(
BtPρ(t)y + f

(
t, y
))
.

(2.37)

From

I + BtTtQtG
−1
t = I + (At −Gt)G−1

t = AtG
−1
t , (2.38)

it yields

Bty + f
(
t, y
)
= AtG

−1
t

(
BtPρ(t)y + f

(
t, y
)) ∈ im At =⇒ y ∈ Ωt. (2.39)

Conversely, suppose that y ∈ Ωt, that is, there exists z ∈ �m such that Bty + f(t, y) = Atz. We
have to prove

Qρ(t)y = TtQtG
−1
t BtPρ(t)y + TtQtG

−1
t f
(
t, y
)
, (2.40)

or equivalently,

y = TtQtG
−1
t f
(
t, y
)
+ TtQtG

−1
t BtPρ(t)y + Pρ(t)y. (2.41)

Indeed,

TtQtG
−1
t f
(
t, y
)
+ TtQtG

−1
t BtPρ(t)y + Pρ(t)y

= TtQtG
−1
t f
(
t, y
)
+ TtQtG

−1
t Bty − TtQtG

−1
t BtQρ(t)y + Pρ(t)y

= TtQtG
−1
t

(
f
(
t, y
)
+ Bty

) − TtQtG
−1
t BtQρ(t)y + Pρ(t)y

= TtQtG
−1
t Atz − TtQtG

−1
t BtQρ(t)y + Pρ(t)y

= TtQtPtz − TtQtG
−1
t BtQρ(t)y + Pρ(t)y

= −TtQtG
−1
t BtQρ(t)y + Pρ(t)y = Qρ(t)y + Pρ(t)y = y,

(2.42)

where we have already used a result of Lemma 2.3 that Q̃ = −TtQtG
−1
t Bt is a projector onto

kerAρ(t). So Łt = Ωt.
(ii) Let y ∈ Ωt ∩ kerAρ(t). Then y ∈ Ωt and Pρ(t)y = 0. Since Ωt = Łt, we have y ∈ Łt.

This means that Qρ(t)y = TtQtG
−1
t BtPρ(t)y + TtQtG

−1
t f(t, y) = TtQtG

−1
t f(t, Qρ(t)y). From the

assumption f(t, 0) = 0, it follows that ‖Qρ(t)y‖ � Lt‖TtQtG
−1
t ‖‖Qρ(t)y‖ = γt‖Qρ(t)y‖. The fact

γt < 1 implies that Qρ(t)y = 0. Thus y = Pρ(t)y +Qρ(t)y = 0. The lemma is proved.



10 Journal of Inequalities and Applications

Remark 2.9. (1) By virtue of Lemma 2.8, we find out that the solution space Łt is independent
from the choice of projector Qt and operator Tt.

(2) Since G−1
ρ(t0)

Aρ(t0) = Pρ(t0) and Aρ(t0)Pρ(t0) = Aρ(t0), the initial condition (2.33) is
equivalent to the condition Aρ(t0)x(t0) = Aρ(t0)x0. This implies that the initial condition is
not also dependent on choice of projectors.

(3)Noting that if x(t) is a solution of (2.3) with the initial condition (2.33), then x(t) ∈
Łt for all t � t0. Conversely, let x0 ∈ Łt = Ωt and let x(s; t, x0), s � t, be the solution of
(2.3) satisfying the initial condition Pρ(t)(x(t; t, x0) − x0) = 0. We see that x(t; t, x0) = Pρ(t)x +
gt(Pρ(t)x) = Pρ(t)x0 + gt(Pρ(t)x0) = x0. This means that there exists a solution of (2.3) passing
x0 ∈ Łt.

2.3. Quasilinear Implicit Dynamic Equations

Now we consider a quasilinear implicit dynamic equation of the form

Atx
Δ = f(t, x), (2.43)

with A. ∈ Crd(�k,�m×m ) and f : � × �m → �m assumed to be continuously differentiable in
the variable x and continuous in (t, x).

Suppose that rankAt = r for all t ∈ �. We keep all assumptions on the projectorQt and
operator Tt stated in Section 2.2.

Equation (2.43) is said to be of index-1 if the matrix

G̃t := At − f ′
x(t, x)TtQt (2.44)

is invertible for every t ∈ � and x ∈ �m .
Denote

S(t, x) =
{
z ∈ �m, f ′

x(t, x)z ∈ imAt

}
; kerAt =Nt. (2.45)

Further introduce the set

Ωt =
{
x ∈ �m, f(t, x) ∈ imAt

}
, (2.46)

containing all solutions of (2.43). The subspace S(t, x) manifests its geometrical meaning

S(t, x) = TxΩt for x ∈ Ωt, (2.47)

where Tx is the tangent space of Ωt at the point x.
Suppose that (2.43) is of index-1. Then, by Lemma 2.2, this condition is equivalent to

one of the following conditions:
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(1) S(t, x) ⊕Nρ(t) = �m ,

(2) S(t, x) ∩Nρ(t) = {0}.
(3) Let Bt ∈ �m×m be a matrix such that the matrix Gt = At − BtTtQt is invertible (we

can choose Bt = f ′
x(t, 0), e.g.). From the relation

G̃t = At − BtTtQt + BtTtQt − f ′
x(t, x)TtQt

= Gt +
(
Bt − f ′

x(t, x)
)
TtQt

=
[
I +
(
Bt − f ′

x(t, x)
)
TtQtG

−1
t

]
Gt,

(2.48)

it follows that

I +
(
Bt − f ′

x(t, x)
)
TtQtG

−1
t (2.49)

is invertible.

Lemma 2.10. Suppose that the bounded linear operator triplet: � : X → Y, � : Y → Z, � : Z →
X is given, where X, Y, Z are Banach spaces. Then the operator I − � �� is invertible if and only if
I − ��� is invertible.

Proof . See [17, Lemma 1].

By virtue of (2.49) and Lemma 2.10, we get that

I + TtQtG
−1
t

(
Bt − f ′

x(t, x)
)
is invertible. (2.50)

Now we come to split (2.43). Multiplying both sides of (2.43) by PtG
−1
t and QtG

−1
t ,

respectively, and putting u = Pρ(t)x, v = Qρ(t)x, we obtain

uΔ =
(
Pρ(t)

)Δ(u + v) + PtG−1
t f(t, u + v),

0 = TtQtG
−1
t f(t, u + v).

