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One of the most classical characterizations of the real exponential
function f(x)- e is the fact that the exponential function is the only
(modulo a multiplicative constant) nontrivial solution of the differential
equation f’=f Our aim in this note is to study the Hyers-Ulam
stability of this equation, i.e. to solve for a given c > 0 the inequality

}f’(x)-f(x)l _< e, (1)

and to study also the related inequality (for all x =/= y)

(2)
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In dealing with (1) and (2) we will solve several inequalities which have
their own interest. In what follows I will stand for any real interval and
R + for the set of all nonnegative real numbers. A function f will be
termed Jensen concave if f satisfies the inequality f((x+y)/2)>_
(f(x)+f(y))/2 and f will be said to be k-lipschitz whenever
[f(x)-f(y)] <_ klx-yl for all x, y in the (convex) domain off.
We begin the study of (1) with the following

LEMMA Let g: I-- IR be a differentiablefunction. Then:

(i) the inequality g(x) <_ g’(x) holds for all x in I if and only ifg can be
represented in theform

g(x) i(x).e x, x E I, (3)

where I IR is an arbitrary nondecreasing differentiable function;
(ii) the inequality g’(x) <_ g(x) holdsfor all x in I ifand only ifg admits the

representation

g(x) d(x)e x, x I, (4)

where d I 1R is an arbitrary nonincreasing differentiable function.

Proof If g(x)< g’(x) x I, then the function i: I R defined by the
formula i(x) g(x)e-x, x I, is differentiable and satisfies

i’(x) g’(x)e-x g(x)e-x (g’(x) g(x))e-x >_ O,

for all x L
Therefore is nondecreasing and (4) follows. The converse is

immediate. Part (ii) follows from (i) by replacing g in (i) by -g.

Now we can solve (1) completely.

THEOREM Given an c > 0 let f: I-- IR be a differentiable function.
Then

If’(x) f(x) < , x I,

holdsfor all x in I if and only iffcan be represented in theform

f(x) e + ee(e-), x I, (5)
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where g. is an arbitrary differentiable function defined on the interval
J- {e-X x E I}, nonincreasing and 2e-lipschitz.

Proof If (1) holds then

f(x) <_ f’ (x) <_ +f(x),

for all x E I.
On one hand g(x)=f(x)-e will satisfy g(x)< g’(x) so by part (i) of

Lemma we obtain the representation

f(x)- - i(x)ex, x I, (6)

with differentiable and nondecreasing. On the other hand h(x)-
f(x) + will satisfy h’(x)<_ h(x) and by part (ii) of Lemma we obtain
the representation

f(x) + d(x)ex, x I, (7)

with d differentiable and nonincreasing. By (6) and (7) necessarily

i(x)ex +e- d(x)ex-e, x I, (8)

and by differentiation

i’(x)ex + i(x)ex d’(x)ex + eXd(x) d’(x)ex + i(x)ex + 2, x I.

This together with the nonpositivity of d yields

ex
dt(x)- (x) -2e=it(x)_Zee-x_<0, xEI,

ex

i.e.

O <_ it(x) <_ 2ee-x, xEI.

Ifwe define J-- {e x I} and g" J II by g(z) -/(-In z), z J, then
g is differentiable and

gt(z) -i’(-lnz)/z <_ O, z E J.
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Therefore g is nonincreasing and, moreover, g is 2e-lipschitz because
for all z,z2 in J, z - z2, by the mean value theorem there exists z3 in
(min(z, z2), max(z, z2)) such that

Ig(Zl) e(z )l--le’(z )llz, z21- -i’(-lnz3)]Izlz3 z2l

i’(-lnzl), e-lnz3lzl z2l _< 2elz z2l.
Thus we have the desired representation

f(x) e + i(x)ex e + g(e-X) ex.

It is immediate to prove the converse implication.

Remark In the study of the Hyers-Ulam stability of a functional
equation one hopes that if a function "e-satisfies" an equation (e.g.
If’(x)-f(x)l <e) then there must exist a constant k such that the
function must be ke-uniformly close to the general solution of the
corresponding functional equation (resp., If(x)-eXl <_ ke). It is quite
interesting to note, using Theorem 1, that from If’(x)-f(x)l <_ e one can
deduce the existence of a solution g(x) cex, x E I, of the equation
g’ g such that

If(x)-g(x)l_<3e for allxEI.

Actually, since f has to be of the form (5) with a differentiable
nonincreasing and 2e-lipschitz function
putting a := infJ [0, ) and c := limta+ g(t) we see that c must be
finite. Now, for every x I one has

f(x) ceXl <_ e + e g(e-x) c[ <_ e + ex 21e-x al
(1 + 211 aeXl).

Therefore, since b c implies a 0 we get (,) in that case whereas the
finiteness of b gives a e- and, consequently,

I.l(x) ce"l <_ e(1 + 211 2ex-*’)

for all x I which leads to (,) as well.
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Now we turn our considerations to (2). First we observe that for the
class of differentiable functions, (2) reduces to (1) so Theorem
describes the general differentiable solutions of (2). Since it is well-
known that the only differentiable solution of the functional equation

f(y) f{x, + Y)" for x - y, (9)
y-x 2 ,i

is the zero function, we can conclude also that if (9) were stable in the
sense of Hyers and Ulam then each differentiable solution of (2) would
have to be bounded jointly with its derivative.

