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1 INTRODUCTION

This paper is in continuation to our preceding note [3] on Ozeki’s
inequality. We first recall it [7, p.121, 8]" if a=(a,...,a,) and
b- (b,..., b,) are n-tuples of real numbers satisfying

0 <_ m <_ ai < M and 0 < m2 < bi <_ M2 (1.1)

for i- 1,...,n, then

a2i Z bi- (Z aibi)
2 ll2

_< - (MIM2 mlm2)2. (1.2)
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This is complementary to Cauchy’s inequality. Recently, we initiated
to extend an operator version of this inequality, which is motivated
by the work on the covariance and variance of operators due to Fujii
et al. [1].
An operator version of (1.2) might be given via diagonal matrices as

follows: If A and B are commuting,, and satisfy the conditions
0 _< m < A <_ M and 0 < m2 _< B _< m2, then for a unit vector x

(AZx, x)(BZx, x) (ABx, x)2 <_ (M1M2 mlm2)2. (1.3)

However, (1.3) is incorrect in general, which we could show by using
3 3 matrices (cf. [3]). In [3], we pointed out that the initial inequality
(1.2) itself is false, by the simple counterexample:

a (1, 1,0), b (0, 1, 1), (1.4)

and we proposed the following

THEOREM 1.1
then

(cf. [3, Theorem 2]) Ifa and b satisfy the condition (1.1),

n2<_ - (MM2 mlm2)2

instead of (1.2).

We also showed in [3] an operator version of (1.5) which was proved
by using inequalities (given in [1]) on the covariance and the variance of
operators.

In this paper, following the original idea due to Ozeki [8] we give an
improvement of (1.5) which is best possible. Roughly, the constant n2/2
in (1.5) is sharpened by n2/3. We note here that the example (1.4) is
suggestive of our discussion below, for which the left hand side of (1.2)
is 3 32/3.
As an application, we show the following inequality instead of (1.3)" If

A and B are commuting positive operators on a Hilbert space H and
satisfy the conditions 0 < m _< A < MI and 0 _< m2 _< B _< Me, then for
a unit vector x E H,

(AZx, x)(BZx, x) (ABx, x)2 <_ 1/2(MM2 mlm2). (1.6)
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We also give a refinement of this inequality, and in particular, we show
that if (1 + ml/M1)(1 + m2/M2) >_ 2, then

(AZx, x)(BZx, x) (ABx, x)2 <_ (M1M2- mlm2)2.

This is an extension of the variance inequality given in [1]:

2(AZx, x) (Ax, x)2 _< - (M1 ml (1.7)

For two positive operators without commutativity condition, using
the geometric mean A21/2B2 ofA2 and B2 in Kubo-Ando theory [4], we
shall show that if 7- max{ml/M, mz/M2}, then

(M1M2 m m2)2(AZx, x)(B2x, x) (AZl/zBZx, x)2 <_ -4-7572

2 OZEKI’S INEQUALITY

The aim of this section is to prove the following theorem in which
we correct the constant n2/4 of Ozeki’s inequality (1.2) and at the same
time we improve the constant n2/2 of the inequality (1.5). Though the
original proof of (1.2) includes some minor overlooks, it will be
right methodologically. Basically we owe our proof to the original idea
of Ozeki [8].

TNEOREM 2.1 Let a--(al,...,an) and b-(bl,...,bn) be n-tuples of
real numbers satisfying

O <_ ml <_ ai <_ M and O <_ m2 <_ bi <_ M2 (i- 1,...,n).

Then,

n2 )2_< -(M1M2 mlm2 (2.1)

To prove this theorem we write the left hand side of (2.1) as

T- T(a, b), where a and b are taken over the n-dimensional rectangles
[m,M]" and [mz, M2]n, respectively. We then state some basic facts
on T(a, b).
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LEMMA 2.2 ([7, p. 841) Let A {(i,j); i,j E Z, <_ <j <_ n}. Then

r(a,b)- (aibj-ajbi)2.
(i,j)A

LEMMA 2.3 (cf. [5]) T(a, b) is a separately convexfunction with respect
to a and b, that is,

T(pa +p’a’,b) < pT(a,b) +p’T(a’,b), p [0, 1], p’- -p,

and

T(a, qb + q’b’) <_ qT(a,b) + q’T(a,b’), q [0, 1], q’- q.