(2.51)

Consider the function

k(t, u, v) := TtQtG
−1
t f(t, u + v). (2.52)

We see that

∂k

∂v
(t, u, v)h = TtQtG

−1
t f

′
x(t, u + v)h, (2.53)

where h ∈ Qρ(t)�
m .
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Let h ∈ Qρ(t)�
m be a vector satisfying TtQtG

−1
t f

′
x(t, u + v)h = 0. Paying attention to

TtQtG
−1
t Bth = −h, we have

−TtQtG
−1
t f

′
x(t, u + v)h =

[
I + TtQtG

−1
t

(
Bt − f ′

x(t, u + v)
)]
h. (2.54)

Therefore, by (2.50) we get h = 0. This means that (∂k/∂v)(t, u, v)|Qρ(t)�
m is an isomorphism

of Qρ(t)�
m . By the implicit function theorem, equation k(t, u, v) = 0 has a unique solution v =

gt(u). Moreover, the function v = gt(u) is continuous in (t, u) and continuously differentiable
in u. Its derivative is

∂gt(u)
∂u

=
[
−TtQtG

−1
t f

′
x

(
t, u + gt(u)

)|Qρ(t)�
m

]−1
TtQtG

−1
t f

′
x

(
t, u + gt(u)

)|Pρ(t)�m. (2.55)

Then, by substituting v = gt(u) into the first equation of (2.51) we come to

uΔ =
(
Pρ(t)

)Δ(
u + gt(u)

)
+ PtG−1

t f
(
t, u + gt(u)

)
. (2.56)

It is obvious that the ordinary dynamic equation (2.56) with the initial condition

u(t0) = Pρ(t0)x0 (2.57)

is locally uniquely solvable and the solution x(t; t0, x0) of (2.43) with the initial condition
(2.33) can be expressed by x(t; t0, x0) = u(t; t0, x0) + gt(u(t; t0, x0)).

Now suppose further that f(t, x) satisfies the Lipschitz condition in x and we can find
a matrix Bt such that

[
TtQtG

−1
t f

′
x(t, x)|Qρ(t)�m

]−1
TtQtG

−1
t f

′
x(t, x)|Pρ(t)�m (2.58)

is bounded for all t ∈ � and x ∈ �m . Then, the right-hand side of (2.56) also satisfies the
Lipschitz condition. Thus, from the global existence theorem (see [12]), (2.56)with the initial
condition (2.57) has a unique solution defined on [t0, sup�).

Therefore, we have the following theorem.

Theorem 2.11. Given an index-1 quasilinear implicit dynamic equation (2.43), then there holds the
following.

(1) Equation (2.43) is locally solvable, that is, for any t0 ∈ �k, x0 ∈ �m , there exists a unique
solution x(t; t0, x0) of (2.43), defined on [t0, b) with some b ∈ �, b > t0, satisfying the initial
condition (2.33).

(2) Moreover, if f(t, x) satisfies the Lipschitz condition in x and we can find a matrix Bt such
that

[
TtQtG

−1
t f

′
x(t, x)|Qρ(t)�

m

]−1
TtQtG

−1
t f

′
x(t, x)|Pρ(t)�m (2.59)
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is bounded, then this solution is defined on [t0, sup�) and we have the expression

x(t; t0, x0) = u(t; t0, x0) + gt(u(t; t0, x0)), t � t0, (2.60)

where u(t; t0, x0) is the solution of (2.56) with u(t0) = Pρ(t0)x0.

Remark 2.12. (1) We note that the expression TtQtG
−1
t Bt depends only on choosing the

matrix Bt.
(2) The assumption that [TtQtG

−1
t f

′
x(t, x)|Qρ(t)�

m]−1TtQtG
−1
t f

′
x(t, x)|Pρ(t)�m is bounded for

a matrix function Bt seems to be too strong. In Section 3, we show a condition for the global
solvability via Lyapunov functions.

(3) If x0 ∈ Ωt, there exists z ∈ �m satisfying Atz = f(t, x0). Hence, TtQtG
−1
t f(t, x0) = 0.

Therefore, by the same argument as in Section 2.2, we can prove that for every x0 ∈ Ωt, there
is a unique solution passing through x0.

3. Stability Theorems of Implicit Dynamic Equations

For the reason of our purpose, in this section we suppose that � is an upper unbounded time
scale, that is, sup� = ∞. For a fixed τ ∈ �, denote �τ = {t ∈ �, t � τ}.

Consider an implicit dynamic equation of the form

Atx
Δ = f(t, x), t ∈ �τ , (3.1)

where A. ∈ Crd(�kτ ,�
m×m ) and f(·, ·) ∈ Crd(�τ × �m,�m ).

First, we suppose that for each t0 ∈ �kτ , (3.1) with the initial condition

Aρ(t0)(x(t0) − x0) = 0 (3.2)

has a unique solution defined on �t0 . The condition ensuring the existence of a unique
solution can be refered to Section 2. We denote the solution with the initial condition (3.2)
by x(t) = x(t; t0, x0). Remember that we look for the solution of (3.1) in the space C1

N(�kτ ,�m ).
Let f(t, 0) = 0 for all t ∈ �τ , which follows that (3.1) has the trivial solution x ≡ 0.

We mention again that Ωt = {x ∈ �m, f(t, x) ∈ im At}. Noting that if x(t) = x(t; t0, x0)
is the solution of (3.1) and (3.2) then x(t) ∈ Ωt for all t ∈ �t0 .