Let us consider now some special classes of functions (see e.g. [2;4,5])
satisfying weaker conditions than the equality (9).

LEMMA 2 For every real number x y the exponentialfunction satisfies
the inequalities

ey ex e + ey
e(x+y)/2 < < (10)--y--x-- 2

Proof Using the power series expansion for the exponential function
and the fact that 2 < n / < 2n, for all positive integers n, it is immediate
to show that et/2 <_ (et-1)/t _< (e + 1)/2, for all > 0, and (10) follows.

LEMMA 3 A function f: I---+ 1R + satisfies the inequality

s(X + y) < S(y)
2 y-x

for all x y in I, ifand only iffcan be represented in theformf(x) i(x)e
where i" I--+ 1R+ is an arbitrary nondecreasingfunction.

Proof Iffsatisfies (11) then for any x in I and h > 0 such that x + h E I
we have

f(x + h) >_f(x) + hf(x +) >_f(x) + hf(x) (1 + h)f(x),

because, clearly, fhas to be nondecreasing.
By an obvious induction we get

f(x + ih) >_ (1 + h)if(x)
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whenever x + ih E I and E N. Thus, for an arbitrarily fixed n N, for
every x < y from I, one eventually obtains

f(y) f(x + nY-x)_> (1+ n
f(x),

and ifwe let n tend to infinityf(y) _> ey-Xf(x), i.e., the function i: I-+ R+

defined by i(x)=f(x)e is nondecreasing. Conversely, if we have the
representation f(x) i(x)ex, x I, with i: I-+ 1R+ nondecreasing then,
since for x < y we have i(x) <_ i(x + y/2) <_ i(y), we can deduce that

i(y)ey-x -i(x + Y)ey-x >0 > i(x) i(x + Y)2 2

that is,

i(y)ey-x- i(x) > i(x + Y)(ey-x- 1)
2

and multiplying both terms by eX/(y-x) with the aid of Lemma 2 we
have

f(y) f(x)
ymx

i(y)ey -i(x)ex > {x + y’ ey e

y-x k 2 J y-x

> i(x + y)e(X+y)/2 =f(x + y)2 2

i.e. (11) follows. Moreover,fis nonnegative because so is i.

THEOREM 2 Given an c > 0 letf: I---+ IR+ be afunction such thatf(x) >_
for all x in L Thenfsatisfies the inequality

f(x + y) <S(Y) f(x)
2 y-x

(12)

for all x < y in I, if and only if f can be represented in the form
f(x) + i(x)ex, x I, where I-- IR+ is a nondecreasingfunction.

Proof By (12) we can apply the previous lemma to the functionf-e.
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LEMMA 4
inequality

If a function f: I + is nondecreasing and satisfies the

f(y) f(x) < f(x + y)y-x 2
(13)

for all x < y in I, thenfcan be represented in theformf(x) d(x)ex, x E I,
with a nonincreasingfunction d" I R+

Proof Iff is a nondecreasing solution of (13) then for any x in I and
h E (0, 1) such that x + h is in I we have

O <_f(x + h) f(x) <_ hf (x + ) <_ hf(x + h),

i.e., f(x + h) < f(x)/(1-h). Thus if x < y in/, for sufficiently large n N
we have (y-x)/n (0, 1) and one obtains

f(y) f(x + (y-x)) f(x +ny-x) <_f(x)/(1 Y-X) n,
whence by letting n tend to infinityf(y) _< f(x)ey-x, i.e., d(x) =f(x). e-x,
x L is nonincreasing.

LEMMA 5 A nondecreasing Jensen concavefunction f: I- ]K+ satisfies
(13) ifand only ifthere exists a nonincreasingfunction d: I +such that
I x - d(x)e is concave andf(x) d(x)ex, x L

Proof Necessity follows from Lemma 4. To prove sufficiency assume
that f(x)= d(x)ex, x I, is Jensen concave and nondecreasing with d
nonincreasing. If x < y in I then d(x)=f(x)e _>f(y)e-Y d(y), i.e.,
f(x) > f(y)ex-f and therefore since all functions are positive and we can
apply Lemma 2 obtaining

f(y) f(x) < f(Y) f(y)ey-x =.<f(Y)ey ex f(y) e x + ef

y-x y-x eY y-x- ey 2

f(y)ex-y +f(y) < f(x)+f(y) < f (X.... Y)2 2

which states that (13) holds.
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Remark Note that a monotonic (and hence measurable) Jensen
concave function f: I---, R has to be necessarily concave in the usual
sense, i.e. to satisfy the inequality

f(Ax + (1 A)y) >_ Af(x) + (1 A)f(y)

for all x, y E I and all A E [0, 1] (see e.g. [3]).

THEOREM 3 Given an e> 0, a nondecreasing Jensen concave function
f:1N satisfyingf(x) >_ c for all x L is a solution of the inequality

f(y) f(x)
c < f (x + y) (14)

y-x 2

if, and only if, f(x)=d(x)eX- where d: 14 R+is nonincreasing and
I x H d(x)e is Jensen concave.

Proof Apply Lemma 5 to the functionf+ e.

Thus given e > 0 for the class of functionsf: I N such thatf(x) >_ e
for all x in I andfis nondecreasing and Jensen concave, by combining
Theorems 2 and 3 it follows a representation for the solutions of the
inequality (2). To find solutions of (2) in a wider class of functions is an
open problem.
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