Consequently, T(a,b) attains its maximum at a point (a, b)
[ml, M]n [m2, M2]n such that a and b are extremal points, namely,
vertices of Imp, M] and [m2, M2]n, respectively.

LEMMA 2.4 ([2, p. 261]) For c IR+, let c-(cl,...,c)(resp.-(-
(-,..., n)) be the rearrangement of c in decreasing (resp. increasing)
order. Then a_5_bk <_ y akb and -b_ <_ ab, so that T(a, b) >_
T(a, b) and T(-d, b) >_ T(a, b) for a, b IRn+.
Proof of the theorem First note that an extremal point of an
n-dimensional rectangle [m, M] is a point, all of whose components
are either m or M. Hence from Lemmas 2.3 and 2.4 we may estimate
T(a, b) for a, b such that

n-s n--t

(2.2)

where s and are nonnegative integers not greater than n. (It suffices
to discuss for a in decreasing order and b in increasing order.) It
would be more convenient to write T= T(s,t). Without loss of
generality we may assume that M M2 1, and conveniently we put
m c and m2--/. Now we consider the following two cases.
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Case I 0 < < s < n. We can write a and b as follows:

a-()andb-().
s-t n-s s-t n-s

Let P- {1,...,t}, Q- {t+ 1,...,s} and R- {s+ 1,...,n}. Then the
index set A is divided into the six subsets

(PxP) fA, (PxQ) fA, (PxR) C)A,

(QxQ) fqA, (QxR) fqA and (RxR) f3A.

Recall that T(a,b)- -(i,j)6A(aibj- ajbi) 2 by Lemma 2.2. If (i,j)E
(P P)yl A, (Q Q)yl A or (R R)f’l A, then from the above assump-
tion we have

aibj ajbi 0,

so that T is the sum with respect to (i,j) in the remaining sets.
Since A1 (P Q) fq A has t(s t) elements and aibj- abi- -/3 for

(i,j) E A1, we see that

Z Z (aibj ajbi)2 t(s- t)(1 --/3) 2
A (i,j)A

Similarly if we put /x2 and /x3 the sums of T with respect
to (i,j) A2 (P R) fq A and A3 (Q R) fq A, respectively, then
we have

Z:t(n-s)(1-a/3)2 and Z-(s-t)(n-s)(1-a)2.

Hence

t(s t)(1 -/3)2+t(n s)(1 a/3)2+ (s- t)(n s)(1 a)2. (2.3)

Since a,/3 [0, 1], we have

T <_ { t(s- t) + t(n s) / (s- t)(n s)}(1 aft).
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Note that for real numbers x, y and z, xy + yz + zx < (x + y + 2)2

(and the equality holds if x y z). Hence we have

s(, t).- t(- t) + t(, ) + (- t)(,,- )

--n:2< -{t + (s- t) + (n s)}2
-3 3’ (2.4)

so that T<_ n2/3 (1- OZ/)2. We remark that the equality in (2.4) holds
when t- s- t- n s, that is, s- 2n/3 and t- n/3. Hence if n 3u for
some integer u > 1, then S(s, t) really attains n2/3. We here recall that the
example (1.4) is nothing but the case when u- (and c-/3- 0).

Case II 0 < s _< < n. As in Case I, we obtain

T- s(t- s)(/3- 0/3)2 + s(n t)(1 0/3)2

+ (t- s)(n t)( )2.. (2.5)

Hence by a similar argument as in Case I we have T< (n2/3) (1 ctfl)2.

We have shown that the constant n2/3 is a best bound in Ozeki’s
inequality (2.1) and is the best with respect to n, when n-3u.
Considering the best constant for a general integer n, we have:

THEOREM 2.5 Under the same assumption as in Theorem 2.1,

Z a2i Z b2i (Zaibi)
2

(n2/3)(M1M2 mlm:z)2,
/fn 3u,<- ((n2 1)/3)(M1M2 mm2)2,
tfn- 3u+ 1.

Moreover, in each case the constant is best possible with respect to n.

Proof It suffices to discuss the cases when n- 3u + 1. Let us use the
same notations as in the proof of Theorem 2.1. We may assume _< s.