Definition 3.1. The trivial solution x ≡ 0 of (3.1) is said to be

(1) A-stable (resp., P -stable) if, for each ε > 0 and t0 ∈ �kτ , there exists a positive δ =
δ(t0, ε) such that ‖Aρ(t0)x0‖ < δ (resp., ‖Pρ(t0)x0‖ < δ) implies ‖x(t; t0, x0)‖ < ε for all
t � t0,

(2) A-uniformly (resp., P -uniformly) stable if it is A-stable (resp., P -stable) and the
number δ mentioned in the part (1). of this definition is independent of t0,

(3) A-asymptotically (resp., P -asymptotically) stable if it is stable and for each t0 ∈
�kτ , there exist positive δ = δ(t0) such that the inequality ‖Aρ(t0)x0‖ < δ
(resp., ‖Pρ(t0)x0‖ < δ) implies limt→∞‖x(t; t0, x0)‖ = 0. If δ is independent of
t0, then the corresponding stability is A-uniformly asymptotically (P -uniformly
asymptotically) stable,
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(4) A-uniformly globally asymptotically (resp., P -uniformly globally asymptotically)
stable if for any δ0 > 0 there exist functions δ(·), T(·) such that ‖Aρ(t0)x0‖ < δ(ε)
(resp., ‖Pρ(t0)x0‖ < δ(ε)) implies ‖x(t; t0, x0)‖ < ε for all t � t0 and if ‖Aρ(t0)x0‖ < δ0
(resp., ‖Pρ(t0)x0‖ < δ0) then ‖x(t; t0, x0)‖ < ε for all t � t0 + T(ε),

(5) P-exponentially stable if there is positive constant α with −α ∈ R+ such that for
every t0 ∈ �kτ there exists an N = N(t0) � 1, the solution of (3.1) with the initial
condition Pρ(t0)(x(t0) − x0) = 0 satisfies ‖x(t; t0, x0)‖ � N‖Pρ(t0)x0‖e−α(t, t0), t �
t0, t ∈ �τ . If the constant N can be chosen independent of t0, then this solution is
called P -uniformly exponentially stable.

Remark 3.2. FromG−1
t At = Pt andAt = AtPt, the notions ofA-stable and P -stable as well asA-

asymptotically stable and P -asymptotically stable are equivalent. Therefore, in the following
theorems we will omit the prefixes A and P when talking about stability and asymptotical
stability. However, the concept of A-uniform stability implies P -uniform stability if the
matrices At are uniformly bounded and P -uniform stability implies A-uniform stability if
the matrices Gt are uniformly bounded.

Denote

� :=
{
φ ∈ C([0, a),�+), φ(0) = 0, φ is strictly increasing; a > 0

}
, (3.3)

and �(φ) is the domain of definition of φ.

Proposition 3.3. The trivial solution x ≡ 0 of (3.1) isA-uniformly (resp., P -uniformly) stable if and
only if there exists a function ϕ ∈ � such that for each t0 ∈ �kτ and any solution x(t; t0, x0) of (3.1)
the inequality

‖x(t; t0, x0)‖ � ϕ
(∥∥Aρ(t0)x0

∥∥),
(
resp., ‖x(t; t0, x0)‖ � ϕ

(∥∥Pρ(t0)x0
∥∥)) ∀t � t0, (3.4)

holds, provided ‖Aρ(t0)x0‖ ∈ �(ϕ) (resp., ‖Pρ(t0)x0‖ ∈ �(ϕ)).

Proof. We only need to prove the proposition for the A-uniformly stable case.
Sufficiency. Suppose there exists a function ϕ ∈ � satisfying (3.4) for each ε > 0; we

take δ = δ(ε) > 0 such that ϕ(δ) < ε, that is, ϕ−1(ε) > δ. If x(t; t0, x0) is an arbitrary solution of
(3.1) and ‖Aρ(t0)x0‖ < δ, then ‖x(t; t0, x0)‖ � ϕ(‖Aρ(t0)x0‖) < ϕ(δ) < ε, for all t � t0.

Necessity. Suppose that the trivial solution x ≡ 0 of (3.1) is A-uniformly stable, that is,
for each ε > 0 there exists δ = δ(ε) > 0 such that for each t0 ∈ �kτ the inequality ‖Aρ(t0)x0‖ < δ
implies ‖x(t; t0, x0)‖ < ε, for all t � t0. For the sake of simplicity in computation, we choose
δ(ε) < ε. Denote

γ(ε) = sup
{
δ(ε) : δ(ε) has such a property

}
. (3.5)

It is clear that γ(ε) is an increasing positive function in ε. Further, γ(ε) � ε and by definition,
there holds

∥
∥Aρ(t0)x0

∥
∥ < γ(ε) then ‖x(t; t0, x0)‖ < ε ∀t � t0. (3.6)
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By putting

β(ε) :=
1
ε

∫ ε

0
γ(t)dt, (3.7)

it is seen that

β ∈ �, 0 < β(ε) < γ(ε) � ε. (3.8)

Let ϕ : [0, sup β) → �+ be the inverse function of β. It is clear that ϕ also belongs to �.
For t � t0, we denote εt = ‖x(t; t0, x0)‖. If εt = 0, then ‖x(t; t0, x0)‖ = εt = 0 �

ϕ(‖Aρ(t0)x0‖) ∀t � t0 by ϕ ∈ � (remember that x(t; t0, x0) = 0 does not imply that x(·; t0, x0) ≡
0). Consider the case where εt > 0. If ‖Aρ(t0)x0‖ < β(εt), then by the relations (3.6) and (3.8)
we have ‖x(s; t0, x0)‖ < εt, ∀s � t0. In particular, ‖x(t; t0, x0)‖ < εt which is a contradiction.
Thus ‖Aρ(t0)x0‖ � β(εt), this implies ‖x(t; t0, x0)‖ = εt � ϕ(‖Aρ(t0)x0‖), ∀t � t0, provided
sup β > ‖Aρ(t0)x0‖.

The proposition is proved.

Similarly, we have the following proposition.

Proposition 3.4. The trivial solution x ≡ 0 of (3.1) isA-stable (resp., P -stable) if and only if for each
t0 ∈ �kτ and any solution x(t; t0, x0) of (3.1) there exists a function ϕt0 ∈ � such that there holds the
following:

‖x(t; t0, x0)‖ � ϕt0
(∥∥Aρ(t0)x0

∥∥) (
resp., ‖x(t; t0, x0)‖ � ϕt0

(∥∥Pρ(t0)x0
∥∥)) ∀t � t0, (3.9)

provided ‖Aρ(t0)x0‖ ∈ �(ϕt0) (resp., ‖Pρ(t0)x0‖ ∈ �(ϕt0)).

In order to use the Lyapunov function technique related to (3.1), we suppose that
Aρ(t) ∈ C1

rd(�
k
τ ,�

m×m ). By using (2.3), we can define the derivative of the function V : �τ ×
�m → �+ along every solution curve as follows:

VΔ
(3.10)

(
t, Aρ(t)x

)
= VΔ

t

(
t, Aρ(t)x

)

+
∫1

0

〈
V ′
x

(
σ(t), Aρ(t)x + hμ(t)

(
Aρ(t)x

)Δ)
,
(
Aρ(t)x

)Δ〉
dh.

(3.10)

Remark 3.5. Note that when the function V is independent of t and even if the vector field
associated with the implicit dynamic equation (3.1) is autonomous, the derivative VΔ

(3.10) may
depend on t.

Theorem 3.6. Assume that there exist a constant c > 0, −c ∈ R+ and a function V : �τ ×�m → �+

being rd-continuous and a function ψ ∈ �, ψ defined on [0,∞) satisfying

(1) ψ(‖x‖) � V (t, Aρ(t)x) for all x ∈ Ωt and t ∈ �τ ,
(2) VΔ

(3.10)(t, Aρ(t)x) � (c/(1 − cμ(t)))V (t, Aρ(t)x), for any x ∈ Ωt and t ∈ �kτ .
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Assume further that (3.1) is locally solvable. Then, (3.1) is globally solvable, that is, every solution
with the initial condition (3.2) is defined on �t0 .

Proof. Denote

W(t, x) = V (t, x)e−c(t, t0). (3.11)

By the condition (2), we have

WΔ
(3.10)

(
t, Aρ(t)x

)
= VΔ

(3.10)

(
t, Aρ(t)x

)
e−c(σ(t), t0) − cV

(
t, Aρ(t)x

)
e−c(t, t0)

�
c

1 − cμ(t)V
(
t, Aρ(t)x

)(
1 − cμ(t))e−c(t, t0) − cV

(
t, Aρ(t)x

)
e−c(t, t0) = 0.

(3.12)

Therefore, for all t � t0

W
(
t, Aρ(t)x(t)

) −W(t0, Aρ(t0)x(t0)
)
=
∫ t

t0

WΔ
(3.10)

(
τ,Aρ(τ)x(τ)

)
Δτ � 0. (3.13)

From the condition (1), it follows that

e−c(t, t0)ψ(‖x(t)‖) �W
(
t, Aρ(t)x(t)

)
�W

(
t0, Aρ(t0)x(t0)

)
= V
(
t0, Aρ(t0)x(t0)

)
(3.14)

or

‖x(t)‖ � ψ−1(V
(
t0, Aρ(t0)x(t0)

)
e�(−c)(t, t0)

)
= ψ−1(V

(
t0, Aρ(t0)x(t0)

)
e(c/(1−cμ(t)))(t, t0)

)
.

(3.15)

The last inequality says that the solution x(t) can be lengthened on �t0 , that is, (3.1) is globally
solvable.

Theorem 3.7. Assume that there exist a function V : �τ × �m → �+ being rd-continuous and
a function ψ ∈ �, ψ defined on [0,∞) satisfying the conditions

(1) V (t, 0) ≡ 0 for all t ∈ �τ ,
(2) ψ(‖x‖) � V (t, Aρ(t)x) for all x ∈ Ωt and t ∈ �τ ,
(3) VΔ

(3.10)(t, Aρ(t)x) � 0 for any x ∈ Ωt and t ∈ �kτ .

Assume further that (3.1) is locally solvable. Then the trivial solution of (3.1) is stable.

Proof. By virtue of Theorem 3.6 and the conditions (2) and (3), it follows that (3.1) is globally
solvable. Suppose on the contrary that the trivial solution x ≡ 0 of (3.1) is not stable. Then,
there exists an ε0 > 0 such that for all δ > 0 there exists a solution x(t) of (3.1) satisfying
‖Aρ(t0)x(t0)‖ < δ and ‖x(t1; t0, x(t0))‖ � ε0 for some t1 � t0. Put ε1 = ψ(ε0).
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By the assumption that V (t0, 0) = 0 and V (t, x) is rd-continuous, we can find δ0 > 0
such that if ‖y‖ < δ0 then V (t0, y) < ε1. With given δ0 > 0, let x(t) be a solution of (3.1) such
that ‖Aρ(t0)x(t0)‖ < δ0 and ‖x(t1; t0, x(t0))‖ � ε0 for some t1 � t0.

Since x(t) ∈ Ωt and by the condition (3),

∫ t1

t0

VΔ
(3.10)

(
t, Aρ(t)x(t)

)
Δt = V

(
t1, Aρ(t1)x(t1)

) − V (t0, Aρ(t0)x(t0)
)
� 0. (3.16)

Therefore, V (t1, Aρ(t1)x(t1)) � V (t0, Aρ(t0)x(t0)) < ε1. Further, x(t1) ∈ Ωt1 and by the condition
(2) we have V (t1, Aρ(t1)x(t1)) � ψ(‖x(t1)‖) � ψ(ε0) = ε1. This is a contradiction. The theorem
is proved.

Theorem 3.8. Assume that there exist a function V : �τ × �m → �+ being rd-continuous and
functions ψ, φ ∈ �, ψ defined on [0,∞), δ ∈ Crd([t0,∞), [0,∞)) such that

∫ t

t0

δ(s)Δs −→ ∞ as t −→ ∞, (3.17)

satisfying the conditions

(1) limx→ 0V (t, x) = 0 uniformly in t ∈ �τ ,
(2) ψ(‖x‖) � V (t, Aρ(t)x) for all x ∈ Ωt and t ∈ �τ ,
(3) VΔ

(3.10)(t, Aρ(t)x) � −δ(t)φ(‖Aρ(t)x‖) for any x ∈ Ωt and t ∈ �kτ .
Further, (3.1) is locally solvable. Then the trivial solution of (3.1) is asymptotically stable.

Proof. Also from Theorem 3.6 and the conditions (2) and (3), it implies that (3.1) is globally
solvable.