Recall that

s- s(, t) t(- t) + t( ) + (- t)( ),

and that the constant n2/3 in Theorem 2.1 was obtained from the
inequality S <_ n2/3. Hence we have to show here that S attains (n2 1)/3
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as its maximum. Consider the case when n- 3u / 1. Since

S- -s2 / (n + t)s- 2

11 2 112
s--- s-

n
+ t--3 3’

if we assume S-constant, then c’-(n2/3)-S is constant, and the
equation

expresses an ellipse with center at (2n/3,n/3)(2u+,u+1/2)in the
st-plane (if s and move continuously). Let

A’ {(s,t); s t, s-- 0,...,3 / 1, t-- O,...,3u / 1}.

Then in order to obtain the maximum ofS, we have to find the (smallest)
ellipse which has no point of A’ in the interior and which passes through
at least one point of A’. By.a simple computation we can see that the
desired ellipse is the one corresponding to c 1/2, on which lie the three
points (2u, u), (2u + 1, u) and (2u + 1, u + 1) of A’. Hence the maximum
of S is (n2/3) c (n2 1)/3. For the case when n 3u- we can obtain
the same value (n2- 1)/3 as the maximum of S similarly.

3 REFINEMENT OF OZEKI’S INEQUALITY

In the preceding section for the extremal n-tuples a and b having the
forms in (2.2), we showed, for the Case I" 0 <_ < s _< n,

T- t(s t)(1 -/3) + t(n s)(1 c) + (s t)(n s)(1 c)2,

and for Case II: 0 < s _< _< n,

T- s(t- s)(/3- c/3) 2 + s(n t)(1 oz/) 2

/ (t- S)(11 t)(o Ofl) 2.
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Ozeki’s inequality (2.1) was obtained as an estimation of these
identities. In this section we try to estimate their maximum precisely.
Consider the first case, we put

x-- t, y-- s- t, z n- s,

A (-), ( /), C ( ).

Then the problem is to compute the maximum of

T- Axy + Bxz + Cyz (3.1)

under the conditions

x>_0, y>_0, z>_0 and x+y+z-n. (3.2)

Though x, y and z are discrete variables, we for a moment assume that
they are continuous. Without loss of generality we assume ABC O,
or equivalently a- and/3 1. To get the maximum of T, let

U- T- A(x +y + z- n),

where A is the Lagrange multiplier. Then solving the equations

Ux Ay + Bz- A O,
Uy Ax + Cz- A O,
Uz Bx + Cy- A O,

we have

(A + B- C)A (C + A B)A (B + C- A)*
x-

2AB Y- 2CA
z-

2BC
(3.3)

From the identity x / y / z- n, we then have

2ABCn
A

D (3.4)
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where D 2AB+ 2BC+ 2CA A2 B2 C2. If we express D using a
and/3, then

D {4- (1,+ a)(1 +/3)}(1 + a)(1 +/3)(1 a)2(1 -/3)2 (3.5)

(and so that D > 0). In fact, putting p -/3, q a/3 and r- a,.
or A _p2, B- q2 and C-r2, we have

D 2p2q2 + 2q2r2 _+_. 2r2p2 p4 q4 r4

+ q + r)(-p + q + r)(p q + r)(p + q r)
(3 a -/3- a/3)(1 a +/3- a/3)(1 a -/3 +

+
{4 (1 + a)(1 +/3)}(1 + a)(1 +/3)(1 a)2(1 -/3)2.

Now note that from (3.4) we can rewrite (3.2) as follows:

X
(A + B- C)Cn (C + A B)Bn

D Y- D
z-

(B + C- A)An

(3.6)

Since B (1 ofl)2
_

(1 0)2 C and similarly B >_ A, we see that x >_ 0
and z _> 0. To guarantee y _> 0 we have to assume

C+ A B- (1 a)2 + (1 -/3)2 (1 043)2 0, (3.7)

or equivalently

(1 + a)(1 +/3) <_ 2.

Hence, if the condition (3.7) is satisfied then the maximum Tmax of
T is attained for x, y and z of (3.6), and then from (3.1) we obtain

Tmax ABCn2 (1 a/3)Zn2 (3.8)
D {4-(1 + a)(1 +/3))(1 + a)(1 +/3)"

If a and/3 are rational, then for a sufficiently large integer n the values
of x, y and z of (3.6) become integers, and then T really attains its

maximum Tma of (3.8).
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If (3.7) does not hold, that is, if

(1 + c)(1 +/3) > 2, (3.9)

then

T- Axy + Bxz + Cyz

Ax( x- z) + xz + C(- x- z)z
(B- C- A)xz + ax(n- x) + C(n- z)z,

and since

n2 (_< - x n x _< x + n 2=

and

(n z)z < (n z + z) 2- n2
2 4’

we have

Bn2 n2

4 --(1-c3)2.