And since VΔ
(3.10)(t, Aρ(t)x) � −δ(t)φ(‖Aρ(t)x‖ � 0, the trivial solution of (3.1) is

stable by Theorem 3.7. Consider a bounded solution x(t) of (3.1). First, we show that
lim inft→∞V (t, Aρ(t)x(t)) = 0. Assume on the contrary that inft∈�t0V (t, Aρ(t)x(t)) > 0. From
the condition (1), it follows that inft∈�t0‖Aρ(t)x(t)‖ := r > 0. By the condition (3), we have

V
(
t, Aρ(t)x(t)

)
= V
(
t0, Aρ(t0)x(t0)

)
+
∫ t

t0

VΔ
(3.10)

(
s,Aρ(s)x(s)

)
Δs

� V
(
t0, Aρ(t0)x(t0)

) −
∫ t

t0

δ(s)φ
(‖Aρ(s)x(s)‖

)
Δs � V (t0, x(t0))

− φ(r)
∫ t

t0

δ(s)Δs −→ −∞,

(3.18)

as t → ∞, which gets a contradiction.
Thus, inft∈�t0

V (t, Aρ(t)x(t)) = 0. Further, from the condition (3) for any s � twe get

V
(
t, Aρ(t)x(t)

) − V (s,Aρ(s)x(s)
)
=
∫ t

s

VΔ
(3.10)

(
τ,Aρ(τ)x(τ)

)
Δτ � 0. (3.19)
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This means that V (t, Aρ(t)x(t)) is a decreasing function. Consequently,

lim
t→∞

V
(
t, Aρ(t)x(t)

)
= inf

t∈�t0

V
(
t, Aρ(t)x(t)

)
= 0, (3.20)

which follows that limt→∞‖x(t)‖ = 0 by the condition (2).

Theorem 3.9. Suppose that there exist a function a ∈ �, a defined on [0,∞), and a function V ∈
Crd(�τ × �m,�+) such that

(1) limx→ 0V (t, x) = 0 uniformly in t ∈ �τ and a(‖x‖) � V (t, Aρ(t)x) for all x ∈ Ωt and
t ∈ �τ ,

(2) VΔ
(3.10)(t, Aρ(t)x) � 0, for any x ∈ Ωt and t ∈ �kτ .

Assume further that (3.1) is locally solvable. Then, the trivial solution of (3.1) is A-uniformly stable.

Proof. The proof is similar to the one of Theorem 3.7 with a remark that since limx→ 0V (t, x) =
0 uniformly in t ∈ �τ , we can find δ0 > 0 such that if ‖y‖ < δ0 then supt∈�τ

V (t, y) < ε1.
The proof is complete.

Remark 3.10. The conclusion of Theorem 3.9 is still true if the condition (1) is replaced by
“there exist two functions a, b ∈ �, a defined on [0,∞) and a function V ∈ Crd(�τ × �m,�+) such
that a(‖x‖) � V (t, Aρ(t)x) � b(‖Aρ(t)x‖) for all x ∈ Ωt and t ∈ �τ”.

We present a theorem of uniform global asymptotical stability.

Theorem 3.11. If there exist functions a, b, c ∈ �, a defined on [0,∞), and a function V ∈ Crd(�τ ×
�m ,�+) satisfying

(1) a(‖x‖) � V (t, Aρ(t)x) � b(‖Aρ(t)x‖) for all x ∈ Ωt and t ∈ �τ ,
(2) VΔ

(3.10)(t, Aρ(t)x) � −c(‖Aρ(t)x)‖) for any x ∈ Ωt and t ∈ �kτ .

Assume further that (3.1) is locally solvable. Then, the trivial solution of (3.1) isA-uniformly globally
asymptotically stable.

Proof. Let δ0 > 0 be given. Define δ(ε) = min{b−1(a(ε)), δ0} and

T(ε) = max
t∈�

μ(t) +
2b(δ0)
c(δ(ε))

. (3.21)

(T(ε) is not necessary in �).
Let x(t) be a solution of (3.1) with ‖Aρ(t0)x(t0)‖ < δ(ε). From the condition (2), we see

that

V
(
t, Aρ(t)x(t)

) − V (t0, Aρ(t0)x(t0)
)
=
∫ t

t0

VΔ
(3.10)

(
s,Aρ(s)x(s)

)
Δs � 0. (3.22)
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Therefore,

a(‖x(t)‖) � V
(
t, Aρ(t)x(t)

)
� V

(
t0, Aρ(t0)x(t0)

)
� b
(∥∥Aρ(t0)x(t0)

∥∥) < b(δ(ε)) � a(ε). (3.23)

Hence, ‖x(t)‖ < ε for all t � t0.
Because the trivial solution of (3.1) is A-uniformly stable, we only need to show that

there exists a t∗ ∈ [t0, t0 + T(ε)] such that ‖Aρ(t∗)x(t∗)‖ < δ(ε). Assume that such a t∗ does not
exist, that is ‖Aρ(t)x(t)‖ � δ(ε) for all t ∈ [t0, t0 + T(ε)]. From the condition (2), we get

V
(
t0 + T(ε), Aρ(t0+T(ε))x(t0 + T(ε))

)
+
∫ t0+T(ε)

t0

c
(∥∥Aρ(s)x(s)

∥
∥)Δs

� V
(
t0, Aρ(t0)x(t0)

)

� b
(∥∥Aρ(t0)x(t0)

∥∥)b � (δ0).

(3.24)

Since V � 0,

c(δ(ε))T(ε) � b(δ) =⇒ T(ε)
b(δ0)
c(δ(ε))

, (3.25)

which contradicts the definition of T(ε) in (3.21). The proof is complete.

When Aρ(t) is not differentiable, one supposes that there exists a Δ-differentiable
projector Qt onto kerAt and (Qρ(t))Δ is rd-continuous on �kτ ; moreover, Qρ(t) = Qt for all
t ∈ (�τ)

ls
rd. Let Pt = I −Qt.
We choose matrix functions Tt, Bt ∈ Crd(�kτ ,�

m×m ) such that Tt|kerAt
is an isomorphism

between kerAt and kerAρ(t) and the matrix Gt = At − BtTtQt is invertible. Define

VΔ
(3.26)

(
t, Pρ(t)x

)
= VΔ

t

(
t, Pρ(t)x

)
+
∫1

0

〈
V ′
x

(
σ(t), Pρ(t)x + hμ(t)

(
Pρ(t)x

)Δ)
,
(
Pρ(t)x

)Δ〉
dh,

(3.26)

where (Pρ(t)x)Δ = (Pρ(t))Δx + PtG−1
t f(t, x) (see (2.51)).

From now on we remain following the above assumptions on the operators Qt, Tt, Bt
whenever VΔ

(3.26)(t, Pρ(t)x) is mentioned.
By the same argument as Theorem 3.6, we have the following theorem.