If n is even, then putting x-z- n/2, y- 0, we see that T really attains

(n2/4)(1 c/3)2.
For the second case: 0 <_ s < < n, if we put

x s, y t- s, z n t,

A -(/--O/)2, B--(1 -c/3)2, C- (O- O/)2,

then we have the same problem as in the first case. Since in this case

B- C- A (1 0/)2 (0 0/)2 (]- 0/)2

(1 0)2(1 -/)2 0,
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we have the condition (3.9), so that as above we have

T < Tmax
Bn2 n2
q-

and if n is even, Tma is attained for x-y- n/2, y- O.
Now summarizing the above argument, we have a refinement of

Theorem 2.1"

THEOREM 3.1 Let a=(al,...,an) and b-(bl,...,bn) be n-tuples of
real numbers satisfying

0 <_ ml <_ ai <_ M1, 0 <_ m2 <_ bi <_ M2 (i- 1,... ,n) and M1M2 O.

Put m/M1 and 3- m2/M2. Then

(i)/f(1 + c0(1 +/3) < 2 then

Z a2i Z b2i- (Zaibi)
2

(ii) tf (1 + c)(1 +/3) _> 2 then

n2(M1M2 mira2)2

-< {4- (1 + c)(1 + fl)}(1 + c)(1 + fl)’

Za b2i (Z aibi)
2 n2 )2 (3 11)<_ --(M1M: mlm2

The constants n2/{4 (1 + c)(1 +/3)}(1 + c)(1 / fl) in (3.10) and n2/4
in (3.11) are best possible" For (i), if both and fl are rational, then ifwe
choose a sufficiently large integer n, then for suitable extremal n-tuples
a and b the equality sign of (3.10) holds. For (ii), if n is an even integer
then for the extremal n-tuples a and b such that the first halves of ai

and bi equal to M and m2, respectively, and the latter halves of them
equal to m and m2, respectively, then the equality sign of (3.11) holds.

CorollAry 3.2 If O m ai M (i-- 1,..., n), then

a.-{ < (3 12)
n 4

Proof Putting hi-1 in (3.11) and dividing both the sides by n2, we
obtain (3.12).
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The above inequality (3.12) is nothing but the variance inequality of
the numerical case.

EXTENSIONS AND OPERATOR VERSIONS OF
OZEKI’S INEQUALITY

In this section, extending Ozeki’s inequality (2.1) and the refinements
(3.10) and (3.11), we show their operator versions for commuting
positive operators. We also try to obtain an operator version of Ozeki’s
inequality without commutativity condition.
We begin with a weighted version of Ozeki’s inequality.

THEOREM 4.1 Let a=(al,...,a) and b=(b,...,bn) be n-tuples of
real numbers satisfying the condition (1.1). Suppose that {w, Wn} is an

n-tuple ofnonnegative numbers and wk w. Then

ZWka2kZWkb- (ZWkakbk) 2<- 3----(mlm2
W2 mlm2)2. (4.1)

Proof We may assume that all wk (and w) are rational, so that,
multiplying by an integer both the sides of (4.1), we can turn all wk
(and w) into integers. Then from Theorem 2.1 we can deduce the
inequality easily.

For two nonnegative integrable functions defined on a measure
space we have

THEOREM 4.2 Let lZ be apositive measure on X, #(X) 1, and letfand.g
be functions in L2(X) satisfying 0 <_ ml <f< M1 and 0 <_ m2 <_ g <_ M2,
respectively. Then we have

/ f (/ )2 I(M1M2 mm2)2 (4.2)f2 d# g2 d#- fg d# <_ -Proof To obtain the inequality, let {El,..., En} be a decomposition of
X, and let Xk E Ek (k- 1,..., n). Then from Theorem 4.1 we have

<_ 1/2(M1M2 mlm2)2.

Hence as the limit of decomposition we have the desired inequality.
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Let A and B be two self-adjoint operators on a Hilbert space H.
Then if they are commuting, there exist commuting spectral families
E’(.) and E(.) corresponding to A and B such that for a polynomial
p(A, B) in A, B

p(A, B) p(s, t) dEA (s) dES(t)

([7, p. 287]). Hence for p(A, B)- AraB we have

(AmBnx, x) p(s, t) d(EA(s)En(t)x,x), xH.

Now as an operator version of Theorem 2.1 we have

THEOREM 4.3 Let A and B be commuting self-adjoint operators
satisfying 0 < m < A < M1 and 0 < m2 < B < M2 respectively. Then for
a unit vector x E H,

(A2x, x)(B2x, x) (ABx, x)2 <_ 1/2(M1M2 mlm2)2. (4.3)

Proof Let d# d#(s, t) d(EA(s)E(t)x, x) dliEA(s)E(t)xll 2. Then #
is a positive measure on the rectangle [ml, M1] [m2, M2] and its total
mass- 1. Hence from Theorem 4.2 we have

(A2x, x)(a2x, x) (Aax, x)

__< 1/2(M1M2 mlm2)2.

Starting from Theorem 2.1 (Eq. (2.1)), we have successively
deduced the inequalities (4.1), (4.2) and (4.3). In parallel, starting from
Theorem 3.1 we can successively deduce corresponding inequalities. In
particular, we can show

THEOREM 4.4 Let A and B be commuting self-adjoint operators on H
satisfying the same conditions as in Theorem 4.3, and assume M1M2 O.



248 S. IZUMINO et al.

Put ml/M1 and 13 m2/M2. Then for any unit vector x E H,

(i) if (1 + c)(1 +/3) <_ 2, then

(M1M2 mlm2)2

(AZx’x)(BZx’x) (ABx’x)2 <- {4 (1 + c)(1 +/3)}(1 + c)(1 +/3);

(ii) if (1 + c0(1 +/3) > 2, then

(A2x, x)(B2x, x) (ABx, x)2 <_ 41- (M1M2 mlm2)2.

If B- 1, the identity operator on H, then putting M2 m2 1, from
(ii) we have

(A2x, x) (Ax, x)2 _< 1/4 (M1 ml)2.

This is nothing but the variance inequality of A[1, Theorem 2] in
noncommutative probability.

If we do not assume that the operators A and B commute, then the
inequality (4.3) is false in general. In fact, let

B-
5

x- l/x

Then (A2x, x)(B2x, x)- (ABx, x)2-- 256. On the other hand since the
characteristic values of A and B coincide and they are 3 + x/, we can
put ml m2 3 x/ and M1 M2 3 + x/, so that

1/2(M1M2- mlm2)2 240 < 256.

To consider the operator version of Ozeki’s inequality without
commutativity assumption, we here introduce the s-geometric mean

A,,.B ofpositive (invertible) operators A and B defined (by Kubo-Ando
[41) as

AsB- A1/2(A-1/2BA-1/2)SA1/2 (0 <_ s <_ 1).
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THEOREM 4.5 Let A and B be positive operators on H satisfying
0 < ml _< A _< M1 and 0 < m2 <_ B <_ M2, respectively. Then for any unit

vector x E H,

(M1M2 mlm2)2,(A x, xl(  x,x) <_ (4.4)

where "y max{ml/M1, m2/M2}.

Proof By the variance inequality [1], if C is a positive operator on H
such that 0 < m _< C < M, then for any unit vector x E H,

(CZx, x) (Cx, x)2 <_ 1/4(M- m)2. (4.5)

If we replace x by x/tlxll in (4.5), then we have

(CZx, x)(x,x) (Cx, x):z <_ 1/4(M- m)Z(x,x)2. (4.6)

Furthermore, if we replace C by (B-1A2B-1)1/2 and x by Bx in (4.6),
then we have

(AZx, x)(BZx, x) -(B(B-1A2B-1)l/2Bx, x)2

_< 1/4 (M m’)2 (Bx, Bx) <_ (M m’)2M4. (4.7)

Here the corresponding M and m are determined as follows; since

m < mlB_2 < B_IAZB_ < MZlB_2 M
M2 m

we have ml/M2 < (B-1A2B-1)I/2<_ Ml/m2, so that we may put M
M1/m2 and mr-ml/M2 in (4.7). Hence, nothing B(B-1AZB-1)1/2 B-
B21/2A2, we have

M27 (M1M2 mira2)2(A2x, x)(B2x, x) (B2I/2A:Zx, x)2 _< m22 (4.8)
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If we exchange A and B in (4.8), then we have

(A2x, x)(B2x, x) (A2l/2B2x, x)2 < m21 (mlm2 mlm2)2-m (4.9)

Now since B2l/2A2-A2l/2B2 (cf. [4]), we can obtain the desired
inequality (4.4) from (4.8) and (4.9).