Theorem 3.12. Assume that there exist a constant c > 0, −c ∈ R+ and a functionV : �τ×�m → �+

being rd-continuous and a function ψ ∈ �, ψ defined on [0,∞) satisfying

(1) ψ(‖x‖) � V (t, Pρ(t)x) for all x ∈ Ωt and t ∈ �τ ,
(2) VΔ

(3.26)(t, Pρ(t)x) � (c/(1 − cμ(t)))V (t, Pρ(t)x), for any x ∈ Ωt and t ∈ �kτ .

Assume further that (3.1) is locally solvable. Then, (3.1) is globally solvable.
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Theorem 3.13. Assume that (3.1) is locally solvable. Then, the trivial solution x ≡ 0 of (3.1) is stable
if there exist a function V : �τ × �m → �+ being rd-continuous and a function ψ ∈ �, ψ defined on
[0,∞) such that

(1) V (t, 0) ≡ 0 for all t ∈ �τ ,
(2) V (t, Pρ(t)y) � ψ(‖y‖) for all y ∈ Ωt and t ∈ �τ ,
(3) VΔ

(3.26)(t, Pρ(t)x) � 0 for all x ∈ Ωt and t ∈ �kτ .

Proof. Assume that there is a function V satisfying the assertions (1), (2), and (3) but the
trivial solution x ≡ 0 of (3.1) is not stable. Then, there exist a positive ε0 > 0 and a t0 ∈ �kτ

such that ∀δ > 0; there exists a solution x(t) = x(t; t0, x0) of (3.1) satisfying ‖Pρ(t0)x0‖ < δ
and x(t1; t0, x0) � ε0, for some t1 � t0. Let ε1 = ψ(ε0). Since V (t0, 0) = 0, it is possible to find
a δ = δ(ε0, t0) > 0 satisfying V (t0, Pρ(t0)z) < ε1 when ‖Pρ(t0)z‖ < δ, z ∈ �m . Consider the
solution x(t) satisfying ‖Pρ(t0)x0‖ < δ and x(t1; t0, x0) � ε0 for a t1 � t0.

From the assumption (3), it follows that

∫ t1

t0

VΔ
(3.26)

(
t, Pρ(t)x(t)

)
Δt = V

(
t1, Pρ(t1)x(t1)

) − V (t0, Pρ(t0)x0
)
� 0. (3.27)

This implies

V
(
t0, Pρ(t0)x0

)
� V

(
t1, Pρ(t1)x(t1)

)
� ψ‖(x(t1))‖ � ψ(ε0) = ε1. (3.28)

We get a contradiction because ε1 > V (t0, Pρ(t0)x0) when ‖Pρ(t0)x0‖ < δ.
The proof of the theorem is complete.

Theorem 3.14. Assume that (3.1) is locally solvable. If there exist two functions a, b ∈ �, a defined
on [0,∞) and a function V : �τ × �m → �+ being rd-continuous such that

(1) a(‖x‖) � V (t, Pρ(t)x) � b(‖Pρ(t)x‖) for all x ∈ Ωt and t ∈ �τ ,
(2) VΔ

(3.26)(t, Pρ(t)x) � 0 for all x ∈ Ωt and t ∈ �kτ ,
then the trivial solution of (3.1) is P -uniformly stable.

Proof. The proof is similar to the one of Theorem 3.9.

Theorem 3.15. If there exist functions a, b, c ∈ �, a defined on [0,∞) and a function V ∈ Crd(�τ ×
�m ,�+) satisfying

(1) a(‖x‖) � V (t, Pρ(t)x) � b(‖Pρ(t)x‖) for all x ∈ Ωt and t ∈ �τ ,
(2) VΔ

(3.10)(t, Pρ(t)x) � −c(‖Pρ(t)x)‖) for any x ∈ Ωt and t ∈ �kτ .
Assume further that (3.1) is locally solvable. Then, the trivial solution of (3.1) is P -uniformly globally
asymptotically stable.

Proof. Similarly to the proof of Theorem 3.11.

It is difficult to establish the inverse theorem for Theorems from 3.7 to 3.15, that is, if
the trivial solution of (3.1) is stable, there exists a function V satisfying the assertions in the
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above theorems. However, if the structure of the time scale � is rather simple we have the
following theorem.

Theorem 3.16. Suppose that �τ contains no right-dense points and the trivial solution x ≡ 0 of (3.1)
is P -uniformly stable. Then, there exists a function V : �τ ×U → �+ being rd-continuous satisfying
the conditions (1), (2), and (3) of Theorem 3.13, whereU is an open neighborhood of 0 in �m .

Proof. Suppose the trivial solution of (3.1) is P -uniformly stable. Due to Proposition 3.3, there
exist functions ϕ ∈ � such that for any solution x(t; t0, x0) of (3.1), we have

‖x(t; t0, x0)‖ � ϕ
(∥∥Pρ(t0)x0

∥
∥) ∀t � t0, (3.29)

provided ‖Pρ(t0)x0‖ ∈ �(ϕ).
Let �(ϕ) = [0, a) and U = {x : ‖x‖ < a}. For any z ∈ �m satisfying ‖Pρ(t0)z‖ < a and

t ∈ �τ , we put

V (t, z) := sup
s�t

‖x(s; t, z)‖, (3.30)

where x(s; t, z) is the unique solution of (3.1) satisfying the initial condition Pρ(t)x(t) = Pρ(t)z.
It is seen that V is defined for all z satisfying ‖Pρ(t0)z‖ ∈ �(ϕ), V (t, 0) ≡ 0, and V (t, x) ∈
Crd(�τ × �m,�+).

Let y ∈ Ωt. By the definition, V (t, Pρ(t)y) = sups�t‖x(s; t, Pρ(t)y)‖ � ‖x(t; t, Pρ(t)y)‖.
From (2.60), x(s; t, Pρ(t)y) = u(s; t, Pρ(t)y) + g(s, u(s; t, Pρ(t)y)) for all s ∈ �t. In particular,
x(t; t, Pρ(t)y) = Pρ(t)y + g(t, Pρ(t)y) = y. Thus, V (t, Pρ(t)y) � ‖y‖ ∀y ∈ Ωt, t ∈ �τ . Hence, we
have the assertion (2) of the theorem.