Concluding this paper, we note the covariance-variance inequality
due to Fujii et al. [1].

THEOREM A [1, Theorem 3] IfA and B are self-adjoint operators on H
such that ml <_ A <_ M1 and m. < B < m2 respectively, then

I(ABx, x) (Ax, x)(Bx, x)l <_ 1/4(M ml)(Me m2). (4.10)

In [1], applying this inequality, they induced several classical inequal-
ities such as the Kantrovich inequality and the Heinz-Kato-Furuta
inequality skillfully, and also proved the following result concerning
the difference in the H61der-McCarthy inequality (cf. [6]).

THEOREM B [1, Theorem 4] If a positive operator A on H satisfies
m <_ A <_ M, then for any unit vector x E H,

k

mi-lMk-1(M- m)2 Z(k- i+(A+Ix, x) (Ax, x)+ < - i=1

(4.11)

for all natural numbers k.

Using the above inequalities (4.10), (4.11) and the H61der-McCarthy
inequality [6, Lemma 2.1] that

(Arx, x) <_ (Ax, x) for O <_ r <_
((Arx, x) > (Ax, x) for r ), (4.12)

we have the following extension of Theorem 4.5.

THEOREM 4.6 Let A and B be positive operators satisfying 0 < ml <_
A <_ M1 and 0 < me <_ B < M2, respectively. Suppose that p > 2, q > 0 and
[p] is the largest integer not exceedingp. Put k-[p] andr-p- k- 1.
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Thenfor any unit vector x E H,

(APx, x)(Bqx, x)p-1 (Bql/pAPx, x)p

<_ F(m, /M/P, M1/m/P,p)Mq,

where

(Mk+l mk+ (M- m)2F(m,M,p) ---(M mr) +--4--
k

x Z(k-i+ 1)mi-lMk-1.
i=1

(4.13)

Proof We first extend the inequality (4.11) for the positive number
p- k + + r. (For a moment we assume that 0 < rn <_ A _< M.) Since
mr<_ At<_ M for t_> 0, replacing A by A and B by Ak+l in (4.10),
we have

I(Ar+k+lx, x) (Arx, x)(Ak+lx, x)l
<_ 1/4 (mr- mr)(mk+l mk+l). (4.14)

Hence by (4.11), (4.12) and (4.14) we have

(APx, x) (Ax, x)p

I(APx, x)- (Arx, x)(Ak+lx, x)l + (Arx, x)(Ak+lx, x)- (Ax, x)p

<_ I(ArA+x,x) (Arx, x)(Ak+x,x)I
+ (Ax, x)r{(Ak+x,x)- (Ax, x)+ }

(Mk+l mk+l (M- m)2<-4-(Mr mr) + --4--
k

x Z(k + 1)mi-1M/-1,
i=1

that is,

(Apx, x) (Ax, x)p <_ F(m, M, p). (4.15)
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Now, to obtain (4.13), replace x by x/llxl[ in (4.15), then we have

(APx, x)(x,x)p-1 -(Ax, x)p <_ F(m,M,p)(x,x)p.

Moreover, replace A by (B-q/2APB-q/2)I/P and x by Bq/2x. Then we
can get

(APx, x)(Bqx, x)p-1 (BqI/pAPx, x)p

< F(m’ M’ p)(Bqx, x)p < F(m’, M’ pMpq
2

To settle the corresponding values m’ and M’, note that

m/M <_ (B-q/ZAPB-q/2) <_ M/m,

or

ml/M/p <_ (B-q/2APB-q/2)I/P M1/mq/p.

Hence putting m’ ml/M/p and M’ M,/mq2/p, we have the desired
inequality (4.13).

It is easy to see that if we put p q 2 in (4.13) we have (4.8).
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