Due to the unique solvability of (3.1), we have x(s; t, Pρ(t)y) = x(s;σ(t), x(σ(t), t,
Pρ(t)y)) with s � σ(t). Therefore, V (t, Pρ(t)y) = sups�t‖x(s; t, Pρ(t)y)‖ and

V
(
σ(t), Pρ(σ(t))x

(
σ(t), t, Pρ(t)y

))
= sup

s�σ(t)

∥
∥x
(
s;σ(t), x

(
σ(t), t, Pρ(t)y

))∥∥

= sup
s�σ(t)

∥
∥x
(
s; t, Pρ(t)y

)∥∥ � V
(
t, Pρ(t)y

)
.

(3.31)

This implies

VΔ
(3.26)

(
t, Pρ(t)y(t)

)
=
V
(
σ(t), Pρ(σ(t))x

(
σ(t), t, Pρ(t)y

)) − V (t, Pρ(t)y
)

μ(t)
� 0. (3.32)

The proof is complete.

Now we give an example on using Lyapunov functions to test the stability of
equations. The following result finds out that the stability of a linear equation will be ensured
if nonlinear perturbations are sufficiently small Lipschitz.

Consider a nonlinear equation of the form (2.3)

AxΔ = Bx + f(t, x), (3.33)
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where A and B are constant matrices with ind (A,B) = 1, f(t, 0) = 0 ∀t ∈ �, and f(t, x)
satisfing the Lipschitz condition

∥∥f(t, x) − f(t, y)∥∥ < L∥∥x − y∥∥, (3.34)

where L is sufficiently small. Let Q be defined by (2.9) with Tt = I and G = A − BQ, P =
I − Q. By Theorem 2.7, we see that there exists a unique solution satisfying the condition
P(x(t0) − x0) = 0 for any x0 ∈ �m .

Besides, also consider the homogeneous equation associated to (3.33)

AxΔ = Bx, (3.35)

and suppose this equation has index-1. As in Section 2, multiplying (3.33) by PG−1 we get

(Px)Δ =Mx + PG−1f(t, x), (3.36)

whereM = PG−1B = PG−1BP .
Note that the general solution of (3.35) is

x(t; t0, x0) = eM(t, t0)Px(t0) = exp(tM)

⎛

⎝
∏

s∈It,t0

(
I + μ(s)M

)
exp
(−μ(s)M)

⎞

⎠Px(t0), t � t0,

(3.37)

in there It,t0 is denoted the set of right-scattered points of the interval [t0, t).
Denote σ(A,B) = {λ : det(λA−B) = 0}. It is easy to show that the trivial solution x ≡ 0

of (3.35) is P -uniformly exponentially stable if and only if σ(A,B) ⊂ S, where S is the domain
of uniform exponential stability of �. On the exponential stable domain of a time scale, we
can refer to [10, 18, 19]. By the definition of exponential stability, it implies that the graininess
function of the time scale � is upper bounded. Let μ∗ = supt∈�μ(t).

We denote the set

U =

⎧
⎪⎨

⎪⎩

{
λ :
∣∣
∣∣λ +

1
μ∗

∣∣
∣∣ �

1
μ∗

}
if μ∗ /= 0

{λ : �λ < 0} if μ∗ = 0,
(3.38)

and suppose σ(A,B) ⊂ U. Since U ⊂ S, this condition implies that (3.35) is P -uniformly
exponentially stable.

If μ∗ /= 0, define

H = μ∗
∞∑

k=0

(
I + μ∗M�

)n
P�FP

(
I + μ∗M

)n +Q�FQ, (3.39)

where the matrix F is supposed to be symmetric positive definite. It is clear that H is
symmetric positive definite.
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Since σ(A,B) ⊂ U, the above series is convergent. Further, for any k � 0 we have

(
I + μ∗M�

)k+1
P�FP

(
I + μ∗M

)k+1 −
(
I + μ∗M�

)k
P�FP

(
I + μ∗M

)k

=
(
I + μ∗M�

)k+1
P�FP

((
I + μ∗M

)k+1 − (I + μ∗M)k
)

+
((

I + μ∗M�
)k+1 −

(
I + μ∗M�

)k)
P�FP

(
I + μ∗M

)k

=
(
I + μ∗M�

)
μ∗
(
I + μ∗M�

)k
P�FP

× (I + μ∗M)kM + μ∗M�
(
I + μ∗M�

)k
P�FP

(
I + μ∗M

)k
.

(3.40)

Thus,

(
I + μ∗M�

)n+1
P�FP

(
I + μ∗M

)n+1 − P�FP

=
(
I + μ∗M�

) n∑

k=0

μ∗
(
I + μ∗M�

)k
P�FP

(
I + μ∗M

)k
M

+ μ∗M�
n∑

k=0

(
I + μ∗M�

)k
P�FP

(
I + μ∗M

)k
.

(3.41)

Letting n → ∞ and paying attention to limn→∞(I + μ∗M�)nP�FP(I + μ∗M)n = 0, we obtain

−P�FP =
(
I + μ∗M�

)
HM +M�H = HM +M�H + μ∗M�HM. (3.42)

In the case where μ∗ = 0 and F is symmetric positive definite, by putting

H =
∫∞

0
exp
(
tM�

)
P�FP exp(tM)dt +Q�FQ, (3.43)

we can examine easily that the matrix H also satisfies (3.42), H is symmetric and positive
definite.

Theorem 3.17. Suppose that σ(A,B) ⊂ U and the homogeneous equation (3.35) is of index-1 and
the constant L is sufficiently small. Then, the trivial solution x ≡ 0 of (3.33) is P -uniformly globally
asymptotically stable.
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Proof. Let H be a symmetric and positive definite (constant) matrix satisfying (3.42).
Consider the Lyapunov function V (x) := x�Hx. The derivative of V along the solution of
(3.33) is

VΔ
(3.26)(Px) =

(
(Px)Δ

)�
H(Px)σ + (Px)�H(Px)Δ

=
(
Mx + PG−1f(t, x)

)T
H
(
Px + μ(t)

(
Mx + PG−1f(t, x)

))

+ (Px)�H
(
Mx + PG−1f(t, x)

)

=
(
Mx + PG−1f(t, x)

)�
HPx + μ(t)

(
Mx + PG−1f(t, x)

)T
H
(
Mx + PG−1f(t, x)

)

+ (Px)�H
(
Mx + PG−1f(t, x)

)

�

(
Mx + PG−1f(t, x)

)�
HPx + μ∗

(
Mx + PG−1f(t, x)

)�
H
(
Mx + PG−1f(t, x)

)

+ (Px)�H
(
Mx + PG−1f(t, x)

)

= (Px)�
(
M�H +HM + μ∗M�HM

)
Px +

(
PG−1f(t, x)

)�

×H
(
Px + μ∗Mx + μ∗PG−1f(t, x)

)

+ (Px)�H
(
I + μ∗M�

)
PG−1f(t, x)

= −(Px)�P�FPPx +
(
PG−1f(t, x)

)�
H
(
Px + μ∗Mx + μ∗PG−1f(t, x)

)

+ (Px)�H
(
I + μ∗M�

)
PG−1f(t, x)

= −(Px)�FPx +
(
PG−1f(t, x)

)�
H
(
Px + μ∗MPx + μ∗PG−1f(t, x)

)

+ (Px)�H
(
I + μ∗M�

)
PG−1f(t, x).

(3.44)

From the Lipschitz condition and (2.25), it is seen that ‖Qx‖ � K‖Px‖whereK = (‖QG−1B‖+
L‖QG−1‖)/(1 − L‖QG−1‖). Therefore,

∥∥f(t, x)
∥∥ � L(1 +K)‖Px‖. (3.45)

Combining this inequality and the above appreciation, we see that when L is sufficiently
small there exists β > 0 such that

VΔ
(3.26)(Px) � −β‖Px‖2. (3.46)

By Theorem 3.15, (3.33) is P -uniformly globally asymptotically stable.
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Example 3.18. Let � = ∪∞
k=0[2k, 2k + 1] and consider

Atx
Δ = Btx + f(t, x), (3.47)

with

At = (t + 1)

(
1 0

0 0

)

, Bt =

(−t − 2 0

0 −t − 1

)

, f(t, x) =
sinx1
t + 1

(0, 1)�. (3.48)

We have kerAt = span{(0, 1)�}, rank At = 1 for all t ∈ �. It is easy to verify that Qt =
( 0 0
0 1

)
is

the canonical projector onto kerAt, Pt = I −Qt =
(
1 0
0 0

)
. Let us choose Tt = I. We see that

Gt = At − BtTtQt = (t + 1)

(
1 0

0 1

)

. (3.49)

Since t � 0, detGt = (t + 1)2 /= 0, (3.47) has index-1.
It is obvious that ‖f(t, w1) − f(t, w2)‖ � (1/(t + 1))‖w1 − w2‖, ∀w1, w2 ∈ �2 . Further,

γt = Lt‖TtQtG
−1
t ‖ = 1/(t+1)2 < 1, for all t ∈ �. Thus, according to Theorem 2.7 for each t0 ∈ �,

(3.47) with the initial condition Pρ(t0)x(t0) = Pρ(t0)x0 has the unique solution.
It is easy to compute, G−1

t = (1/(t + 1))
( 1 0
0 1

)
, TtQtG

−1
t BtPρ(t)x = (0, 0)�, TtQtG

−1
t f(t, x)

= (sin x1/(t+1)2)(0, 1)�, where x = (x1, x2)�, PtG−1
t Bt = (−1/(t+1))( t+2 0

0 0

)
, and PtG−1

t f(t, x) =

(0, 0)�.
Therefore, u(t) = Pρ(t)x(t) satisfies uΔ = −(1/(t + 1))

(
t+2 0
0 0

)
u. Moreover, we have

Łt =

{

x = (x1, x2)� ∈ �2 , x2 =
sinx1
(t + 1)2

}

. (3.50)

Let the Lyapunov function be V (t, x) := 2‖x‖, t ∈ �, x ∈ �2 .
Put x = (x1, x2)� ∈ Łt, we have V (t, Pρ(t)x) = 2‖Pρ(t)x‖ = 2|x1| and

‖x‖ =
(
x21 + x

2
2

)1/2
=

(

x21 +
sin2x1

(t + 1)4

)1/2

�

(
x21 + sin2x1

)1/2
� 2|x1|. (3.51)

Hence,

‖x‖ � V
(
t, Pρ(t)x

)
= 2
∥∥Pρ(t)x

∥∥, ∀x ∈ Łt, t ∈ �. (3.52)

We have for any solution x(t) of (3.47) and t ∈ � (noting that t � 0),
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(+) if t is right-scattered then VΔ
(3.26)(t, Pρ(t)x(t))

u=Pρ(t)x
= 2(‖u(t + 1)‖ − ‖u(t)‖) = 2(‖u(t) +

uΔ(t)‖ − ‖u(t)‖) = 2(u21/(t + 1)2 + u22)
1/2 − (u21 + u

2
2)

1/2
� 0,

(+) if t is right-dense then VΔ
(3.26)(t, Pρ(t)x(t)) = 〈V ′

x(t, Pρ(t)x), F(t, Pρ(t)x)〉 = −2(t +
2)u21/(t + 1)‖u‖ � 0, where u = (u1, u2)�, F(t, u) = (−1/(t + 1))

(
t+2 0
0 0

)
u.

In both two cases, we have VΔ
(3.26)(t, Pρ(t)x(t)) � 0, so the trivial solution of (3.47) is

P -uniformly stable by Theorem 3.14.
Note that if we let V (t, x) := ‖x‖2, t ∈ �, x ∈ �2 then the result is still true. Indeed, by

the simple calculations we obtain

(a) a(‖x‖) � V (t, Pρ(t)x) � b(‖Pρ(t)x‖), ∀x ∈ Łt, t ∈ �, where a, b ∈ � defined by
a(y) = (1/2)y2, b(y) = y2, y ∈ �+ ,

(b) VΔ
(3.26)(t, Pρ(t)x(t))

u=Pρ(t)x
= 〈2u, F(t, u)〉 + μ(t)‖F(t, u)‖2. Thus,

VΔ
(3.26)

(
t, Pρ(t)x(t)

) u=(u1,u2)�=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2(t + 2)u21
t + 1

if t is right-dense,

− t(t + 2)u21
(t + 1)2

if t is right-scattered,

� 0. (3.53)

Therefore, having the above result is obvious.

4. Conclusion

We have studied some criteria ensuring the stability for a class of quasilinear dynamic equa-
tions on time scales. So far, the inverse theorem of the theorems of the stability in Section 3
of this paper is still an open problem for an arbitrary time scale meanwhile it is true for
discrete and continuous time scales.
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